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Abstract

A Fermi Gas Microscope Apparatus

Dylan Jervis

Doctor of Philosophy

Graduate Department of Physics

University of Toronto

2014

This thesis reports on the design, construction, and performance of a new ultracold atom

apparatus with the capability of resolving individual 40K fermions trapped in a 527 nm-period

optical lattice for the purpose of investigating locally ordered quantum states. Our appara-

tus incorporates a high numerical aperture imaging objective to image fluorescence from the

4S1/2 → 5P3/2 transition while atoms are cooled on the 4S1/2 → 4P1/2 transition.

We demonstrate the performance of the apparatus by cooling 87Rb and 40K to quantum

degeneracy in a series of magnetic quadrupole, plugged magnetic quadrupole, and optical traps.

The quantum gases are created at the focus of the imaging objective, less than 1 mm from air.

We investigate the laser cooling of 40K atoms along the 404.5 nm 4S1/2 → 5P3/2 transition.

A minimum Doppler temperature of 63(6)µK was observed in a magneto-optical trap, as well

as a factor of twenty increase in the phase space density when compared to a 766.7 nm MOT.

87Rb and 40K atoms are loaded into an optical lattice potential and measured using time-

of-flight absorption imaging. With 87Rb atoms loaded, we are able to observe the superfluid-to-

Mott insulator quantum phase transition, indicating precise control over the lattice potential.

With 40K atoms loaded, we are able to observe the transition to a localized state.

Polarization gradient cooling of 40K in an optical lattice is investigated as a method to

achieve single-site imaging resolution. We observe laser cooling of 40K to 16µK in free-space,

and to 12µK in a 200µK-deep optical lattice.

The apparatus described in this thesis lays the groundwork for future investigations into the

equilibrium and dynamical behaviour of fermionic quantum systems at the single atom level.
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Chapter 1

Introduction

An ultracold gas of atoms is a highly controllable system that allows access to a wide range of

quantum behaviour. The fact that a collection of atoms, when cold enough, obeys the same

quantum statistics as electrons, protons, photons, and other fundamental particles means that

by building a quantum gas apparatus, the experimental physicist has created a playground in

which to tinker with and observe universal physics.

In recent years, ultracold gas systems have been used to measure a wide range of behaviour,

including: the phase diagram of a two-spin Fermi system [2, 3], Sakharov oscillations analogous

to those in the cosmic microwave background radiation [4], an observation of the Higgs mode

[5], quantum limited spin transport [6, 7, 8], and magnetic ordering [9, 10, 11].

One of the major areas that ultracold atoms research has directed itself towards is the sim-

ulation of strongly correlated condensed matter. A strongly correlated system might be defined

as a system in which the behaviour of one constituent part depends on the state of many of

the other constituent parts. This makes them especially difficult to theoretically model, and

so ripe for experimental investigation. Strongly correlated materials, such as cuprate super-

conductors, also exhibit interesting phase behaviour which makes them especially attractive

as targets for study. Cuprates may superconduct, order themselves anti-ferromagnetically, be

pdseudo-gapped, or act like a normal metal depending on the temperature, pressure, and dop-

ing of the sample [12]. However, these systems are still not well enough understood that there

exists a model proven to comprehensively explain all of the observed behaviour. If there were

such a model, then one might hope to be able to engineer materials that would superconduct,

for example, at ambient temperature and pressure.

In 1981, Richard Feynman proposed using a simple quantum system to simulate a more

complex one [13]. His underlying idea was that a better understanding of a certain physical

behaviour is demonstrated when one is able to engineer, or simulate, that same behaviour -

1
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from the ground up - with a computer of some kind. This idea has motivated and defined the

field of quantum simulation ever since.

Quantum simulation of materials, then, involves the creation of an experimental analogue

of a theoretical model that is thought to explain the behaviour of electrons in crystals. The

theoretical model that this thesis is chiefly concerned with simulating is the Fermi-Hubbard

model [14]:

ĤFH = −J
∑

σ

∑

<i,j>

b̂†iσ b̂jσ +
U

2

∑

σ 6=σ′

∑

i

b̂†iσ b̂
†
iσ′ b̂iσ′ b̂iσ. (1.1)

The Fermi-Hubbard model is the simplest Hamiltonian that describes the competition be-

tween kinetic and interaction energies of particles trapped in a periodic potential. Here, b̂†iσ(b̂iσ)

are the fermonic creation(annihilation) operators that create(annihilate) a particle with spin

σ at site i. The creation and annihilation operators obey the anti-commutation relationship

{b̂iσ, b̂†jσ′} = δi,jδσ,σ′ . The first term in Equation 1.1 parametrized by the energy J describes

the hopping of particles between nearest-neighbour sites i and j. The term parametrized by U

describes the on-site interaction energy between particles of different spin σ and σ′.

