
Data Fitting Module Student Guide 
Activity 1: Fitting a Straight Line By Hand (20 minutes) 
Often data have two variables, such as the magnitude of the force F exerted on an 
object and the object’s acceleration a. In this Module we will examine some ways to 
determine how one of the variables, such as the acceleration, depends on the other 
variable, such as the force. 

Say we have collected data for the acceleration a of a cart of mass M for a constant 
applied force F.  We want to determine how the acceleration depends on the force. The 
acceleration is some function of the force: 

a=f(F)                Eq.[1] 

In this case the variable F is called the independent variable, it is the quantity that is 
being experimentally changed by changing the mass m. Then the variable a is called 
the dependent variable, and its value depends on the value of the independent 
variable. 

Table 1 shows the data for the experiment, for which four different constant forces were 
applied, and in each case the acceleration was measured. The graph is on the next 
page. 

F (N) a (m s-2) 
0.25 ± 0.03 0.6 ± 0.1 
0.74 ± 0.03 1.4 ± 0.1 
1.23 ± 0.03 2.4 ± 0.2 
1.72 ± 0.03 3.4 ± 0.3 

Table 1 



 

The dots are at the values of the force and acceleration, and the length of the bars 
through the dot indicate the values of the uncertainties.  These indicators of uncertainty 
are historically called “error bars”, but would better be called “uncertainty bars”. 

  



If we assume Newton’s 2nd Law is correct for the data, then for a frictionless cart: 

𝑎𝑎 = 1
𝑀𝑀
𝐹𝐹                 Eq. [2] 

Eq. 2 is called a model of the physical system. From the equation, the slope of a 
straight line through the data points is equal to 1/M. 

A. Draw the best straight line that you can through all the data points.  A straight line 
has the equation y = mx + b, but you have an extra constraint that b must be 
zero, since the acceleration should be exactly zero when there is no applied 
force. Considering that the uncertainties in the values of the data are saying that 
the experimenter believes that the actual value has a 68% probability of being 
within the range given by the uncertainties, does the line have to go through all of 
the rectangles defined by the uncertainties or only most of them? Explain.  Find 
the best-fit slope m of the line, including its units. Calculate the mass M, including 
units. 

B. In finding the “best” straight line, you may have noticed that you can wiggle the 
ruler around a bit and still account pretty well for the data within the experimental 
uncertainties. Determine how much you can wiggle the ruler and still account for 
the data. Remember the line with the maximum or the minimum slope only has to 
go through about 68% of the error bars. The amount of wiggle you can do with 
the ruler and still account for the data determines the range of the slope, and the 
uncertainty in the slope is half this range. Determine what that uncertainty in the 
slope is.  Present your experimental determination of the mass M including its 
uncertainty.  Include an image of your plot with the lines you drew.  Recall: 

• If a quantity is raised to a power, z = xn, then the uncertainty in z is given 
by u(z)=|nx(n−1)u(x)| . Here M =m−1, i.e. n = –1.  

• Uncertainties should be specified to two significant figures, at most.  The 
most precise column in the number for the uncertainty should also be the 
most precise column in the number for the value.  For example, if a value 
is 8.10136 and the uncertainty is 0.015632, then the measurement should 
be specified as 8.101 ± 0.016. 

 

  

  

  

  

  



Activity 2: Least-Squares Fitting with Python (30 minutes) 
In Activity 1 you fit the data of Table 1 to a model by hand. The model was given by Eq. 
2, and you used the graph of the data to perform the fit and determine the value and 
uncertainty in the parameter 1/M. 

Often we use computers to do such fits numerically. The most common type of fitting is 
to a polynomial model: 

𝑦𝑦 = 𝑎𝑎0 + 𝑎𝑎1𝑥𝑥 + 𝑎𝑎2𝑥𝑥2 + 𝑎𝑎3𝑥𝑥3 + ⋯               Eq.[3] 

For example, if the model is a straight line, y = mx + b, then a0 is the intercept b, a1 is 
the slope m, and all other of the parameters ai are zero. If the model is a parabola, y = c 
x2, then the only non-zero parameter is a2 which is c in the model. In general, the fit 
determines the values of the parameters ai that are non-zero. 

