PHY151H1F Practicals 1 Intro Video Slides

- Almost every time you make a measurement, the result will not be an exact number, but it will be a range of possible values.
- The range of values associated with a measurement is described by the uncertainty, sometimes called the error.

1600 ± 100 apples:
1600 is the value 100 is the uncertainty

Exactly 3 apples (no uncertainty)

Uncertainties

- Uncertainties eliminate the need to report measurements with vague terms like "approximately" or " \approx ".
- Uncertainties give a quantitative way of stating your confidence level in your measurement.
- Saying the answer is 10 ± 2 means you are 68% confident that the actual number is between 8 and 12 .
- It also implies that you are 95% confident that the actual number is between 6 and 14 (the $2-\sigma$ range).

Normal Distribution

- A probability distribution is a curve which describes what the probability is for various measurements
- The most important and widely used probability distribution is called the Normal Distribution
- It was first popularized by the German mathematician Carl Friedrich Gauss in the early 1800s
- It is also sometimes called the Gaussian distribution, or the bell-curve

The Gaussian:
$N(x)$

- A is the maximum amplitude.
- \bar{x} is the mean or average.
- σ is the standard deviation of the distribution.

Normal Distribution

- σ is the standard deviation of the distribution
- Statisticians often call the square of the standard deviation, σ^{2}, the variance
- σ is a measure of the width of the curve: a larger σ means a wider curve
- 68% of the area under the curve of a Gaussian lies between the mean minus the standard deviation and the mean plus the standard deviation
- 95% of the area under the curve is between the mean minus twice the standard deviation and the mean plus twice the standard deviation

When Making Measurements

- There is roughly a 68% chance that any measurement of a sample taken at random will be within one standard deviation of the mean (assuming normal distribution)
- Usually the mean is what we wish to know and each individual measurement almost certainly differs from the true value of the mean by some uncertainty
- There is a 68% chance that any single measurement lies with one standard deviation of this true value of the mean
- The value of σ is often called the statistical uncertainty