Although the Fermi-Hubbard model is simple to write down, it is very difficult to solve.

In general, the description of an N particle quantum state requires the specification of 2N − 1

complex amplitudes. Thus, describing a 300-particle system - a system barely in the thermo-

dynamic limit - requires the description of as many complex numbers as there are particles in

the Universe. In experiments, the precise control of the state of thousands of quantum particles

is an increasingly feasible goal. Measurement and readout of these final states with atomic

resolution has not been demonstrated, however.

Recent simulations of the Fermi-Hubbard model with ultracold fermionic atoms have demon-

strated the ability to observe band insulating physics [15], the Metallic-Mott insulator phase

transition [16, 17], the Metallic-Mott insulator phase transition in the presence of disorder [18],

and many other phenomena. All of the Fermi-Hubbard quantum simulations to date have

made measurements of the final state that were not sensitive to inter-particle distance scales

of approximately 500 nm. In this thesis, we describe an apparatus that has the capability of

resolving these small distances, thus realizing a position space readout measurement.

1.1 High resolution imaging: a local probe

The experiment described in this thesis fills a notable absence in the field of ultracold atoms: a

machine that is able to measure the local behaviour of ĤFH. A local probe has the capability of
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CHAPTER 1. INTRODUCTION 1.1. High resolution imaging: a local probe

measuring the occupation of single sites of the optical lattice, projecting the measurement onto

eigenstates of ĤFH itself - in the U/J →∞ limit, at least. A local probe is also able to observe

changes in the phase ordering across a sample in which the chemical potential varies due to

an underlying harmonic confinement [9, 10]. Sensitive temperature measurements may also be

undertaken by measuring the fluctuation in site occupation as a function of lattice depth and

confinement [9, 19].

High-resolution imaging has recently been demonstrated for a Bose gas in the strongly

correlated regime [20, 9, 10]. In constructing our apparatus, we employ an imaging strategy

similar to [9, 10]: collecting the fluorescence from atoms pinned in a deep optical lattice with

a high numerical aperture (NA) imaging system. The imaging resolution dr is dependent on

both the NA and the wavelength λ of the captured fluorescence:

dr = λ/2NA. (1.2)

We may minimize the resolvable distance by making the NA large and λ small. The NA is equal

to n sin θ, where n is the index of refraction and θ is the half-angle of the light cone allowed to

enter the imaging aperture. The NA is increased by using a short focal length objective that is

able to capture as much of the solid angle of scattered fluorescence as possible. We accomplish

this with a custom designed NA=0.6 microscope placed 2 mm from an ultracold gas of atoms.

In between the microscope and the atoms is a 200µm thick sapphire window that maintains

an ultrahigh vacuum around the atoms. We may also minimize dr by exciting atoms along

the excited 405 nm 4S1/2 → 5P3/2 transition, rather than the standard 767 nm 4S1/2 → 4P3/2

transition. Taken together, this allows for a resolution of ≈ 350 nm, a distance smaller than the

527 nm optical lattice site spacing.

In order to detect the site occupation with high fidelity we need not only sufficient imaging

resolution, but also to scatter many (of order 104) photons per atom to overcome limitations

from shot-noise variation in the detected fluorescence. However, scattering photons will heat

the atoms so that they are no longer pinned in place. We must therefore cool the atoms while

an image is obtained. We may estimate to what temperature we must cool the atoms using

a classical Arrhenius model for themal hopping [21]. The hopping rate Γhop of an atom at

temperature T across a potential with depth V0 will be proportional to the number of atoms in

the sample with energy E > V0. That is,

Γhop = Γaerfc
(√

V0/kBT
)

(1.3)

where Γa is the attempt rate and erfc(x) is the complimentary error function. Γa has been

3



CHAPTER 1. INTRODUCTION 1.2. An ultracold gas of atoms

measured for 133Cs and 87Rb in an optical lattice to be 265 s−1 [21] and 222 s−1 [22], respectively.

