## PHY131 F Fall 2020

Class 19

Today:
6.7 Collisions in 2D
7.1 Work and Energy

7.2 Conservation of Energy

## Poll Question (Ch. 6 Review)

- A 1.0 kg block is dropped from a height of 1.0 m above the floor.
- When it collides with the floor, it takes 1.0 ms to come to a complete stop (inelastic collision). $\Delta t=1.0 \times 10^{-3} \mathrm{~s}$
- What was the magnitude of the average force of the floor on the block during the collision?
A. 2.2 N
B. 4.4 N
C. 1100 N
D. 2200 N
(E.) 4400 N

2 segments: (1) Free fall a distance $h$ at $a=9.8 \mathrm{~m} / \mathrm{s}^{2}$
(2) Collision with floor $\Delta t=10^{-3}$ s,

## Seq. 1

Use Eq.2.7 $2 a h=v_{+_{1}}^{2}-V_{i 1}^{2}$ $v_{i 1}=0$ (As same dropped for rest).

$$
V_{f_{1}}=\sqrt{2 g L}=\sqrt{2(9.8) 1.0}
$$

$v_{f_{1}}=4.43 \mathrm{~m} / \mathrm{s}$
Seg.2 $V_{f 1}=V_{i 2}=4.43 \mathrm{~m} / \mathrm{s}$ Defile

$$
P_{i y}+J_{y}=P_{x y}=0
$$

$$
m v_{12}+F_{y} \Delta t=0
$$

$$
\left|F_{y}\right|=\frac{m v_{12}}{\Delta t}=\frac{1.0(4.43)}{1 \times 10^{-3}}=4400 \mathrm{~N}
$$

A yellow Hummer ( $m_{\mathrm{H}}=3900 \mathrm{~kg}$ ) was driving South and collided with a blue Toyota ( $m_{\mathrm{T}}=$ 1200 kg ) which was driving East. The speed limit on both roads is $50 \mathrm{~km} / \mathrm{hr}$.
After the collision, the two cars stuck together and the combined mass skidded along the ground.
The police measure that the skid marks are a line 10 m long, angled $32^{\circ}$ East of South.
The coefficient of kinetic friction between rubber and road is 0.8 .
How fast were the cars going before the collision? Who is at fault?
SKETCH \& TRANSLATE.
Assume 10 external inulse during collision $\quad \vec{P}_{i}=\vec{P}_{f}$


Kinetic friction causes the



Final:

Idea
Kinetic friction causes the combined mass to slow as it skids: $\sim_{0}^{\sim} \sim_{2}^{v}$. $v_{f}=0$

How fast were the cars going before the collision? Who is at fault?
SIMPLIFY \& DIAGRAM
2 segments of motion: (1) Collision (2) sk. dd ding.

$$
v_{f} \text { of } 0=v_{i} \text { of (2) }
$$

Let's start by analyzing $\operatorname{seg}(2)$ :
Fora diagram of $\sum F_{z}=O=N-m_{c m} g$ combined mass: $\quad F_{z}=0=N=m_{\text {cm }}$


How fast were the cars going before the collision? Who is at fault?
SIMPLIFY \& DIAGRAM
2 segments of motion: (1) Collision.
(2) Skidding.

$$
v_{f} \text { of }(1)=v_{1} \text { of (2) }
$$

Let's start by analyzing eeg (2):
Force diagram of
combined mast: $\vec{a} \quad \sum F_{y}=0=N-m_{c m} g$
$\overrightarrow{f_{k R \text { Roncm }}} \overbrace{\vec{N}_{\text {Roncm }} \stackrel{a}{\rightleftarrows} \quad \Rightarrow N=m_{c m} g}^{\sum F_{d}=-\mu_{k} N=-\mu_{k} m_{c m} g}$
Define $\left\lvert\, \vec{F}_{g E_{0-1} c m} \quad a_{d}=\frac{\sum F_{d}}{m_{k m}}=\frac{-\mu_{k} m / m g}{m_{c m}}\right.$
$\begin{array}{ll}\uparrow^{4} d \\ U_{s e} \text { Eq. } 2.7 & \text { Lad }=\frac{F_{d}}{m_{k m}^{2}-v_{i}^{2}}=\frac{-\mu_{k} m / m g}{m_{C m}}\end{array}$

$$
v_{1}=\sqrt{-2 a_{d} d}=\sqrt{2 \mu_{k} g d}
$$



REPRESENT MATHEMATICALLY

$$
\begin{array}{ll}
x: & m_{T} v_{T i}+0+0=m_{c m} v_{f} \sin \theta \\
y: & 0-m_{H} v_{H i}+0=-m_{c m} v_{+} \cos \theta  \tag{a}\\
(2)
\end{array}
$$

$$
\begin{aligned}
& (1) \Rightarrow v_{T_{i}}=\frac{m_{c m}}{m_{T}} \sqrt{2 \mu_{k} g d} \sin \theta \\
& (2) \Rightarrow v_{H i}=\frac{m_{c m}}{m_{H}} \sqrt{2 \mu_{k} g d} \cos \theta
\end{aligned}
$$

