
Practice Problem Set 6 Solutions
PHY151H1S - Winter 2018

1 Wolfson 22.57
The essence of this problem is to divide the annulus into small differential charge elements, find the contri-
bution of a single element to the potential, then integrate over the distribution to find the total potential.
To start, first consider the uniform surface charge density of the annulus, σ, which can be written in terms
of the total charge of the annulus, Q, and the area of the annulus, A. Since the density is uniform, it can
also be written in terms of a differential amount of charge, dq, and a differential amount of area of a ring on
the annulus, dA = 2πrdr

σ = Q

A
= dq

2πrdr
where r is the radius of the ring. Recall now Equation 22.8 from Example 22.6, which describes the potential
due to a ring of charge of radius r at an arbitrary point x

V = kQ√
r2 + x2

Therefore the potential from a differential ring on the annulus can be written as

dV = k
dq√

r2 + x2
= k

2πσr√
r2 + x2

dr

Notice that the integral is only dependent on radius, thus we must integrate from the outer radius of the
annulus, b, to the inner radius of the annulus, a

V =
b̂

a

dV = 2πkσ
b̂

a

r√
r2 + x2

dr = 2πkσ
[√

r2 + x2
]b

a

V = 2πkσ
[√

r2 + b2 −
√
r2 + a2

]

2 Energy Stored in a Capacitor
a)
The initial stored energy in the capacitor is given by Equation 23.3 from the textbook:

U = CV 2

2 = (5.0× 10−12F)(100V)2

2 = 2.5× 10−8J.

b)
The following equation describes the relationship between plate separation, d, and capacitance, C, for a
parallel-plate capacitor (Example 23.1 in the textbook).

C = ε0
A

d

1



where ε0 is the permittivity of free space (ε0 = 8.9 × 10−12C2N−1m−2) and A is the area of the plate.
Therefore, when the plate separation is doubled, the capacitance is halved to 2.5pF, due to their inverse
relationship. If the battery is disconnected (V = 0) prior to moving the plates, then this process takes place
at constant charge Q. We must now define an energy equation that is not proportional to potential. Recall
that potential can be defined in terms of charge (recall that this is an arbitrary charge) and capacitance
V = Q/C. Substituting this into the above energy equation gives:

U = Q2

2C ∝
1
C

From this formula, we can see that energy is proportional to the inverse of capacitance. Thus, halving
the capacitance results in a doubling of energy U = 5.0× 10−8J . The increased energy of the capacitor
is accounted for by the work done in pulling the capacitor plates apart (since these plates are oppositely
charged and thus attract each other).

c)
If the battery is left connected, then the capacitance is still halved, but now the process takes place at
constant voltage V , instead of at a constant charge Q. Therefore our original energy equation is valid

U = CV 2

2 ∝ C

Thus halving the capacitance results in a reduction of energy by half. The new energy is U = 1.3× 10−8J .
The energy lost by the capacitor is given to the battery (re-charging the battery). The work done in pulling
the plates apart is also given to the battery.

3 Uniformly Charged Spherical Shell
Recall that the electric field due to a spherical conducting shell is given by

E = k
Q

R2

where R is the radius of the shell. Recall as well the equation for the energy of the field

U = ε0
2

ˆ
E2dV = U = ε0

2

ˆ (
k
Q

R2

)2
dV = ε0

2

ˆ
k2Q2

R4 dV

Since the shell is set at a radius R, the differential volume element can be turned into a differential area
element: dV = RdA. Thus

U = ε0
2

ˆ
k2Q2

R4 RdA = ε0
2
k2Q2

R3

ˆ
dA = ε0

2
k2Q2

R3 4πR2 = 2ε0π
k2Q2

R

where the intergral over the differential area element is simply the surface area of the layer. Letting k = 1/4πε0
results in the final expression

U = kQ2

2R

2