Taking the average of these two values, we estimate that the atomic temperature should be kept

below V0/7kB in order for us to suppress hopping (to 10 mHz, say) during a 1 s imaging time.

Technical constraints limit us to depths below V0/kB ≈ 200µK, and so we must find a way

to cool atoms to temperatures below 30µK while they simultaneously scatter many photons.

Our proof-of-principle solution to this problem - the sub-Doppler cooling of 40K using the D1

transition - is presented in this thesis.

Though many aspects of this apparatus have been designed with Fermi-Hubbard physics in

mind, our experiment provides access to a wide range of quantum phenomena. In particular,

creating the two-dimensional systems required for high-resolution imaging allows for the in situ

study of pseudo-gapped phases [23], BKT physics [24], scale invariance [25], quantum critical

phenomena [26], and Kibble-Zurek physics [27]. In addition, our experimental apparatus cools

both fermonic 40K and bosonic 87Rb, allowing for the future high-resolution study of Bose-Fermi

mixtures [28, 29] and hetero-nuclear molecular physics [30].

1.2 An ultracold gas of atoms

In order to apply a gas of ultracold atoms towards the study of condensed matter physics, it is

necessary to understand the particularities of the ultracold atom system itself. In the following,

we introduce several of the salient features important to understand the behaviour of a gas of

ultracold atoms.

• An ultracold and dilute gas is a quantum gas: In order for a collection of atoms

to behave quantum mechanically, the thermal de Broglie wavelength λdB =
√

2πh̄/mkBT

associated with each atom must be as large or larger than the mean inter particle spacing

n−1/3, where n is the density and m is the atomic mass. This condition is met in cold

atoms experiments when T ≈ 100 nK and n ≈ 1019 m−3, corresponding to a typical

inter-particle length scale of 500 nm. The density of quantum gases may be compared

with the density of the air we breathe, which at ambient pressures and temperatures has

nair ≈ 1025 m−3.

If we were to try cooling a sample with higher density - easing the constraint for ultracold

temperatures - we would find that the gas becomes a solid. This is because a gas at such

low temperature is not in equilibrium. It is instead in a metastable state with a rate of

decay equal to Ln2, where L ≈ 10−40 m6/s for 87Rb, for instance. If we wish to be able

to study the gas for more than 1 s, we require n < 1020 m−3.

Lower densities, however, will reduce the thermalization rate of the gas. The collision
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rate is γ = nσvT , where vT =
√

8kBT/πm is the relative thermal velocity [31, 32].

Constraining the temperature to the quantum regime, nλ3
T = 1, the collision rate scales

as n4/3. So if instead of n ≈ 1019 m−3 we had chosen a density a hundred times smaller,

the collisional rate would be less than one per second, much too slow for the operation of

such an experiment.

• Energy and time scales: The density establishes a typical energy scale, ε = h̄2n2/3/m,

at which many-body physics of interest might occur. For weakly interacting bosons, the

critical temperature for superfluidity [33, 34] occurs at kBTc ≈ 3.3ε. For low-temperature

fermions, the Fermi energy [33, 35] is EF ≈ 7.6ε. The transition to a superfluid of paired

fermions occurs at 0.17EF for a unitary Fermi gas [36, 3].

The typical time scale is h/ε ∼1 ms. This is much longer than 5µs time resolution of our

experiment. Therefore, a gas of ultracold atoms is a useful system in which to observe

non-equilibrium physics [9, 37, 38, 39].

• Quantum gases and spin statistics: When the thermal de Broglie wavelength of an

atom becomes as large as the system size, the wave function for the system is no longer a

product of the individual atomic wave functions, but rather a single wave function of the

whole collection of atoms:

ψ(x1, ....., xi, ......xj , ....., xN ). (1.4)

The quantum spin statistics of particles arise from the fact that quantum particles are

fundamentally indistinguishable. That is, if we were to describe the many-body state of

a collection of N particles, the probability must be invariant under exchange of any two

particles:

|ψ(x1, ....., xi, ......xj , ....., xN )|2 = |ψ(x1, ....., xj , ......xi, ....., xN )|2. (1.5)

To satisfy this invariance the wave function amplitude can be symmetric (+) or anti-

symmetric (-) under exchange:

ψ(x1, ....., xi, ......xj , ....., xN ) = ±ψ(x1, ....., xj , ......xi, ....., xN ). (1.6)

