PHY151H1F Practicals 6 Intro Video Slides

- When analyzing projectiles in an introductory physics course, we are often asked to "neglect air resistance".
- If you do, the answer is pretty easy. The trick is just to separate your *x* and *y* components.

The Drag Equation

Lord Rayleigh (1842-1919) came up with an equation describing the force of drag acting on an object when it moves without rotating through a fluid it is fully immersed in:

$$F_D = \frac{1}{2}\rho v^2 C_D A$$

- ρ is the density of the fluid [kg m⁻³]
- *v* is the speed of the object [m s⁻¹]
- *A* is the cross-sectional area of the object, measured perpendicular to the velocity [m²]
- C_D is a dimensionless "drag coefficient", related to the shape and smoothness of the object.
- The direction of \vec{F}_D is opposite that of the velocity \vec{v} .

Projectile Motion with Simple Drag

• A ball moves without rotating through the air with velocity \vec{v} , with known components v_x and v_y , where x is horizontal and +y is up.

• What is the acceleration of the object? Express the acceleration components a_x and a_y in terms of components of the velocity v_x and v_y .

- A ball moves without rotating through the air with velocity \vec{v} , with known components v_x and v_y , where x is horizontal and +y is up.
- What is the acceleration of the object? Express the acceleration components a_x and a_y in terms of components of the velocity v_x and v_y .

