PHY131H1F - Class 20

Today:

Potential energy

7.3 Kinetic Energy, Gravitational Potential Energy 7.4 Elastic Potential Energy 7.5 Work of Sliding Friction

Energy in

Energy out

Midterm Assessment 3 Adjusted Scores

Solutions Video Is Posted

- Module 3: Chs. 5 and 6

TeamUp Quiz Module 3 Ch. 5
 Multiple Due Dates | 15 pts

TeamUp Quiz Module 3 Ch. 6

Multiple Due Dates | 15 pts

Midterm Assessment 3

Multiple Due Dates | 100 pts

Midterm Assessment 3 Alternate Sitting
Multiple Due Dates | 100 pts
(2) midterm3solutions.pdf \qquad
\bigcirc
\bigcirc
0 :

- :

0

0
-

0

- 17 minute Youtube video with carefully drawn out solutions is posted on Quercus.
- Written solutions with reasoning also posted.
- Written solutions only are posted for the alternate sitting (no video)
- Today, let's continue with Chapter 7. I'm happy to discuss the test after class today or during office hours, or by email.

Generalized work-energy principle:

- The sum of the initial energies of a system plus the work done on the system by external forces equals the sum of the final energies of the system:

$$
E_{\mathrm{i}}+W=E_{\mathrm{f}}
$$

- This is similar to $E_{\mathrm{i}}=E_{\mathrm{f}}$, except now you can have Work, \boldsymbol{W} : positive or negative energy added by outside nonconservative forces.

Example

A spring-loaded toy gun is used to shoot a ball of mass m straight up in the air. The spring has spring constant k. The ball has speed v_{B} at point B .

- The Spring has potential energy U_{s}, and the ball/earth system has gravitational potential energy U_{g}, and the ball has kinetic energy K. The

$$
--\mathrm{C}: y=+h_{\max }
$$ energy conservation equation is:

$$
\begin{aligned}
E_{i}+W & =E_{f} \\
U_{s i}+U_{g i}+K_{i}+W & =U_{s f}+U_{g f}+K_{f}
\end{aligned}
$$

- Here W is the work done by forces that don't have a potential energy associated with them, like a hand pushing or sliding friction with the floor.

-In this example, we assume $W=0$.

Energy Bar Charts

A spring-loaded toy gun is used to shoot a ball of mass m straight up in the air. The spring has spring constant k.
The ball has speed v_{B} at point B .

Energy Bar Charts

A spring-loaded toy gun is used to shoot a ball of mass m straight up in the air. The spring has spring constant k. The ball has speed v_{B} at point B .

Consider time B to time C.

$$
U_{s B}+U_{g B}+K_{B}+W=U_{s C}+U_{g C}+K_{C}
$$

Energy Bar Charts

A spring-loaded toy gun is used to shoot a ball of mass m straight up in the air. The spring has spring constant k.
The ball has speed v_{B} at point B .

Or, if you want, you can even skip B and consider time A to time C!

Gravitational Potential Energy, U_{g}

The potential energy $\left(U_{g}\right)$ change is the same along either path, but it's calculated more easily for the straight path.

Consider moving a book of mass m_{b}.

Gravitational Potential Energy

- Gravitational potential energy stores the work done against gravity:

$$
\Delta U_{g}=m g \Delta y
$$

- Gravitational potential energy increases linearly with height y.
- This reflects the constant gravitational force near Earth's surface.

Another way of looking at freefall:

Poll Question

A small mass slides down the four frictionless slides A-D. Each has the same height, and the mass always starts from rest. Rank in order, from largest to smallest, its speeds v_{A} to v_{D} at the bottom.

A. $v_{\mathrm{C}}>v_{\mathrm{A}}=v_{\mathrm{B}}>v_{\mathrm{D}}$
B. $v_{\mathrm{C}}>v_{\mathrm{B}}>v_{\mathrm{A}}>v_{\mathrm{D}}$
C. $v_{\mathrm{D}}>v_{\mathrm{A}}>v_{\mathrm{B}}>v_{\mathrm{C}}$
D. $v_{\mathrm{A}}=v_{\mathrm{B}}=v_{\mathrm{C}}=v_{\mathrm{D}}$
E. $v_{\mathrm{D}}>v_{\mathrm{A}}=v_{\mathrm{B}}>v_{\mathrm{C}}$

NOTE: The Zero of Potential Energy

- You can place the origin of your coordinate system, and thus the "zero of potential energy," wherever you choose and be assured of getting the correct answer to a problem.
- The reason is that only ΔU_{g} has physical significance, not U_{g} itself.