The symmetry or anti-symmetry of the wave function defines the distinction between

bosonic and fermionic particles. Fermionic particles must have an anti-symmetric wave

function, and an immediate corollary is that two fermonic particles may never be in the
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same state:

ψa(x1, ....., xi, ......xi, ....., xN ) = 0. (1.7)

This is the famous Pauli exclusion principle [40]. The spin-statistics theorem [41] relates

the spin of the particle to the quantum statistics it obeys: a particle, or composite particle,

with integer(half-integer) spin will obey bosonic(fermonic) quantum statistics. In our

experiment, we may study both bosonic 87Rb and fermonic 40K, though our single-site

imaging measurement works only for 40K.

• Atoms have short-range interactions: Neutral atoms exhibit a short-range Van der

Waals potential caused by the interaction of two dipole moments that colliding atoms

induce in one another. This results in a potential energy that scales with the inter-atomic

distance r as:

VVdW = −α/r6. (1.8)

The constant α must have dimensions of [energy×length6]. We may guess that the length

scale is on the order the Bohr radius a0 and that the energy is a Coulomb potential e2/a0

with e the electron charge. This gives α = C6e
2a5

0, where C6 is a dimensionless constant

that is equal to 4698 for 87Rb and 3925 for 40K [33].

We find the length scale associated with this potential by equating VVdW with the kinetic

energy of the atom:

h̄2

mar2
0

= − α
r6

0

. (1.9)

Using our expression for α along with an expression for the electron mass obtained from

equating the kinetic and potential energies of the electron h̄2/mea
2
0 = e2/a0, we find the

range of the Van der Waals potential:

r0 = (C6ma/me)
1/4 a0 ≈ 5 nm. (1.10)

The short-range character of VVdW is an important requirement in simulating Fermi-

Hubbard physics, for instance [42]. The Van der Waals length r0 is much smaller than

the lattice spacing and so neutral atoms are well-described by the on-site interaction term

in ĤFH.

• Ultracold atoms have an s-wave contact interaction potential: By being ultra-
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cold, colliding atoms may only s-wave scatter, leading to an effective delta function (i.e.

contact) interaction potential. The spatial wave function that describes the relative posi-

tion of two atoms colliding along the z direction is:

ψs = eikz + f(θ)
eikr

r
. (1.11)

The first term describes the incoming plane wave, the second term describes the scattered

wave, and k is the relative momentum of the particles. f(θ) is the scattering amplitude

and may be expanded in terms of the partial waves l [43]:

f(θ) =

∞∑

l=0

(2l + 1)

(
e2iδl − 1

2ik

)
Pl (cos θ) (1.12)

with Pl (cos θ) the Legendre polynomials. By equating the temperature of the colliding

atoms with the centrifugal and potential energy, we may determine number of partial

waves to include in this sum:

kBT =
h̄2l(l + 1)

2mr2
0

− α

r6
0

. (1.13)

Therefore, atoms colder than the l = 1 threshold energy - about 10µK for 40K [44] -

will have only an l = 0, or s-wave, contribution to f(θ). Because s-wave collisions have

only one available scattering state, the Pauli exclusion principle prevents two identical

fermions from scattering.

We can also show that two cold alkali atoms will interact as if they were hard spheres. For

small enough momentum k, the l = 0 scattering amplitude becomes isotropic, momentum

independent, and equal to a constant −a with the dimension of length [43]. In this low

energy regime, the wavefunction ψs is:

ψs = 1− a

r
. (1.14)

Here, a is the s-wave scattering length that gives the intercept of the wavefunction on

the r-axis. It may be either positive or negative, and has the singlet(triplet) values

of as(t) = 174(104)a0 for 40K [45] and as(t) = 99(90)a0 for 87Rb [46]. The physical

justification for approximating ψs by the simple, non-oscillatory form in Equation 1.14 is

that because wavefunction oscillations occur in the region r < r0 that is small compared

with the mean inter-particle distance, they are unimportant for low-energy scattering

behaviour and may be neglected.
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Using the scattering amplitude, we may compute the scattering cross section σ via the

differential cross section:

dσ

dΩ
= |f(θ)|2 → σ = 4πa2. (1.15)

We see that two atoms scatter as if seeing each other as billiard balls with radius a.

