Practice Problem Set \#6
 Solutions

Question \#1:

a) Differentiating the particle's position vector, $\vec{r}(t)=\left((1 / 2) t^{2}+\right.$ $3 t) \hat{i}+2 t^{2} \hat{j}-7 t \hat{k}$, with respect to time gives an expression for the particle's velocity

$$
\begin{equation*}
\vec{v}(t)=(t+3) \hat{i}+4 t \hat{j}-7 \hat{k} . \tag{1}
\end{equation*}
$$

Differentiating (1) with respect to time then gives an expression for the particle's acceration

$$
\begin{equation*}
\vec{a}(t)=\hat{i}+4 \hat{j}+0 \hat{k} . \tag{2}
\end{equation*}
$$

Now, using Newton II $(\vec{F}=m \vec{a})$ with $m=1$, the force on the particle as a function of time is simply

$$
\begin{equation*}
\vec{F}(t)=\hat{i}+4 \hat{j}+0 \hat{k} . \tag{3}
\end{equation*}
$$

Using $P=d W / d t=\vec{F} \cdot \vec{v}$, we have

$$
\begin{align*}
P(t) & =\vec{F} \cdot \vec{v}(t), \\
& =(\hat{i}+4 \hat{j}+0 \hat{k}) \cdot((t+3) \hat{i}+4 t \hat{j}-7 \hat{k}), \tag{4}\\
& =(t+3)+16 t, \\
& =17 t+3 .
\end{align*}
$$

b) The total work, W, done on the particle by the external system from time $t=0$ to $t=1$ is then

$$
\begin{align*}
W & =\int_{0}^{1} P(t) d t=\int_{0}^{1}[17 t+3] d t, \\
& =\left[\frac{17}{2} t^{2}+3 t\right]_{0}^{1}=\frac{23}{2} . \tag{5}
\end{align*}
$$

Question \#2:

Begin by considering the position of the object as a function of θ (see attached Figure 1) in the loop. The magnitude of the normal
force on object by the loop is then simply $F_{N}(\theta)=m g \cos \theta$, while changes in angle $d \theta$ are related to displacements along the loop edge by $d \vec{s}=d \theta R \hat{\theta}$. Since the force of friction, $\vec{F}_{f}(\theta)$, always points anti-parallel to displacements $d \vec{s}$, we have

$$
\begin{equation*}
d W=-\vec{F}_{f}(\theta) \cdot d \vec{s}=F_{f}(\theta) R d \theta \tag{6}
\end{equation*}
$$

Integrating over a dummy index, θ^{\prime}, from $\theta^{\prime}=0$ to $\theta^{\prime}=\theta$ and using $F_{f}(\theta)=\mu F_{N}(\theta)$, we obtain an expression for the total work, W, done against friction

$$
\begin{align*}
W & =\int_{0}^{\theta} F_{f}\left(\theta^{\prime}\right) R d \theta^{\prime}=\int_{0}^{\theta} \mu F_{N}\left(\theta^{\prime}\right) R d \theta^{\prime} \tag{7}\\
& =\int_{0}^{\theta} \mu R m g \cos \theta^{\prime} d \theta^{\prime}=\mu R m g \sin \theta
\end{align*}
$$

However, geometrically we have $\sin \theta=\frac{\sqrt{R^{2}-(R-h)^{2}}}{R}$, so the above expression can be rewritten

$$
\begin{equation*}
W=\mu m g \sqrt{R^{2}-(R-h)^{2}}=\mu m g \sqrt{2 h R-h^{2}} \tag{8}
\end{equation*}
$$

as desired.

Question \#3:

Ascending the sloped road, the power required for the car to maintain a constant speed is opposite the rate of work done by the car against the air and gravity:

$$
\begin{align*}
P_{\text {req. }} & =-\vec{F}_{n e t} \cdot \vec{v}=-\vec{F}_{d r a g} \cdot \vec{v}-\vec{F}_{g} \cdot \vec{v} \tag{9}\\
& =F_{d r a g} v+m g v \sin \theta
\end{align*}
$$

where v is the speed of the car, $F_{d r a g}$ is the magnitude of the drag force on the car, θ is the angle of the road above the horizontal, m is the mass of the car, and g is the acceleration due to gravity. Solving for θ we find

$$
\begin{equation*}
\theta=\arcsin \left(\frac{P_{\text {req. }}-v F_{\text {drag }}}{m g v}\right) . \tag{10}
\end{equation*}
$$

Evaluating (10) using $m=1400 \mathrm{~kg}, v=60 \mathrm{~km} / \mathrm{h}=16.7 \mathrm{~m} / \mathrm{s}, F_{\text {drag }}=$ 450 N , and $P_{\text {tot }}=38 \times 10^{3} \mathrm{~W}$ we find $\theta=7.7^{0}$.

