PHY131H1F - Class 34

Today:

11.7 Sound Waves, Beats

This is a standing wave of sound in an open-closed tube.

- 11.8 Standing Waves on Strings
- 11.9 Standing Waves in Air Columns

Standing Waves on a String

Reflections at the ends of the string cause waves of *equal amplitude and wavelength* to travel in opposite directions along the string, which results in a standing wave.

3

The Mathematics of Standing Waves

According to the principle of superposition, the net displacement of a medium when waves with displacements $y_{\rm R}$ (right traveling wave) and $y_{\rm L}$ (left traveling wave) are present is $y = y_{\rm R} + y_{\rm L} = A\cos\left[2\pi\left(\frac{t}{m} - \frac{x}{n}\right)\right] + A\cos\left[2\pi\left(\frac{t}{m} + \frac{x}{n}\right)\right]^{-1} e^{\frac{t}{2}f_{\rm L}}$

$$y = y_{\rm R} + y_{\rm L} = A\cos\left[2\pi\left(\frac{1}{T} - \frac{1}{\lambda}\right)\right] + A\cos\left[2\pi\left(\frac{1}{T} + \frac{1}{\lambda}\right)\right] \quad (\ell \neq 1)$$

We can simplify this by using a trigonometric identity, and arrive at (proof on next slide): (2π)

$$y = 2A\cos\left(\frac{2\pi}{\lambda}x\right)\cos\left(\frac{2\pi}{T}t\right)$$

$$Position-dependent Simple Harmonic Motion
$$Amplitude, \qquad (SHM)$$$$

For a standing wave, the pattern is not propagating!

 $\cos(a+b) = \cos a \cos b - \sin a \sin b$ $\cos(a-b) = \cos a \cos b + \sin a \sin b$

Poll Question

What is the wavelength of this standing wave?

- A. 0.25 m.
- B. 0.5 m.
- **C.** 1.0 m.
- D. 2.0 m.

- The first 0.1 seconds.
- Both tones start "in phase"
- There are 22 full oscillations of the first tone.
- There are 22.1 full oscillations of the second tone.

Beats

- The first 0.5 seconds.
- Both tones start "in phase"
- There are 110 full oscillations of the first tone.
- There are 110.5 full oscillations of the second tone.
- They end up "out of phase"

Beats

13

Beats

- The first 2.5 seconds.
- There are so many oscillations that the wiggly line just looks like a solid colour!
- The blue bumps are called "beats"

- The first 0.5 seconds of two different tones.
- Both tones start "in phase"
- Every 1/13th of a second, the red curve has 16.92 oscillations, and the green curve has 17.92 oscillations.
- So they end up in phase again.

15

Beats

- Periodic variations in the loudness of sound due to interference
- Occur when two waves of similar, but not equal frequencies are superposed.
- Provide a comparison of frequencies
- Frequency of beats is equal to the **difference** between the frequencies of the two waves.

[Demonstration]

Beats

• https://onlinetonegenerator.com/

100 Hertz	102 Hertz						
Play Stop Save	Play Stop Save						
Image: Sine sine sine sine sine sine sine sine s	 Sine Square Sawtooth Triangle 						

Beats

- Applications
 - Piano tuning by listening to the disappearance of beats from a known frequency and a piano key
 - Tuning instruments in an orchestra by listening for beats between instruments and piano tone

Beat and beat frequencies

A **beat** is a wave that results from the superposition of two waves of about the same frequency. The beat (the net wave) has a frequency equal to the average of the two frequencies and has variable amplitude. The frequency with which the amplitude of the net wave changes is called the **beat frequency** f_{beat} ; it equals the difference in the frequencies of the two waves:

$$f_{\text{beat}} = |f_1 - f_2| \qquad (\text{Equation 11.9})$$

Pg. 335

19

Poll Question

- If you combine the sounds of two pure tones, one with a frequency of 440 Hertz, and the other with a frequency of 220 Hertz, what do you get?
- A. Beats with a frequency of 2 Hertz
- B. Beats with a frequency of 220 Hertz
- C. Beats with a frequency of 440 Hertz
- D. A continuous sound which humans perceive to be two tones played at once For beats to occur, f, and fz must be "pretty close"