Because the de Broglie wavelength is much larger than r0 for ultracold atoms, we may

define an effective contact interaction potential Veff that is parametrized by the energy

U0 = 4πh̄2a/m [33]:

Veff(r) = U0δ(r). (1.16)

• Ultracold atoms in periodic potentials: A periodic potential can be created for a gas

of ultracold atoms by the standing wave intensity pattern resulting from the interference of

counter-propagating laser beams. If the laser frequency is tuned just below the frequency

of a nearby atomic transition, the induced dipole moment in the atom is able to orient

itself so as to lower the ground state atomic energy, thus attracting the atom to high

intensity regions of the electric field.

By controlling the intensity of the periodic potential, we control the potential depth

and confinement and so control J and U in ĤFH. When the potential depth is large, the

atomic wave function has less overlap with those of neighbouring states and the tunnelling

energy J is reduced. The interaction energy between two atoms in the same well, say, will

increase with potential depth since the resulting increase in well confinement will increase

the mutual wave function overlap of the atoms. Thus, a change in the potential depth

results in a change of the ratio J/U which is the relevant dimensionless parameter that

determines the behaviour of a Fermi-Hubbard system. See Chapter 5 for a more detailed

discussion.

• Strong interactions, disorder, phonons, and synthetic magnetic fields in an

ultracold gas: We would like to be able to simulate a range of physical phenomena in our

ultracold atomic system. This means having ways to mimic, for instance, the behaviour of

electrons in a magnetic field (made possible in a sample of neutral atoms by transferring

angular momentum to atoms using a pair of Raman beams [47]), to controllably introduce

disorder (possible by introducing an optical “speckle” beam [48, 49, 50, 51]), and to

simulate electron-phonon coupling (perhaps possible to create via a “Polaron dressing”

of the sample with another atomic species [52, 53, 54]). The tuning of the interaction
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energy U into the strongly-coupled regime (ka > 1) is made possible through the use of

a Feshbach resonance [55]. A Feshbach resonance exploits the energy resonance between

a dimer and two free atoms at a specific value of the magnetic field B0, resulting in an

effective change in the scattering length:

a(B) = a

(
1− ∆

B −B0

)
. (1.17)

In 40K, the commonly used s-wave Feshbach resonance between the |F,mF〉 = |9/2,−9/2〉
and |F,mF〉 = |9/2,−7/2〉 Zeeman states occurs at a magnetic field B0 = 202.10± 0.07 G

and has a width ∆ = 7.8± 0.6 G [56].

Finally, it is important for the ultracold atom system to be well-controlled and reproducible

if we hope to be able to simulate the subtle quantum phenomena present in strongly correlated

materials. Addressing this concern is one of the primary achievements of this thesis. We

have built a robust apparatus that has demonstrated the ability to coordinate many different

ingredients in order to produce a sample of quantum atoms that exhibits, among other things,

the behaviour described by ĤFH.

1.3 Outline of this thesis

The following chapters of this thesis describe an apparatus that is able to cool a gas of 87Rb and

40K to quantum degeneracy, control the behaviour of the gas in an optical lattice, and demon-

strate a unique proof-of-principle high-resolution measurement approach. Chapter 2 describes

the design, construction, and characterization of the parts of the apparatus required to cool a

gas of 40K and 87Rb atoms from 500 K to a few µK. Chapter 3 provides a theoretical review

of the thermodynamic behaviour of trapped Bose and Fermi gases, as well as the details of the

experimental production of a quantum degenerate gas of 87Rb and 40K. Chapter 4 is adapted

from [57] and presents a theoretical and experimental investigation into the laser cooling of 40K

on the 405 nm 4S1/2 → 5P3/2 transition. Chapter 5 calculates the energies and states for atoms

trapped in an optical lattice potential, as well as deriving ĤFH for an ultracold atoms system.

Chapter 5 also demonstrates our control of the optical lattice potential with an observation of

the 87Rb Superfluid-Mott Insulator transition and the site localization of 40K. In Chapter 6 we

describe our approach to single site imaging, demonstrating the ability to cool 40K to 12µK

in a V0/kB = 200µK deep optical lattice using a sub-Doppler cooling mechanism. We offer

concluding thoughts in Chapter 7.
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Chapter 2

Apparatus

2.1 Overview of the experimental cycle

Unlike the samples used in condensed matter experiments, an ultracold atom sample is created

and destroyed in every experimental cycle. A key component of sample preparation is attain-

ing nanokelvin temperatures, achieved with a succession of two techniques: laser cooling and

evaporative cooling. They take place in a sequence of magnetic and optical traps suited to

the energy of the atom, and to the internal state of the desired quantum gas. For our choice

of 87Rb and 40K, the experimental cycle proceeds similarly in several labs around the world

[58, 59, 60]. We attempt here to provide a short introduction to the “life cycle” of an ultracold

atoms sample in order to provide context for the work described in the following parts of this

thesis.

