PHY131 F Fall 2020

Today:

Class 13

- We start on Chapter 5, Circular Motion
- NOTE: Chapter 5 material will not be covered on the Oct. 13 midterm, but it will be on the Oct. 27 midterm!
- We will take 10 minutes in the middle of class to do a Group Discussion Quiz by you opening
 Filter my face today
What Studio Filter would you prefer

PRA Schedule

Week:	Week 4	Week 5	Week 6	Week 7	Week 8	Week 9	Week 10
Practical: Day of Practical	PRA 2b	PRA 3a	PRA 3b	PRA 4a	PRA 4b	PRA 5a	PRA 5b
Friday	Oct 16	Oct 23	Oct 30	Nov 6	Nov 20	Nov 27	Dec 4
Monday	Oct 19	Oct 26	Nov 2	Nov 16	Nov 23	Nov 30	Dec 7
Tuesday	Oct 20	Oct 27	Nov 3	Nov 17	Nov 24	Dec 1	Dec 8
Wednesday	Oct 14	Oct 21	Oct 28	Nov 4	Nov 18	Nov 25	Dec 2
Thursday	Oct 15	Oct 22	Oct 29	Nov 5	Nov 19	Nov 26	Dec 3

- This is a little tricky.
- Friday PRA students used to be "first", and Thursday was "last".
- But starting next week, Wednesday PRA students will be "first", and Tuesday will be "last".
- Bottom line:
- No Practicals today, or next week on Monday or Tuesday.

5.1 Circular Motion

Observational experiment

Experiment 1. A bowling ball is rolled toward you over a smooth floor. You are asked to tap it with a mallet to make the ball roll in a circle with constant speed. You find that directing the mallet taps along the desired circular path doesn't work; the ball rolls wide. The only thing that works is to tap directly toward the center of the desired circle.

5.1 Circular Motion

Experiment 2. You hold a bag by the handle and swing it in a horizontal circle at constant speed. You observe that your arms pulling the bag are angled down with respect to the horizontal.

5

5.1 Circular Motion

Analysis

There are three objects interacting with the bowling ball: Earth, the floor, and the mallet. We assume that the force exerted by the floor is perpendicular to the floor's surface. The force diagrams for the ball at two locations are shown below. We see that at each location the sum of the forces points toward the center of the circle.

7

5.1 Circular Motion

Two forces are exerted on the bag as it moves around the circle: Earth pulls downward, and you pull at an angle with the vertical. The vertical component of the force that you exert on the bag must balance the force that Earth exerts on it because the bag does not accelerate in the vertical direction. Consequently, the sum of these two forces again points toward the center of the circle.

5.1 Qualitative Dynamics of Circular Motion

Hypothesis: When an object is moving in a circle, the sum of all the forces exerted on it by other objects is directed toward the center of the circle (we assume the speed of the object is constant).
Testing: Let's test the hypothesis.
If you remove inward forces, does an object cease to go on a circular path?

A ball rolls along a frictionless track on a horizontal table, as seen from above in the figure. The track is curved in $3 / 4$ of a circle. The ball rolls clockwise around this track and then emerges onto the flat, frictionless table. Which dashed line most closely represents the path of the ball when it emerges from the track?

Please make a prediction, then let's do a demonstration..

A ball rolls along a frictionless track on a horizontal table, as seen from above in the figure. The track is curved in $3 / 4$ of a circle. The ball rolls clockwise around this track and then emerges onto the flat, frictionless table.
C. is the tangential velocity at the moment that it is no longer accelerating (inward force goes away)

TeamUp Time!!

- Today you will be doing three multiple choice questions, all from Chapter 4, as a team of 2-4 students in your Practicals Pod.
- Your pod-team shares the mark!
- Each question is worth a maximum of 5 points (diamonds)
- You can guess more than once, but you lose some diamonds every time you submit a wrong answer.
- You will have 10 minutes once I say "go"
- Before we start, let's take a quick look at the questions first.