Say we are fitting to an arbitrary model: 

y = f (x)           Eq.[4] 

We have a series of values of the data: (x1,y1) , (x2,y2) , … , (xN,yN) . For each 
datapoint, the fitted value of the dependent variable, yi,fit, is given by: 

yi,fit = f (xi)           Eq.[5] 

However, the experimental value of yi is unlikely to be exactly equal to yi,fit. We define 
the residual ri to be: 

𝑟𝑟𝑖𝑖 = 𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑖𝑖,fit = 𝑦𝑦𝑖𝑖 − 𝑓𝑓(𝑥𝑥𝑖𝑖)               Eq.[6] 

A perfect fit the sum of the residuals for all the data is zero. However, the sum of the 
squares of the residuals is not zero. It is a measure of how much the model differs 
from the data.  The most common technique for computer fitting of data to a model is 
called least-squares. The name is because it finds the values of the fitted parameters 
for which the sum of the squares of the residuals is a minimum. 

There is a famous quartet of (x, y) pairs devised by Anscombe [F.J. Anscombe, 
American Statistician 27 (Feb. 1973), pg. 17]. Here is a Python program that loads the 
usual libraries, defines the four datasets, and does some analysis of the first dataset: 

from pylab import polyfit, plot, show 
from numpy import mean, var 
 
# Anscombe's first dataset 

http://www.sjsu.edu/faculty/gerstman/StatPrimer/anscombe1973.pdf
http://www.sjsu.edu/faculty/gerstman/StatPrimer/anscombe1973.pdf


A1x = [10, 8, 13, 9, 11, 14, 6, 4, 12, 7, 5] 
A1y = [8.04, 6.95, 7.58, 8.81, 8.33, 9.96, 7.24, 4.26, 
10.84,4.82, 5.68] 
 
# The second 
A2x = [10, 8, 13, 9, 11, 14, 6, 4, 12, 7, 5] 
A2y = [9.14, 8.14, 8.74, 8.77, 9.26, 8.10, 6.13, 3.10, 9.13, 
7.26, 4.74] 
 
# The third 
A3x = [10, 8, 13, 9, 11, 14, 6, 4, 12, 7, 5] 
A3y = [7.46, 6.77, 12.74, 7.11, 7.81, 8.84, 6.08, 5.39, 8.15, 
6.42, 5.73] 
 
# The fourth 
A4x = [8, 8, 8, 8, 8, 8, 8, 19, 8, 8, 8] 
A4y = [6.58, 5.76, 7.71, 8.84, 8.47, 7.04, 5.25, 12.50, 5.56, 
7.91, 6.89] 
 
print ("First dataset:") 
print ("Mean of x:", mean(A1x)) 
print ("Variance of x:", var(A1x, ddof = 1)) 
print ("Mean of y:", mean(A1y)) 
print ("Variance of y:", var(A1y, ddof = 1)) 
print ("Straight line fit:", polyfit(A1x, A1y, 1, full = True))  

 

Note that the first of the four datasets consists of the values of x in A1x, and the values 
of y in A1y. The other three datasets are similarly named except for the number in the 
variable name. 

The program computes the means and variances of the x and y variables. The last line 
fits the data to a straight line. Run the program. The output window will look like the 
image below, except for the red boxes and labels, which have been added. 



 

There is a lot of information in the results of the fit, but we will concentrate on the slope, 
y-intercept, and sum of the squares of the residuals. 

Copy and paste the program lines into your spyder so that it computes the means, 
variances, and does the fit and change the copied lines so that the program does the 
calculation on the 2nd, 3rd, and 4th datasets. 

A. Report the approximate values for the fits for the four datasets: slope, y-intercept, 
and the sum of the squares of the residuals of the fit. From these fit parameters, 
what might you conclude about whether or not the four datasets are almost 
identical? 

Plot the first dataset with: 

plot(A1x, A1y,'bo') 
show() 

B. Look at the plot, and then plot the other three datasets.  Include the plots in your 
presentation, as well as the best-fit lines. Now what do you think about the 
similarity of the four datasets? Is a straight line model appropriate for each of the 
datasets?  If not, explain what is wrong. 