The most widely used laser cooling technique is Doppler cooling, in which lasers are tuned

to a frequency just below resonance. Atoms are pushed by the recoil momentum h̄k of photons

with wavenumber k scattered at a rate Γsc given by Equation A.9. In the rest frame of the

atom, each laser beam has a frequency ∆ − k · v, where ∆ = ω − ω0 is the detuning of the

laser frequency ω from the atomic transition frequency ω0, and v is the atomic velocity. For

∆ < 0, atoms are “punished” for moving towards any incoming laser beam, since that beam is

shifted towards resonance (∆ = 0). The resultant force is a viscous damping, whose ultimate

temperature TD = h̄Γ/2kB, the Doppler temperature [61, 62, 63], is related to the linewidth Γ

of the transition.

Once laser cooled, atoms are magnetically transported to the science chamber. As discussed

in Section A.1, atoms must have mF gF > 0 to be magnetically trapped. 87Rb atoms are

polarized in the |2, 2〉 state and 40K in the |9/2, 9/2〉 using a short optical pumping light pulse.

Evaporative cooling is at work in cooling towers for air conditioning, when we perspire, and
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CHAPTER 2. APPARATUS 2.1. Overview of the experimental cycle

when steam rises from a hot cup of tea. Applied to trapped atoms, the high-energy tail of a

thermalized cloud will exceed the trap depth, exit the trap, and leave behind a sample with a

reduced energy per particle. After further rethermalization, the temperature of the remaining

cloud decreases. Unlike in laser cooling, high densities are advantageous for evaporative cooling,

and there is no fundamental lower limit to temperature [64, 31, 65, 32].

Although spin mixtures of 40K can be evaporatively cooled [66], in our apparatus the initial

collision rate would be too low to proceed in a reasonable time. Potassium is instead sympa-

thetically cooled through thermalization with 87Rb. More generally, sympathetic cooling can be

used for a species whose sources are weak or whose laser cooling is challenging. The process

relies on elastic collisions between the coolant and target atoms, a way to remove the coolant

without removing the target, and a sufficient heat capacity of the coolant. We find that in-

elastic losses are minimized for 40K atoms in |9/2, 9/2〉 when 87Rb atoms are transferred into

the absolute ground state |1, 1〉. This 87Rb internal state is not magnetically trapped, and thus

sympathetic cooling is finished in an optical trap.

A recipe to create a conservative optical trapping potential is to use very large detuning.[67,

68] Comparing the dipole potential Equation A.10 and the scattering rate Equation A.9, we

see that for large detuning the scattering cross section drops faster (∼ 1/∆2) than the dipole

potential (∼ 1/∆). For instance, it is common to use a trapping wavelength several hundred

nanometers away from any strong resonance. For us, |∆|/Γ = 1.6× 107.

From the magnetic trap, we transfer atoms into a crossed-beam optical trap at 1054 nm.

Two elliptical beams with 4.5 W and 3 W of power that are focused to waists of (wh1, wv1) =

(161µm, 38µm) and (wh2, wv2) = (230µm, 58µm), respectively, create a potential with a depth

of ≈ 60µK. This is more than sufficient to contain the 7µK cloud produced by evaporative

cooling in the magnetic trap.

After transfer to the optical trap, evaporative cooling is continued. Lowering the beam

power forces evaporation, since atoms with an energy higher than the trap depth escape. We

transfer 2 × 106 87Rb atoms at into a crossed-beam optical trap. After 20 s, we produce a

Bose condensate without any discernible thermal diffraction. By sympathetic cooling in the

optical trap, we also produce a quantum degenerate cloud of 40K atoms. We describe the

thermodynamics, and our observation of, quantum gases in detail in Chapter 3.

