PHY131H1F - Class 23

This is a torque wrench.

Today:

8.1 Extended and Rigid Bodies
8.2 Torque (rhymes with "fork")

Ch. 7 Pre-Quiz

- The uploads to crowdmark so far look pretty good. I think we'll use crowdmark again for the Nov. 17 Midterm Assessment \#4.
- I'll try to issue marks for this in the next couple of days, but it will be based on legibility *only* - this will not be carefully marked. 16/16 means I could see what you wrote and it wasn't too blurry or dark.

Ch. 7 Pre-Quiz Q1. A 75 kg crate slides 12 m down a ramp that makes an angle of 35° with the horizontal. If the crate slides at a constant speed, how much internal thermal energy is created?
SKETCH \& TRANSLATE.

SIMPLIFY \& DIAGRAM
Assume Energy becomes ollint.
No External work don

$$
\begin{aligned}
& K_{i}+u_{g i}+w=K_{f}+u_{g} p+\Delta V_{i+1} \\
& \underline{I}+\mathbb{I}+\underline{I}=\mathbb{I}+-\mathbb{I}
\end{aligned}
$$

REPRESENT MATHEMATICALLY

$$
K_{i}=K_{f}=K_{0}=\text { constant }
$$

$$
k_{s}+m g h+0=k_{0}+0+\Delta u_{1 i n}
$$

$$
\begin{aligned}
& m g h=\Delta U_{i n t} \quad \sin 35^{\circ} \\
&=\frac{h}{12 \mathrm{~m}} \\
& h=12 \sin 35^{\circ}
\end{aligned}
$$

SOLVE \& EVALUATE

$$
\Delta u_{\text {int }}=(75)(9.8) 12 \cdot \sin 35
$$

$$
\Delta \underset{\text { positive. }}{\Delta u_{\text {int }}=5100} \quad \text { Si unit it }
$$

un was converted to thermal. energy

Ch. 7 Pre-Quiz Q2. A 55 kg skateboarder wants to just make it to the upper edge of a "half-pipe". He starts at a distance of 3.0 m below where he wants to be. What's the minimum speed v_{i} that he needs at the bottom if he is to coast all the way up?
SKETCH \& TRANSLATE.

This will be

Initial
$h=3.0 \mathrm{~m}$ when $v_{f}=0$
Define System: skateboard e t Earth.
SIMPLIFY \& DIAGRAM
Assume to air resistance or friction. Ne external work or loss to internal en espy.

$$
\begin{aligned}
& K+u_{y} i+W=K_{f}+u_{g f}+\Delta u_{i a t} \\
& \Pi+-+=-+\square^{\circ}+-
\end{aligned}
$$

REPRESENT MATHEMATICALLY

$$
\begin{gathered}
\frac{1}{2} h v_{i}^{2}+0+0=0+\phi h g h+0 \\
v_{i}^{2}=2 g h \\
v_{i}=\sqrt{2 g h}
\end{gathered}
$$

SOLVE \& EVALUATE

$$
\sim 28 \frac{\mathrm{~km}}{\mathrm{n}} \text {, reasonable }
$$ skateboards per.

What's up on the MyLab and Mastering?

- Notice that Homework 8 has been posted on MyLab and Mastering. It is due Monday Nov.16, which is after Reading Week.
not for homewerk cred.
- Also, I have posted an optionat item called "Videos and Practice for Chapter 8" which I recommend you check out.

Videos and Practice for Chapter 8 (Optional)

- I just call him "Buzzcut Guy"
- Including, Buzzcut Guy walks the plank!
- And two Khan-Academy-style videos about solving Ch. 8 problems.

What's the Big Idea of Chapters 8 and $\mathbf{9 ?}$

- So far we've kind of been neglecting the fact that objects have size and shape.
- This has been the "point particle" approximation.
- For chapters 8 and 9 we will start thinking about "extended bodies", which just means objects that are not points, but have some shape and size.
- Force, momentum and energy are still important, but there are some new things, like:
- Torque: kind of like force (with different units), but it's what get's objects turning.
- Rotation: things can spin or roll!

- A rigid body is a model for an extended object.
- We assume that the object has a nonzero size but the distances between all parts of the object remain the same (the size and shape of the object do not change).