Ch. 7 Example. I hold a ball at a distance of 5.0 m above the ground and release it from rest. How fast is it going just before it hits the ground?

SKETCH \& TRANSLATE.

REPRESENT MATHEMATICALLY

SOLVE \& EVALUATE

Elastic Potential Energy

- What is the work done when a Finger stretches a Spring, originally at equilibrium, out to a distance x ?
- Work $=$ Force \times distance

- Hooke's Law for a spring is: $F_{\text {F on } \mathrm{S}}=k x$
- Work should be $(k x) \times$ distance $=k x^{2}$
- But keep in mind that the force the object exerts actually starts at zero (at spring equilibrium) and then increases to $k x$, so the average is half.
- Therefore, the correct equation for the work done is $W=\frac{1}{2} k x^{2}$
- The work done on the spring is equal to the energy you put into that spring this is a form of Potential Energy

Poll Question

A spring-loaded gun shoots a plastic ball with a speed of $4 \mathrm{~m} / \mathrm{s}$. If the spring is compressed twice as far, the ball's speed will be

A. $1 \mathrm{~m} / \mathrm{s}$.
B. $2 \mathrm{~m} / \mathrm{s}$.
C. $4 \mathrm{~m} / \mathrm{s}$.
D. $8 \mathrm{~m} / \mathrm{s}$.
E. $16 \mathrm{~m} / \mathrm{s}$.

Ch. 7 Example. A moving car has 40,000 J of kinetic energy while moving at a speed of $7.0 \mathrm{~m} / \mathrm{s}$. A spring-loaded automobile bumper compresses 0.30 m when the car hits a wall and stops. What can you learn about the bumper's spring using this information?
SKETCH \& TRANSLATE.

SIMPLIFY \& DIAGRAM

REPRESENT MATHEMATICALLY

Internal energy

- A "thermal camera" detects infrared waves (just like light waves, but human eyes are not sensitive to these wavelengths)
- Warm things glow in the infrared
- If a object slides on a surface, the surfaces in contact can become warmer.
- Structural changes in an object can occur when an external force is applied.
- The energy associated with both temperature and structure is called internal energy (symbol $U_{\text {int }}$).

Poll Question

A car starts with speed v_{i}, but the driver puts on the brakes and the car slows to a stop. As the car is slowing down, its kinetic energy is transformed to
A. stopping energy.
B. gravitational potential energy.
C. energy of motion.
D. internal thermal energy.
E. energy of rest.

Ch. 7 Example. A driver slams on the brakes, locks all four wheels, and the car skids 18 m on a horizontal road. The coefficient of sliding friction between the wheels and the road is $\mu_{k}=0.80$. How fast was the car going before slamming on the brakes?

SKETCH \& TRANSLATE.

SIMPLIFY \& DIAGRAM

REPRESENT MATHEMATICALLY

Poll Question

A child is sliding down a playground

 slide at constant speed. While sliding, the energy transformation isA. $U_{\mathrm{g}} \rightarrow K$
B. $U_{\mathrm{g}} \rightarrow U_{\text {int }}$
C. $K \rightarrow U_{\mathrm{g}}$
D. $K \rightarrow U_{\text {int }}$
E. There is no transformation because energy is conserved.

Before Class 21 on Friday

- Please read Section 7.6 on the Work Energy Principle, and Section 7.7 on Elastic and Inelastic Collisions
- Plan to meet up with your Practical Pod during Friday's class you should be able to turn on your microphone in order to participate in the TeamUp Quiz Module 4 Ch.7.
- If you cannot do the TeamUp quiz during class, it can be done either with your pod or on your own at any time over the weekend.
- As usual, l'll be around until 12:30, then a TA will be in the PHY131 Help Centre:
- Zoom Meeting ID: 93809642256
- Passcode: 723874