5

Collision:


REPRESENT MATHEMATICALLY
$x: \quad m_{T} v_{T i}+0+0=m_{c m} v_{r} \sin \theta$
$y: 0-m_{H} v_{H i}+0=-m_{c m} v_{f} \cos \theta$

$$
\begin{aligned}
& (1) \Rightarrow v_{T_{i}}=\frac{m_{c m}}{m_{T}} \sqrt{2 \mu_{k} g d} \sin \theta \\
& (2) \Rightarrow v_{H i}=\frac{m_{c m}}{m_{H}} \sqrt{2 \mu_{k} g d} \cos \theta
\end{aligned}
$$

(1) The Toyota was going much

SOLVE \& EVALUATE

$$
\begin{aligned}
& V_{T_{i}}=\frac{1200+3900}{1200} \sqrt{2(0.8) 9.8(10)} \\
& V_{T_{i}}=28.2 \mathrm{~m} / \mathrm{s} 32 \\
& V_{H i}=\frac{1200+3900}{3900} \sqrt{2(0.8) 9.8(10)} \cdot \cos 32 \\
& V_{H i}=13.9 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$ foster than the Hummer.

(2)

$$
\begin{aligned}
& v_{T_{i}}=28 . \frac{2}{s}\left(\frac{60}{1 \operatorname{mak}}\right)\left(\frac{60 \mathrm{mi}}{1 \mathrm{hr}}\right)\left(\frac{1 \mathrm{~km}}{1000 \mathrm{~m}}\right) \\
& v_{T}=102 \frac{\mathrm{~km}}{\mathrm{~h}} \text { E in } 250 \mathrm{~km} / \mathrm{h} \\
& \text { Toyota. is at fautl.! }
\end{aligned}
$$

## What's the Big Idea?

- Chapters 6 and 7 introduce the principles of conservation of momentum and conservation of energy. These concepts give us new useful ways of analyzing motion.
- Some quantities stay the same while other things around them change.
- For example, when a dish falls to the floor and shatters, the initial mass of the plate should equal the total final mass of all the pieces. This is "Conservation of Mass": $M_{\mathrm{i}}=M_{\mathrm{f}}$.
- Similarly, we have "Conservation of Momentum" ( $\vec{p}_{\mathrm{i}}=\vec{p}_{\mathrm{f}}$ ), and "Conservation of Energy" ( $E_{\mathrm{i}}=E_{\mathrm{f}}$ ): two new principles which we will use to solve problems.


## What is "energy"?

- Energy is a property of an object, like age or height or mass.
- Every object that is moving has some Kinetic Energy K.
- An object in a gravitational field also has some Gravitational Potential Energy $U_{\mathrm{g}}$.
- Energy has units, and can be measured. $\leftarrow$ units are "Jouks"
- Energy is relative; kinetic energy of car is different for an observer in the car than it is for an observer standing on the side of the road.


## Kinetic Energy: The energy of motion

Units:
$\mathrm{kg} \cdot \frac{\mathrm{m}^{2}}{\mathrm{~s}^{2}}$
$={ }^{\prime \prime}$ Joule"


Potential Energy: The Whitschick. energy of position $g=9.8 \mathrm{~m}$

$$
\mathrm{Kg} \cdot \frac{m}{s^{2}} \cdot m=k g \frac{m^{2}}{s^{2}} \quad U_{g}=m g y
$$

## Potential Energy: The energy of position

$$
S=s \text { pring }
$$


$x=$ distance the end of spring is pushed or pulled past 'equilibrium


## Internal Energy: The energy of microscopic thermal vibrations



Here " $\propto$ " means "is proportional to"

## Dominoes

- A domino is a rectangular solid which can be balanced on its edge
- When standing upright, its gravitational potential energy is a maximum

- This is a state of unstable equilibrium: a small perturbation can cause the domino to fall, transforming its gravitational potential energy into kinetic energy
- As it is falling, it can perturb its neighbor, which then releases its potential energy: a chain reaction can ensue!