 

  



 

Activity 3: Evaluating the Quality of a Fit (15 Minutes) 
Imagine we are fitting some data to a straight line: y = mx + b. If there is only one 
datapoint, then no such fit is possible: any line going through the datapoint is equivalent 
to any other line going through the datapoint. If there are exactly two datapoints, then 
there is no doubt about the values of the slope and intercept: they are the slope and 
intercept of the line connecting the two points. However, if there are three or more 
datapoints, then we can imagine a range of slopes and intercepts of lines that more-or-
less are consistent with the data. 

The degrees of freedom of a fit are the number of datapoints minus the number of 
parameters to which we are fitting, which is two for a straight line. Fits with negative 
degrees of freedom are impossible. Fits with zero degrees of freedom are exact. 

A. Imagine you are fitting the data of Table 1 to a straight line with an added 
parabolic term: 

𝑎𝑎 = 𝑚𝑚𝐹𝐹 + 𝑏𝑏 + 𝑐𝑐𝐹𝐹2 

 
What is the number of degrees of freedom of the fit? 

In Activity 2 we learned the graphs are an important tool in evaluating fits. Now we will 
learn about some quantitative ways of evaluating a fit. 

The sum of the squares of the residuals of a fit, ss, is: 

𝑠𝑠𝑠𝑠 = �[𝑦𝑦𝑖𝑖 − 𝑓𝑓(𝑥𝑥𝑖𝑖)]2
𝑁𝑁

𝑖𝑖=1

 

Eq.[7] 

where we have fit the data to the model y = f(x) and there are N datapoints. It measures 
the “goodness” of the fit, with smaller values meaning a better fit. But there is no 
objective way to determine if the value of ss is “small” or “large.” 

However, if the data have uncertainties in the dependent variable, u(yi), then we can 
weight each residual by 1 over that uncertainty, and form the sum of the squares of the 
weighted residuals. This sum is called the chi-squared, χ2. (χ is the Greek letter “chi” 
which starts with a hard “k”-sound, and rhymes with the word “eye.”) 



𝜒𝜒2 = ��
𝑦𝑦𝑖𝑖 − 𝑓𝑓(𝑥𝑥𝑖𝑖)
𝑢𝑢(𝑦𝑦𝑖𝑖)

�
2𝑁𝑁

𝑖𝑖=1

 

Eq.[8]  

Now a “least-squares” fit finds the minimum in the χ2, which may be for different values 
of the fitted parameters than the values found by minimizing the sum of the squares of 
the residuals. 

If the data are correct and the model is reasonable, the χ2 should be roughly equal to 
the number of degrees of freedom. If the χ2 is much larger than the number of degrees 
of freedom, the fit is poor. If the χ2 is much less than the number of degrees of freedom, 
the fit is too good to be true. 

Real Data Example 
 

A thermocouple is a 
device that emits a 
voltage that depends on 
its temperature. 
Thermocouples are often 
used as thermometers. 
The figure shows some 
student-collected data on 
calibrating a 
thermocouple that was 
presented by Bevington 
[Philip R. Bevington, Data 
Reduction and 
Analysis (McGraw-Hill, 
1969), pg. 138]. The 
student assigned an 
uncertainty to the voltage, but not to the temperature. Also shown in the figure is the 
result of fitting the data to a straight line. The results of the fit were: 

slope:  0.0412 ± 0.0004 
intercept:   −0.98 ± 0.02 
chi-squared: 21.05 
degrees of freedom: 19 

 
 

B. Just from the numerical results of the fit and from looking at the figure above, is 
this a good fit to a reasonable model? 

C. The Figure below shows a plot of the residuals. Now what do you think of the fit?  



 

 
  

D. We add a quadratic term to the fit, so we are fitting to: V = mt + b + ct2. The 
numerical results of the fit are: 
 
slope: m = 0.035 ± 0.001 
intercept: b = −0.89 ± 0.03 
quadratic term: c = −.00006 ± 0.00001 
chi-squared: 1.007 
degrees of freedom: 18 
 
The graphical result of the fit including a plot of the residuals as an insert is 
shown in the Figure below. Is this a good fit? Are there any problems with it? If 
so, what are they and how can they be explained? 



 

  

This Guide was originally written by David M. Harrison, Dept. of Physics, Univ. of Toronto, September 2013.  It was updated for at-home 
learning by Jason Harlow March 2021. 
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