Center of mass

- A rigid body possesses a special point such that if a force is exerted on that point, the object will not turn.
- We call this point the object's center of mass.

Axis of rotation

- When objects turn around an axis, physicists say that they undergo rotational motion.
- We call the imaginary line passing through the hinges the axis of rotation.

Causing rotation

- Three factors affect the turning ability of a force:

1. The place where the force is exerted
2. The magnitude of the force
3. The direction in which the force is exerted

\vec{F}_{1} and \vec{F}_{3} do not rotate the door, whereas \vec{F}_{2} moves it easily.

Poll Question

Consider the common experience of pushing open a door.
Shown is a top view of a door hinged on the left. Four pushing forces are shown, all of equal strength. Which of these will be most effective at opening the door?
A. F_{1}
B. F_{2}

C. F_{3}
D. F_{4}

Torque τ produced by a force The torque produced by a force exerted on a rigid body about a chosen axis of rotation is

$$
\text { we treat } \tau \text { as } \rightarrow \tau= \pm F l \sin \theta
$$

a scalar here. $\pm \overrightarrow{\operatorname{det} e i m i n e} \boldsymbol{\tau}= \pm F l \sin \theta$ wiser or counter clockwise direction where F is the magnitude of the force, l is the magnitude of the distance between the point where the force is exerted on the object and the axis of rotation, and θ is the angle that the force makes relative to a line connecting the axis of rotation to the point where the force is exerted
torque is a vector.
\qquad
torque

- The SI unit of fore is the Newton-meter (Nom).

Ch. 8 Example. Luis uses a 20 cm long wrench to turn a nut. The wrench handle is tilted 30° above the horizontal, and Luis pulls straight down on the end with a force of 100 N .
Calculate the torque exerted by Luis.

SIMPLIFY \& DIAGRAM
Assume rigid body. wrench t

REPRESENT MATHEMATICALLY

$$
\text { Use Eq. 8.1: } \quad \quad^{\text {choose }} \text {. }
$$

$$
\tau= \pm F l \sin \theta \quad \text { since }
$$

SOLVE \& EVALUATE

$$
\begin{array}{r}
\tau=(100)(0.2) \sin 120^{\circ} \\
q=17 \mathrm{~N} \cdot \mathrm{~m} \\
\text { system turns since } \\
\text { counter clockwise }
\end{array}
$$

Sign Convention for Torque (historical)

- If the torque tends to produce a counterclockwise rotation, this is positive torque.
- If the torque tends to produce clockwise rotation, this is negative torque.

Poll Question

- A ladder leans against a wall.
- What is the sign of the torque of the normal force of the wall on the ladder, $N_{\text {W on } L}$?
A. Positive
B. Negative
C. The torque is zero
D. It depends on where we
choose the rotation axis to be

Poll Question

- A ladder leans against a wall.
- Let's choose the rotation axis to be at the bottom of the ladder.
- What is the sign of the torque of the normal force of the wall on the ladder, $N_{\text {W on }}$?
A. Positive
(B. Negative
C. The torque is zero

17

Poll Question

- A ladder leans against a wall.
- Let's choose the rotation axis to be at the bottom of the ladder.
- What is the sign of the torque of the static friction force of the floor on the ladder, f_{sFonL} ?
A. Positive
B. Negative
C. The torque is zero

Where is the gravitational force exerted on a rigid body?

- When calculating the torque due to gravity, you may treat the object as if all its mass were concentrated at the centre of mass.
- That is why the object's center of mass is sometimes called the object's centre of gravity.

Poll Question

- A uniform ladder leans against a wall.
- Let's choose the rotation axis to be at the bottom of the ladder.
- What is the sign of the torque of the force of gravity of the
Earth on the ladder, $F_{\mathrm{g} \mathrm{E} \mathrm{on} \mathrm{L}}$?
A. Positive
B. Negative
C. The torque is zero

By geometry

Before Class 24 on Friday

- Please continue reading Chapter 8:
- 8.3 Static Equilibrium
- 8.4 Centre of Mass
- Plan to meet up with your Practical Pod during Friday's class you should be able to turn on your microphone in order to participate in the TeamUp Quiz Module 4 Ch.8.
- If you cannot do the TeamUp quiz during class, it can be done either with your pod or on your own at any time over the weekend.

