PHY131H1F - Class 34

Today:

- 11.7 Sound Waves, Beats
- 11.8 Standing Waves on Strings
- 11.9 Standing Waves in Air Columns

This is a standing wave of sound in an open-closed tube.

i-Clicker Discussion Question

Two wave pulses on a string approach each other at speeds of 1 m/s. How does the string look at t = 3 s?

Standing Waves on a String

Reflections at the ends of the string cause waves of equal amplitude and wavelength to travel in opposite directions along the string, which results in a standing wave.

The Mathematics of Standing Waves

According to the principle of superposition, the net displacement of a medium when waves with displacements y_R (right traveling wave) and y_L (left traveling wave) are present is

$$y = y_{R} + y_{L} = A\cos\left[2\pi\left(\frac{t}{T} - \frac{x}{\lambda}\right)\right] + A\cos\left[2\pi\left(\frac{t}{T} + \frac{x}{\lambda}\right)\right]$$

We can simplify this by using a trigonometric identity, and arrive at:

$$y = 2A\sin\left(\frac{2\pi}{\lambda}x\right)\sin\left(\frac{2\pi}{T}t\right)$$

For a standing wave, the pattern is not propagating!

What is the wavelength of this standing wave?

B. 0.5 m.

C. 1.0 m.

D. 2.0 m.

At each moment of time:

Add up all of the compressions

Subtract all of the rarefactions

= The pressure difference at that moment $_{\rm Air}$

- The first 0.1 seconds.
- Both tones start "in phase"
- There are 22 full oscillations of the first tone.
- There are 22.1 full oscillations of the second tone.

- The first 0.5 seconds.
- Both tones start "in phase"
- There are 110 full oscillations of the first tone.
- There are 110.5 full oscillations of the second tone.
- They end up "out of phase"

Beats

- The first 2.5 seconds.
- There are so many oscillations that the wiggly line just looks like a solid colour!
- The blue bumps are called "beats"

13

- The first 0.5 seconds of two different tones.
- Both tones start "in phase"
- Every 1/13th of a second, the red curve has 16.92 oscillations, and the green curve has 17.92 oscillations.

 So they end up in phase again.

Beats

- Periodic variations in the loudness of sound due to interference
- Occur when two waves of similar, but not equal frequencies are superposed.
- Provide a comparison of frequencies
- Frequency of beats is equal to the **difference** between the frequencies of the two waves.

[Demonstration]

[image from http://hyperphysics.phy-astr.gsu.edu/hbase/sound/beat.html]

15

Beats

https://onlinetonegenerator.com/

Beats

Applications

- Piano tuning by listening to the disappearance of beats from a known frequency and a piano key
- Tuning instruments in an orchestra by listening for beats between instruments and piano tone

17

Beat and beat frequencies

A **beat** is a wave that results from the superposition of two waves of about the same frequency. The beat (the net wave) has a frequency equal to the average of the two frequencies and has variable amplitude. The frequency with which the amplitude of the net wave changes is called the **beat frequency** f_{beat} ; it equals the difference in the frequencies of the two waves:

$$f_{\text{beat}} = |f_1 - f_2|$$

(Equation 11.9)

Pg. 335

- If you combine the sounds of two pure tones, one with a frequency of 440 Hertz, and the other with a frequency of 220 Hertz, what do you get?
- A. Beats with a frequency of 2 Hertz
- B. Beats with a frequency of 220 Hertz
- C. Beats with a frequency of 440 Hertz
- D. A continuous sound which humans perceive to be two tones played at once

19

Poll Question

- You are tuning a piano and you want to make the frequency of an A key to be 440 Hertz, but you suspect it is out of tune.
- You have a reference sound source that you know for sure makes a pure tone of 440 Hertz.
- When you sound the reference at the same time as the piano A key, you hear 3 beats per second.
- What is the frequency of your out-of-tune piano A key?
- A. 440 Hz
- B. 443 Hz
- C. 437 Hz
- D. It's impossible to know with the information given

- You are tuning a piano and you want to make the frequency of the A key to be 440 Hertz, but you suspect it is out of tune. You have a reference sound source that you know for sure makes a pure tone of 440 Hertz. When you sound the reference at the same time as your out-of-tune piano A key, you hear 3 beats per second.
- You then tighten the string on the piano, which you know raises the frequency of the A key a bit. When you sound the reference at the same time now, you hear 7 beats per second! What is the new frequency of the out-of-tune piano A key?
- A. 440 Hz
- B. 447 Hz
- C. 433 Hz
- D. It's impossible to know with the information given