Question 1 Preview

- An ice cube slides down a frictionless ramp. How does N, the magnitude of the normal force exerted by the ramp on the ice cube, compare to $F_{\mathrm{gE} \text { on }}$, the magnitude of the gravitational force exerted by the Earth on the ice cube?
A. $N=0<F_{\mathrm{g} \text { E on } \mathrm{C}}$
B. $0<N<F_{g \text { Eon }}$
C. $N=F_{\mathrm{gEonC}}$
D. $N>F_{\mathrm{gEonC}}$

Question 2 Preview

- For projectile motion with no air resistance, the horizontal component of a projectile's velocity
A. remains zero.
B. remains a non-zero constant, generally not zero.
C. continuously increases.
D. continuously decreases.

Question 3 Preview

Question 3

- Earth exerts gravitational forces as shown in the figure on three boxes, which are pulled along a horizontal frictionless floor by a constant horizontal force P. The boxes are connected by light horizontal strings, having tensions T_{1} and T_{2}. Which of the following statements about the tensions is correct?
A. $T_{1}=P$
B. $T_{1}+T_{2}=P$
C. $T_{2}>T_{1}$
D. $T_{1}>T_{2}$

Now: TeamUp! You have 10 minutes

I'm going to stop talking for 10 minutes; right now you should open Microsoft Teams and someone (most recent Facilitator) should place a video call to all 3 or 4 members of your Pod-Chat.

- The first step is to decide who will be the TeamUp Driver All students must log-in to Quercus [You will now have three windows open: my zoom lecture, Microsoft Teams, and Quercus]
- Non-drivers: Wait!
- Driver: Go to the TeamUp Quiz in this module, click Go to Tool, then Create a Group. Let everyone in the Breakout Room know the session ID. Then WAIT - don't drive off alone!
- Non-drivers: Once you get the session ID, go to the TeamUp Quiz in this module, click Go to Tool, then Join Session and type the ID you were given.
- Once everyone in your room arrives in TeamUp, start going through the questions. Please achieve consensus before the driver submits.
- Go!

TeamUp! is done

We're back!
If you did not finish, or if you are watching this later on YouTube you have the rest of this weekend to complete the TeamUp.

- If you feel like leaving your Microsoft Teams open for the rest of today's class, that's fine - there are two more poll questions to do in zoom today, you might want to discuss them!

TeamUp Quick Review..

Question 1

- An ice cube slides down a frictionless ramp. How does N, the magnitude of the normal force exerted by the ramp on the ice cube, compare to $F_{\mathrm{g} \text { E on } \mathrm{C}}$, the magnitude of the gravitational force exerted by the Earth on the ice cube?
A. $N=0<F_{\mathrm{g} \text { E on } \mathrm{C}}$

$$
a_{x}=>a \quad a_{y}=0
$$

B. $0<N<F_{\mathrm{g} \text { E on } \mathrm{C}}$
C. $N=F_{\mathrm{g} \text { E on } \mathrm{C}}$
D. $N>F_{\mathrm{g} \text { En C }}$

TeamUp Quick Review..

Question 2

- For projectile motion with no air resistance, the horizontal component of a projectile's velocity
A. remains zero.
B. remains a non-zero constant, generally not zero.
e. continuously increases. $v_{x}=v_{x 0}=$ con stent
D. continuously decreases. $a_{y}=-9.8 \mathrm{~m}_{\mathrm{k}} \mathrm{s}^{2}$

$$
a_{x}=0
$$

Question 3

TeamUp Quick Review..

- Earth exerts gravitational forces as shown in the figure on three boxes, which are pulled along a horizontal frictionless floor by a constant horizontal force P. The boxes are connected by light horizontal strings, having tensions T_{1} and T_{2}. Which of the following statements about the tensions is correct?
A. $T_{1}=P$
Define system $=m_{1}$
B. $T_{1}+T_{2}=P$
$\nabla F_{y} \quad T_{2}=\sum F_{x}=m_{1} a$
C. $T_{2}>T_{1}$
D. $T_{1}>T_{2}$

$$
\begin{array}{cl}
\text { Define system }=m_{1}+m_{2} & \begin{array}{l}
\\
\\
T_{1}
\end{array}>T_{2} \text { E only horizontal } \\
e_{x}+\theta m_{a l} \text { fo -a is } \\
& T_{1}=\Sigma F_{x}=\left(m_{1}+m_{2}\right) a
\end{array}
$$

