PHY132H1F

Introduction to Physics II
Lecture 6, September 28, 2009

Today, Chs. 23, 24:

- Lenses

- The Thin Lens Equation
- Magnification of lenses
- Lenses used in combination
- Resolution of Optical Instruments

Lenses

- Formed by two curved boundaries between transparent media.
- Lenses often have spherical surfaces (lens-maker's equation). The curved surfaces are parts of large spheres of radius R_{1} or R_{2}.
- Every lens shaped like a circle has a diameter, D , and focal length, f.
- The ratio of (f / D) is called " f-number". For example, an " $f / 6$ " lens has a focal length of 6 times its diameter [" 6 " is the f-number].

In Class Question 1. Please write on the same page as the mini-homework for today. Which quantity is the Diameter, D, of the Lens?

TIICTass Question 3. FIease witle ont me same page as the mini-homework for today. Which quantity is the Radius of curvature, R_{1} or R_{2}, of the Lens?

in Class Question Z. Please witle on tne same page as the mini-homework for today. Which quantity is the Focal Length, f, of the Lens?

Discussion Question 4. What will happen to the rays emerging to the right of the lens if the face is moved a little closer to the lens?
A. They will remain parallel.
B. They will diverge (spread out).
C. They will converge (toward a focus).

Diverging rays through a Converging Lens

This follows from the principle of reversibility.

Discussion Question 5. What will happen to the rays emerging to the right of the lens if the face is moved a little further away from the lens?
A. They will remain parallel.
B. They will diverge (spread out).
C. They will converge (toward a focus).

Thin Lens Equation: sign conventions

s is positive for objects to the left of lens, negative for objects to the right of lens (virtual objects).
s^{\prime} is positive for images to the right of lens, negative for images to the left of lens (virtual images).
f is positive for converging lenses, negative for diverging lenses.

$$
\begin{aligned}
& \text { Magnification } \\
& |m| \equiv \frac{h^{\prime}}{h} \quad m=-\frac{s^{\prime}}{s}
\end{aligned}
$$

- The absolute magnitude of the magnification $|m|$ is defined to be the ratio of image height to object height.
- A positive value of m indicates that the image is upright relative to the object. A negative value of m indicates the image is inverted relative to the object.
- Note that when s and s ' are both positive, m is negative.

Lenses in Combination

The analysis of multi-lens systems requires only one new rule: The image of the first lens acts as the object for the second lens.

FIGURE 24.18 A lens both focuses and
diffracts the light passing through.
(b) The aperture and focusing effects can be separated.

The Resolution of Optical Instruments

The minimum spot size to which a lens can focus light of wavelength λ is

$$
w_{\min } \approx 2 f \theta_{1}=\frac{2.44 \lambda f}{D} \quad(\text { minimum spot size })
$$

where D is the diameter of the circular aperture of the lens, and f is the focal length.
In order to resolve two points, their angular separation must be greater than $\theta_{\text {min }}$, where

$$
\theta_{\min }=\frac{1.22 \lambda}{D} \quad \text { (angular resolution of a lens) }
$$

is called the angular resolution of the lens.