21

The Mathematics of Standing Waves

- Shown is the graph of y(x,t) at several instants of time.
- The nodes occur at $x_m = m\lambda/2$, where m is an integer.

$$y(x,t) = A(x)\sin\left(\frac{2\pi}{T}t\right)$$
 $A(x) = 2A\sin\left(\frac{2\pi}{\lambda}x\right)$

Standing Waves on a String

For a string of fixed length L, the boundary conditions can be satisfied only if the wavelength has one of the values:

 $\lambda_m = \frac{2L}{m} \qquad m = 1, 2, 3, 4, \dots$

Because $\lambda f = v$ for a sinusoidal wave, the oscillation frequency corresponding to wavelength $\lambda_{\rm m}$ is:

$$f_m = \frac{v}{\lambda_m} = \frac{v}{2L/m} = m\frac{v}{2L}$$
 $m = 1, 2, 3, 4, ...$

The lowest allowed frequency is called the **fundamental** frequency: $f_1 = v/2L$.

m = 3

Standing Waves on a String

 Shown are various standing waves on a string of fixed length L. m = 1

These possible standing waves are called the **modes** of the string, or sometimes the *normal* m = 2 modes.

 Each mode, numbered by the integer m, has a unique wavelength and frequency. $\lambda_{1} = \frac{2L}{1} \qquad f_{1} = \frac{v}{2L}$ $\lambda_{2} = \frac{2L}{2} \qquad f_{2} = 2\frac{v}{2L}$ $\lambda_{3} = \frac{2L}{3} \qquad f_{3} = 3\frac{v}{2L}$

24

What is the mode number of this standing wave?

- A. m = 1
- B. m = 2
- C. m = 3
- D. m = 4
- E. m = 5

25

Standing Waves on a String

There are three things to note about the normal modes of a string:

- 1. *m* is the number of *antinodes* on the standing wave.
- 2. The fundamental mode, with m = 1, has $\lambda_1 = 2L$.
- 3. The frequencies of the normal modes form a series: f_1 , $2f_1$, $3f_1$, ... These are also called **harmonics**. $2f_1$ is the "second harmonic", $3f_1$ is the "third harmonic", etc.

Standing Waves on a String

- *m* is the number of *antinodes* on the standing wave.
- The fundamental mode, with m = 1, has $\lambda_1 = 2L$.
- The frequencies of the normal modes form a series: $f_1, 2f_1, 3f_1, \dots$
- The fundamental frequency f_1 can be found as the difference between the frequencies of any two adjacent modes: $f_1 = \Delta f = f_{m+1} f_m$.
- Below is a time-exposure photograph of the m = 3 standing wave on a string.

Piano Key Num.	Note name	Freq.
1	A0	27.5
2	A#0	29.1
3	B0	30.9
4	C1	32.7
5	C#1	34.6
6	D1	36.7
7	D#1	38.9
8	E1	41.2
9	F1	43.7
10	F#1	46.2
11	G1	49.0
12	G#1	51.9
13	A1	55.0
14	A#1	58.3
15	B1	61.7
16	C2	65.4
17	C#2	69.3
18	D2	73.4
19	D#2	77.8
20	E2	82.4
21	F2	87.3
22	F#2	92.5

Piano		
Key	Note	Freq.
Num.	name	[Hz]
23	G2	98.0
24	G#2	103.8
25	A2	110.0
26	A#2	116.5
27	B2	123.5
28	C3	130.8
29	C#3	138.6
30	D3	146.8
31	D#3	155.6
32	E3	164.8
33	F3	174.6
34	F#3	185.0
35	G3	196.0
36	G#3	207.7
37	A3	220.0
38	A#3	233.1
39	B3	246.9
40	C4	261.6
41	C#4	277.2
42	D4	293.7
43	D#4	311.1
44	E4	329.6

Piano Key	Note	Freq.
Num.	name	[Hz]
45	F4	349.2
46	F#4	370.0
47	G4	392.0
48	G#4	415.3
49	A4	440.0
50	A#4	466.2
51	B4	493.9
52	C5	523.3
53	C#5	554.4
54	D 5	587.3
55	D#5	622.3
56	E5	659.3
57	F5	698.5
58	F#5	740.0
59	G5	784.0
60	G#5	830.6
61	A5	880.0
62	A#5	932.3
63	B5	987.8
64	C6	1046.5
65	C#6	1108.7
66	D6	1174.7