## The most basic form of energy: Work

- involves force and distance.
- is force $\times$ distance.
- in equation form: $W=F d \cos \theta$
- Here $\theta$ is the angle between the force and displacement

Two things occur whenever work is done:

- application of force
- movement of something by that force

newton-meter ( $\mathrm{N} \cdot \mathrm{m}$ )
or joule (J)


## Work can be positive, zero or negative

- Your hand $(\mathrm{H})$ pulls a briefcase $(\mathrm{B})$ to the right and it moves to the right.
- When the force and the distance are in the same direction, you are helping the motion with the force, so the work done on the object is positive.
- The force is adding energy to the object + environment.

$$
W=F d \cos \theta
$$

- Maybe this force is speeding the object up.



## Work can be positive, zero or negative

- Your hand $(H)$ supports a briefcase $(B)$ with an upward force, as the briefcase moves to the right.
- When the force and the distance are at right angles, you are not helping the motion with the force, so the work is zero.
- This force is not changing the energy of the object.


## - This force wont

 speed the object up or slow it down.

$$
W=F d \cos \theta
$$

H on B
$\cos 90^{\circ}=0$
$\theta=90^{\circ}$
$\vec{d}$

## Work can be positive, zero or negative

- Your hand $(H)$ pulls a briefcase $(B)$ to the left, while, for some reason, the briefcase moves to the right.


## displacemon²

- When the force and distance are in opposite directions, you are hindering the motion with the force, so the work done on the object is negative.
- This force is reducing the energy of the object.
- Maybe this force is slowing the object down.




## Poll Question

- Justin is doing a bench press, and he slowly pushes the bar up a distance of 0.30 m while pushing upwards on the bar with a force of 200 N . The bar moves with a constant velocity during this time.
$W=F d$ - During the upward push, how much work does $=(200 \mathrm{~N})(0.3 \mathrm{~m})$ Justin do on the bar?

$$
=60 \mathrm{~J}
$$

A. 60 J
B. 120 J
C. 0 J
D. -60 J
E. -120 J


## Poll Question

- Justin is doing a bench press, and he slowly lowers the bar down a distance of 0.30 m while pushing upwards on the bar with a force of 200 N .


## $\vec{\imath}$ The bar moves with a constant velocity during this time. <br> - During the downward lowering, how much work does Justin do on the bar?

$$
w=-F d
$$

A. 60 J
B. 120 J
C. 0 J
©. -60 J
E. -120 J

## Poll Question

- Justin is doing a bench press, and he slowly lowers the bar down a distance of 0.30 m while pushing upwards on the bar with a force of 200 N . He then pushes it up slowly the same distance of 0.30 m back to its starting position, also pushing upwards on the bar with a force of 200 N .
- During the complete downward and upward motion, how much total work does Justin do on the bar?

> A. 60 J
> B. 120 J
> C. 0 J
> D. -60 J
> E. -120 J

## Midterm Assessment \#3

- Each online half-hour assessement is worth between $10 \%$ and $12.5 \%$ of your mark in this course.
- The lowest of five assessment scores will be dropped.
- The assessment will become available on Quercus to start at 8:10pm tomorrow evening, Toronto time (ie 32 hours from right now)
- If you are registered for the alternate sitting, then you do the whole thing exactly 2 hours later.
- If you miss the assessment, you get a zero.


## Midterm Assessment \#3

- The assessment is "open book"; allowed aids include your course notes, the textbook, videos, google-searches for static web-pages, a calculator, Excel, Python, etc.
- You must work on the assessment individually.
- No group work or chats with other students are allowed during the assessment.
- Once you start there will be a 30 -minute timer
- The assessment ends when your personal 30-minute timer elapses, or $8: 45 \mathrm{pm}$, whichever comes first.


## Midterm Assessment \#3

- You will see one question at a time, in a random order.
- You must submit each answer by clicking Next in order to see the next question; you will not have the ability to go back change any answer after it has been submitted.
- After completing all 10 questions you must click Submit Quiz before the time has ended.
- There are 4 conceptual questions and 6 numerical questions.
- You will need a calculator, or Excel or something to do these. You should have pencil and paper ready for rough work.


## Midterm Assessment \#3

- All questions are Multiple Choice, marked automatically.
- The average time per question is 3 minutes, but numerical questions will likely take longer than conceptual, so do not linger long on the conceptual questions.
- Material will cover mostly questions and problems from Chapters 5 and 6 from Etkina. Chapters 2-4 are also important to remember, but are not specifically tested in this assessment.
- There will be at least one question based on your work in Practicals 2a and b and 3a.


## Before Class 20 on Wednesday

- Please read:
- 7.3 Kinetic Energy, Gravitational Potential Energy
- 7.4 Elastic Potential Energy
- 7.5 Work of Sliding Friction
- Good luck on tomorrow's test! $24+8$ hours from right now!