Poll Question

- You are tuning a piano and you want to make the frequency of an A key to be 440 Hertz, but you suspect it is out of tune.
- You have a reference sound source that you know for sure makes a pure tone of 440 Hertz.
- When you sound the reference at the same time as the piano A key, you hear 3 beats per second.
- What is the frequency of your out-of-tune piano A key?
- A. 440 Hz
- B. 443 Hz
- C. 437 Hz

D.) It's impossible to know with the information given $f_z = 446 H_z$.

f, = 4374, or 443 H,

 $f_{beat} = 3 H_{z} = (f_{1} - f_{z})$

21

Poll Question

You are tuning a piano and you want to make the frequency of the A key to be 440 Hertz, but you suspect it is out of tune. You have a reference sound source that you know for sure makes a pure tone of 440 Hertz. When you sound the reference at the same time as your out-of-tune piano A key, you hear 3 beats per second. even you you you have a reference at the same time as your out-of-tune piano A key, you hear 3 beats per second. even you you have a reference at the same time as your out-of-tune piano A key, you hear 3 beats per second.

• You then tighten the string on the piano, which you know raises the frequency of the A key a bit. When you sound the reference at the same time now, you hear 7 beats per second! What is the new frequency of the out-of-tune piano A key? $f(t) = \frac{1}{2} \int_{0}^{1} \frac{1}{2} \int_{0}^{1} \frac{1}{2} \frac{1}{2} \int_{0}^{1} \frac{1}{2} \frac{1}{2} \int_{0}^{1} \frac{1}{2} \frac{1}{2}$

A. 440 Hz

- B) 447 Hz
- C. 433 Hz
- D. It's impossible to know with the information given

The Mathematics of Standing Waves

$$y(x,t) = A(x)\sin\left(\frac{2\pi}{T}t\right)$$
 $A(x) = 2A\sin\left(\frac{2\pi}{\lambda}x\right)$

23

Standing Waves on a String

For a string of fixed length *L*, the boundary conditions can be satisfied only if the wavelength has one of the values:

$$\lambda_m = \frac{2L}{m} \qquad m = 1, 2, 3, 4, \dots$$

Because $\lambda f = v$ for a sinusoidal wave, the oscillation frequency corresponding to wavelength λ_m is:

$$f_m = \frac{v}{\lambda_m} = \frac{v}{2L/m} = m\frac{v}{2L}$$
 $m = 1, 2, 3, 4,$

The lowest allowed frequency is called the **fundamental** frequency: $f_1 = v/2L$.

wave speed on string

number 1

Standing Waves on a String

- Shown are various standing waves on a string of fixed length L. m = 1
- These possible standing waves are called the modes of the string, or sometimes the normal m = 2 modes.
- Each mode, numbered by the integer *m*, has a unique wavelength and frequency.

Poll Question

What is the mode number of this standing wave?

A. m = 1
B. m = 2
C. m = 3
D. m = 4
E. m = 5

Standing Waves on a String

There are three things to note about the normal modes of a string:

- 1. *m* is the number of *antinodes* on the standing wave.
- 2. The *fundamental mode*, with m = 1, has $\lambda_1 = 2L$.
- 3. The frequencies of the normal modes form a series: f_1 , $2f_1$, $3f_1$, ... These are also called **harmonics**. $2f_1$ is the "second harmonic", $3f_1$ is the "third harmonic", etc.

Standing Waves on a String

- *m* is the number of *antinodes* on the standing wave.
- The fundamental mode, with m = 1, has $\lambda_1 = 2L$.
- The frequencies of the normal modes form a series:
 *f*₁, 2*f*₁, 3*f*₁, ...
- The fundamental frequency *f*₁ can be found as the *difference* between the frequencies of any two adjacent modes: *f*₁ = Δ*f* = *f*_{m+1} *f*_m.
- Below is a time-exposure photograph of the *m* = 3 standing wave on a string.