Piano Key Num.	Note name	Freq.
67	D#6	1244.5
68	E6	1318.5
69	F6	1396.9
70	F#6	1480.0
71	G6	1568.0
72	G#6	1661.2
73	A6	1760.0
74	A#6	1864.7
75	B6	1975.5
76	C7	2093.0
77	C#7	2217.5
78	D7	2349.3
79	D#7	2489.0
80	E7	2637.0
81	F7	2793.8
82	F#7	2960.0
83	G7	3136.0
84	G#7	3322.4
85	A7	3520.0
86	A#7	3729.3
87	B 7	3951.1
88	C8	4186.0

A steel guitar string has a mass density of 0.01 kg/m, and is held at a tension of 100 Newtons. What should be the effective length of string between two fixed ends to produce the note E2?

SKETCH & TRANSLATE.

SIMPLIFY & DIAGRAM

REPRESENT MATHEMATICALLY

SOLVE & EVALUATE

29

Poll Question

The frequency of the third harmonic of a string is

- A. One-third the frequency of the fundamental.
- B. Equal to the frequency of the fundamental.
- C. Three times the frequency of the fundamental.
- D. Nine times the frequency of the fundamental.

Sound Waves

- Your ears are able to detect sinusoidal sound waves with frequencies between about 20 Hz and 20 kHz.
- Low frequencies are perceived as "low pitch" bass notes, while high frequencies are heard as "high pitch" treble notes.
- Sound waves with frequencies above 20 kHz are called *ultrasonic* frequencies.
- Oscillators vibrating at frequencies of many MHz generate the ultrasonic waves used in ultrasound medical imaging.

[Demonstration]

 $\textbf{Image from} \ \underline{\text{http://www.weblocal.ca/uc-baby-3d-ultrasound-brampton-on.html}}$

31

Standing Sound Waves

- A long, narrow column of air, such as the air in a tube or pipe, can support a longitudinal standing sound wave.
- An open end of a column of air must be a pressure node (always at ambient pressure), thus the boundary conditions—nodes at the ends—are the same as for a standing wave on a string.
- A closed end forces a pressure antinode.

Harmonics On a String

Harmonics in an Open-Open Wind Instrument

35

Harmonics in an Open-Closed Wind Instrument

Musical Instruments

- With a wind instrument, blowing into the mouthpiece creates a standing sound wave inside a tube of air.
- The player changes the notes by using her fingers to cover holes or open valves, changing the length of the tube and thus its fundamental frequency:

$$f_1 = \frac{v}{2L} \qquad \mbox{for an open-open tube instrument,} \\ \mbox{such as a flute}$$

$$f_1 = rac{v}{4L}$$
 for an open-closed tube instrument, such as a clarinet

- In both of these equations, v is the speed of sound in the air inside the tube.
- Overblowing wind instruments can sometimes produce higher harmonics such as $f_2 = 2f_1$ and $f_3 = 3f_1$.

$$\begin{cases} \lambda_m = \frac{2L}{m} \\ f_m = m \frac{v}{2L} = mf_1 \end{cases}$$
 (open-open or closed-closed tube)

$$\begin{cases} \lambda_m = \frac{4L}{m} & m = 1, 3, 5, 7, \dots \\ f_m = m \frac{v}{4L} = mf_1 & \text{(open-closed tube)} \end{cases}$$

A clarinet acts like an open-closed tube. A particular note being played on a clarinet has an upper harmonic with a frequency of 1310 Hz, and the next higher strong harmonic has a frequency of 1834 Hz. What is the fundamental frequency?

SKETCH & TRANSLATE.

REPRESENT MATHEMATICALLY

SOLVE & EVALUATE

SIMPLIFY & DIAGRAM

39

Before Class 35 on Wednesday

- Please finish reading Chapter 11:
- Section 11.10 on Doppler Effect
- We will also be starting a course review and we'll look at what exactly to expect on the Final Assessment on Dec.17
- Note that Wednesday is the Last Day of Classes!
- Thursday Dec. 10 is a "Make-up Day" for the missed Monday class due to Thanksgiving. I'll be here in this zoom call on Thursday with more Course Review, and some Liquid Nitrogen Demonstrations including Levitating Superconductors