

Mastering Physics

Videos and Practice for Chapter 9 (not for homework credit)

 Featuring, Buzzcut Guy gets really dizzy!

 Plus, going to the toilet will never be the same again!

Suppose a horizontal disk is rotating on a lab bench and your are looking down on it. The rotation axis passes through the centre, and is perpendicular to the disk (out of page)

The direction of the velocity \vec{v} for each coin changes continually.

Coins at the edge travel farther during Δt than those near the center. The speed *v* will be greater for coins near the edge than for coins near the center.

Rotational kinematics

- There are similarities between the motions of different points on a rotating rigid body.
 - During a particular time interval, all coins at the different points on the rotating disk turn through the same angle.
 - Perhaps we should describe the rotational position of a rigid body using an angle.

All coins turn through the same angle in Δt , regardless of their position on the disk.

Rotational (Angular) Position

5

Angular Velocity

- A carnival has a Ferris wheel where some seats are located halfway between the center and the outside rim. Compared with the seats on the outside rim, the inner cars have
- A. Smaller angular speed and greater tangential speed
- B. Greater angular speed and smaller tangential speed
- C. The same angular speed and smaller tangential speed
- D. Smaller angular speed and the same tangential speed
- E. The same angular speed and the same tangential speed

Rigid Body Rotation

- Angular velocity, ω , is the rate of change of angular position, θ .
- The units of ω are rad/s.
- If the rotation is speeding up or slowing down, then its angular acceleration, α, is the rate of change of angular velocity, ω.
- The units of α are rad/s².
- All points on a rotating rigid body have the same ω and the same α .

Every point on the wheel turns through the same angle and thus undergoes circular motion with the same angular velocity ω .

All points on the wheel have a tangential velocity and a radial (centripetal) acceleration. They also have a tangential acceleration if the wheel has angular acceleration. Angle, angular velocity, and angular acceleration are related graphically.

- The angular velocity is the slope of the angular position graph.
- The angular acceleration is the slope of the angular velocity graph.
- Arc length: $s = \theta r$
- Tangential velocity: $v_t = \omega r$
- Tangential acceleration: $a_t = \alpha r$

Historical Convention: Define **positive** angular displacement to be **counter-clockwise**.

The fan blade is speeding up. What are the signs of ω and α ?

- A. ω is positive and α is positive.
- B. ω is positive and α is negative.
- C. ω is negative and α is positive.
- D. ω is negative and α is negative.

11

Historical Convention: Define **positive** angular displacement to be **counter-clockwise**.

The fan blade is slowing down. What are the signs of ω and α ?

- A. ω is positive and α is positive.
- B. ω is positive and α is negative.
- C. ω is negative and α is positive.
- D. ω is negative and α is negative.

Rotational Kinematics

Linear

Rotational Analogy

- *x* specifies position. The S.I. Unit is metres.
- Velocity, v_x , is the slope of the x vs t graph. [m/s]
- Acceleration, *a_x*, is the slope of the *v_x* vs *t* graph.
 [m/s²]

Unit is radians, where 2π radians = 360°.

• θ is angular position. The S.I.

- Angular velocity, ω, is the slope of the θ vs t graph. [rad/s]
- Angular Acceleration, α, is the slope of the ω vs t graph. [rad/s²]

Radians are the Magical Unit!

- Radians appear and disappear as they please in your equations!!!
- They are the only unit that is allowed to do this!
- Example: $v_t = \omega r$

Rotational Kinematics

Table 9.1, Page 256

Translational motion	Rotational motion	
$v_x = v_{0x} + a_x t$	$\omega = \omega_0 + \alpha t$	(9.3)
$x = x_0 + v_{0x}t + \frac{1}{2}a_xt^2$	$\theta = \theta_0 + \omega_0 t + \frac{1}{2}\alpha t^2$	(9.6)
$2a_x(x-x_0) = v_x^2 - v_{0x}^2$	$2lpha(heta- heta_0)=\omega^2-\omega_0^2$	(9.7)

A bicycle wheel has an initial angular velocity of 1.50 rad/s, and a constant angular acceleration of 0.200 rad/s ² . Through what angle has the wheel turned between $t = 0$ and $t = 2.50$ s?	REPRESENT MATHEMATICALLY
SKETCH & TRANSLATE.	
SIMPLIFY & DIAGRAM	SOLVE & EVALUATE

The "Rolling Without Skidding" Constraints

When a round object rolls without skidding, the distance the axis, or centre of mass, travels is equal to the change in angular position times the radius of the object.

$$s = \theta R$$

The speed of the centre of mass is

$$v = \omega R$$

The acceleration of the centre of mass is

 $a = \alpha R$

Rotational Inertia

Depends upon:

- mass of object.
- distribution of mass around axis of rotation.
 - The greater the distance between an object's mass concentration and the axis, the greater the rotational inertia.

Difficult to rotate

Rotational Inertia

Consider a body made of *N* particles, each of mass m_i , where i = 1 to *N*. Each particle is located a distance r_i from the axis of rotation. For this body made of a countable number of particles, the rotational inertia is:

$$I = m_1 r_1^2 + m_2 r_2^2 + m_3 r_3^2 + \dots = \sum_i m_i r_i^2$$

The units of rotational inertia are kg m². An object's rotational inertia depends on the axis of rotation.

Which dumbbell has the larger rotational inertia about the midpoint of the rod? The connecting rod is massless.

20

Four small metal spheres, each with mass 0.2 kg, are arranged in a square 0.40 m on a side and connected by extremely light rods. Find the rotational inertia about an axis through the centre of the square, perpendicular to its plane. SKETCH & TRANSLATE.	REPRESENT MATHEMATICALLY
SIMPLIFY & DIAGRAM	SOLVE & EVALUATE
21 Four small metal spheres, each with mass 0.2 kg, are arranged in a square 0.40 m on a side and connected by extremely light rods. Find the rotational inertia about an axis through	REPRESENT MATHEMATICALLY
the centre of the square, parallel to its plane. SKETCH & TRANSLATE.	SOLVE & EVALUATE

Rotational Inertias of Simple Objects

Thin ring or hollow cylinder about its axis $I = MR^2$

Rotational Inertias of Simple Objects

Rotational Inertias of Simple Objects

Disk or solid cylinder about its axis $I = \frac{1}{2} MR^2$

Quick quiz..

Rotational inertia, I, is

- A. the rotational analog of kinetic energy.
- B. the rotational analog of mass.
- C. the rotational analog of momentum.
- D. the tendency for anything that is rotating to continue rotating.

Next up: Rotational Dynamics...

Before Class 27 on Friday

- Please continue reading Chapter 9:
- 9.3 Newton's Second Law for Rotational Motion
- 9.4 Rotational Momentum
- Plan to meet up with your Practical Pod during Friday's class you should be able to turn on your microphone in order to participate in the TeamUp Quiz Module 5 Ch.9.
- If you cannot do the TeamUp quiz during class, it can be done either with your pod or on your own at any time over the weekend.