Piano Key Num.	Note name	Freq. [Hz]									
1	A0	27.5	23	G2	98.0	45	F4	349.2	67	D#6	1244.5
2	A#0	29.1	24	G#2	103.8	46	F#4	370.0	68	Еб	1318.5
3	B0	30.9	25	A2	110.0	47	G4	392.0	69	F6	1396.9
4	C1	32.7	26	A#2	116.5	48	G#4	415.3	70	F#6	1480.0
5	C#1	34.6	27	B2	123.5	49	A4	440.0	71	G6	1568.0
6	D1	36.7	28	C3	130.8	50	A#4	466.2	72	G#6	1661.2
7	D#1	38.9	29	C#3	138.6	51	B4	493.9	73	A6	1760.0
8	E1	41.2	30	D3	146.8	52	C5	523.3	74	A#6	1864.7
9	F1	43.7	31	D#3	155.6	53	C#5	554.4	75	B6	1975.5
10	F#1	46.2	32	E3	164.8	54	D5	587.3	76	C7	2093.0
11	G1	49.0	33	F3	174.6	55	D#5	622.3	77	C#7	2217.5
12	G#1	51.9	34	F#3	185.0	56	E5	659.3	78	D7	2349.3
13	A1	55.0	35	G3	196.0	57	F5	698.5	79	D#7	2489.0
14	A#1	58.3	36	G#3	207.7	58	F#5	740.0	80	E7	2637.0
15	B1	61.7	37	A3	220.0	59	G5	784.0	81	F7	2793.8
16	C2	65.4	38	A#3	233.1	60	G#5	830.6	82	F#7	2960.0
17	C#2	69.3	39	B3	246.9	61	A5	880.0	83	G7	3136.0
18	D2	73.4	40	C4	261.6	62	A#5	932.3	84	G#7	3322.4
19	D#2	77.8	41	C#4	277.2	63	B5	987.8	85	A7	3520.0
20	E2	82.4	42	D4	293.7	64	C6	1046.5	86	A#7	3729.3
21	F2	87.3	43	D#4	311.1	65	C#6	1108.7	87	B 7	3951.1
22	F#2	92.5	44	E4	329.6	66	D6	1174.7	88	C8	4186.0

29

A steel guitar string has a mass density of 0.01 kg/m, and is held at a tension of 100 Newtons. What should be the effective length of string between two fixed ends to produce the note E2? SKETCH & TRANSLATE. M = 0.01 kg M = 0.01 kgM = 0.

Poll Question

The frequency of the third harmonic of a string is

- A. One-third the frequency of the fundamental.
- B. Equal to the frequency of the fundamental.
- (C.) Three times the frequency of the fundamental.
- D. Nine times the frequency of the fundamental.

$$f_3 = 3 f_1$$

$$f_m = mv \qquad f_m = mf_1$$

$$ZL$$

31

Sound Waves

- Your ears are able to detect sinusoidal sound waves with frequencies between about 20 Hz and 20 kHz.
- Low frequencies are perceived as "low pitch" bass notes, while high frequencies are heard as "high pitch" treble notes.
- Sound waves with frequencies above 20 kHz are called *ultrasonic* frequencies.
- Oscillators vibrating at frequencies of many MHz generate the ultrasonic waves used in ultrasound medical imaging.

Image from http://www.weblocal.ca/uc-baby-3d-ultrasound-brampton-on.html

[Demonstration]

Before Class 35 on Wednesday

- Please finish reading Chapter 11:
- Section 11.10 on Doppler Effect
- We will also be starting a course review and we'll look at what exactly to expect on the Final Assessment on Dec.17
- Note that Wednesday is the Last Day of Classes!
- Thursday Dec. 10 is a "Make-up Day" for the missed Monday class due to Thanksgiving. I'll be here in this zoom call on Thursday with more Course Review, and some Liquid Nitrogen Demonstrations including Levitating Superconductors