Clicker Question

A. Gravity
B. Normal
C. Kinetic Friction
D. Static Friction
E. Rolling Friction

Analyzing the acceleration vector

- An object's acceleration can be decomposed into components parallel and perpendicular to the velocity. -If you set the x-axis to be in the direction of \vec{v}, then:
a_{x} is the component of the acceleration that causes the object to change speed
$-a_{y}$ is the component of the acceleration that causes the object to change direction
- An object changing direction always has a component of acceleration

Uniform Circular Motion
Speed is constant.

Clicker Question
A car is traveling East at a constant speed of $100 \mathrm{~km} / \mathrm{hr}$. Without speeding up of slowing down, it is turning left, following the curve in the highway. What is the direction of the acceleration?

A. North
B. East
C. North-East
D. North-West
E. None; the acceleration is zero.

Clicker Question

A car is traveling East at a constant speed of $100 \mathrm{~km} / \mathrm{hr}$. Without speeding up of slowing down, it is turning left, following the curve in the highway. What is the direction of the acceleration?

A. North
B. East
C. North-East
D. North-West
E. None; the acceleration is zero.

Midterm Assessment 2

- There will be two problems you must solve using the 4 -step method.
- The solutions must be in your handwriting and written upon an Answer Template Sheet or something very similar.
- You will see both problems at once, starting on Tue. Oct. 13 at 8:10pm Toronto time. Both problems are from Chapter 4.
- You have 30 minutes to write out your solutions to both.
- There is an additional 5 minutes which you should allow for uploading the file. (You can practice with the format at the Ch. 4 Pre-Quiz New Format.)
- All uploads must be complete by $8: 45 \mathrm{pm}, 30$ minutes after the start time.
- You may upload both solutions as a single PDF if you wish, or 2 PDFs, or 2 JPEG images.
- Please be aware of your file sizes, which should be measured in KB, not MB. (A single page should never be more than 2MB)

Free Answer Template Sheets!!

- Are you near 255 Huron Street today, Friday Oct. 9 between now and 4:30pm?
- I've printed out 50 blank copies of the Answer Template Sheet - feel free to take as many as you would like - if it gets empty I'll refill it!

Free Answer Template Sheets!!

- Are you near 255 Huron Street today, Friday Oct. 9 between now and 4:30pm?
- I've printed out 50 blank copies of the Answer Template Sheet - feel free to take as many as you would like - if it gets empty I'll refill it!

Free Answer Template Sheets!!

- Are you near 255 Huron Street today, Friday Oct. 9 between now and 4:30pm?
- I've printed out 50 blank copies of the Answer Template Sheet - feel free to take as many as you would like - if it gets empty I'll refill it!

Free Answer Template Sheets!!

- Are you near 255 Huron Street today, Friday Oct. 9 between now and 4:30pm?
- I've printed out 50 blank copies of the Answer Template Sheet - feel free to take as many as you would like - if it gets empty l'll refill it!

Announcement from April Seeley

- The Quercus Administrators say:

Each student has 52 MB of file capacity, if you are having problems uploading you are near capacity, run a check on you file storage for Quercus, to do this go to your "Account" in the blue navigation bar then click on "Files" at the bottom of the files tool, will tell you how much you have used out of the 52 MB allotted for each course.

- If you are running out of storage then you have to:
- delete unnecessary files.

OR

- move these files to OneDrive and when submitting choose OneDrive and select the file from there

Before Class 14 next Wednesday

- Don't forget to do the quiz on Tuesday evening!
- No class on Monday; no Practicals Tuesday, we resume the normal schedule Wed. Oct. 14.
- Before then, please read.
- 5.3 Radial Acceleration $\left\langle a=v^{2} / r\right.$
- 5.4 Solving Circular Motion Problems
- Happy Thanksgiving!