This marks the point in the experimental cycle in which the playground of quantum many-

body physics opens up: a quantum sample lies in wait, ready to be studied, manipulated, and

probed. In our case, it is the Fermi-Hubbard model that we wish to explore. In order to do so,

atoms are adiabatically loaded into a lattice geometry by slowly ramping on the intensity of

the optical lattice beams in 200 ms. The atoms will move around and equilibrate on time scales
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set by the tunnelling energy J , the on-site interaction energy U , and the underlying harmonic

confinement energy h̄ω. For our experimental parameters, this corresponds to milliseconds

or tens of milliseconds times. The competition between these energies result in a competition

between metal and insulating-type behaviour of the system. Furthermore, because the response

time of the atomic system is slow compared with the rates with which we are able to control the

experimental parameters, we have the ability to observe non-equilibrium physics. We discuss

the optical lattice in Chapter 5.

After some time evolution under the Fermi-Hubbard Hamiltonian, the state must be mea-

sured and read out. All fermion experiments to date have measured the final state using

time-of-flight imaging, a method whereby the cloud is dropped from its confining potential and

allowed to expand. The shape and rate of expansion indicate the original momentum distribu-

tion of the cloud in situ. We describe how to gain quantitative information from this technique

in Section 3.6.2. To gain positional information, however, requires a high-resolution measure-

ment technique that is able to resolve the 500 nm sized features created by the optical lattice.

In Chapter 6, we describe an in situ imaging approach whereby the lattice is quickly ramped to

very high intensities, freezing the atoms in place, while a 405 nm beam resonant with an excited

state transition excites the atoms and causes them to fluoresce. The fluorescence is captured

with a microscope objective that is placed less than 3 mm from the atoms, and atoms are kept

localized during fluorescence with the simultaneous application of sub-Doppler cooling light.

2.2 Laser system

Lasers are the workhorse of the cold atoms physics lab. Typically, a dozen or more lasers

are required to access different transitions in order to cool and image atoms, to provide a

conservative confinement potential, and to amplify light. Figure 2.1 shows a selection of the

different wavelengths of light used for our 40K and 87Rb experiment.

It is increasingly possible to purchase laser diodes and other bright sources that emit light

at a wavelength of interest, and then integrate them into a feedback cavity that both amplifies

and narrows the frequency spectrum of the light. How bright and narrow the linewidth of this

light must be is determined by how it will be used. For example, light used for laser cooling

must have a linewidth much less than the atomic transition linewidth Γ, and a power that can

provide an intensity of order the saturation intensity Isat. It can be hard to simultaneously

satisfy both linewidth and power requirements with a single laser; an experimentalist would

be thrilled to have 30 mW of light frequency stabilized to a few hundred kHz from a “Master”

laser. However, many hundreds of mW are needed after losses due to optical diode protection,

fiber-coupling, and acousto-optic modulator (AOM) frequency shifting are taken into account.
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Figure 2.1: Extended 40K level diagram A selection of the wavelengths of light used to
address 40K in the apparatus.
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Therefore, the frequency stabilized light from a Master laser is often amplified by either seeding

another diode laser (providing typical gains of ∼ 10 dB), or by seeding a tapered amplifier laser

(which can provide a gains of over 25 dB).

As can be seen from Figure 2.9, cooling and imaging involves lasers tuned to number of

different transitions. It is not necessary to have a separate laser for every transition, however,

since AOMs are able to shift the frequency of light by many hundreds of MHz. Transitions

that are separated by more than a GHz from another transition will typically have a dedicated

laser. This is illustrated by comparing the case of 40K to 87Rb. Cooling any one of these

atoms require both a “trap”’ and “repump” light, separated in frequency by approximately the

hyperfine energy ∆EHF/h̄. Because the 87Rb hyperfine splitting is 6.8 GHz, separate lasers are

required for trap and repump light. 40K, on the other hand, has a hyperfine splitting of only

1.3 GHz and so is an intermediate case. In our lab, we have used separate lasers, as well as

AOMs, to bridge this frequency difference during different iterations of the experiment.

Creating conservative trapping potentials requires many Watts of laser light in order to hold

on to µK-temperature atoms. This is because of the large detuning with which the laser must

operate to minimize light scattering and heating. The large power requirement is compensated,

in certain applications, by a relaxed frequency stability requirement: the linewidth has only

to be small enough to provide a stable, detuning-dependent potential. However, if an optical

lattice potential is to created, light that is narrow enough in linewidth to provide a stable

interference intensity pattern is needed. This is a stringent requirement as the linewidth must

be less than 100 kHz, small enough to prevent the accordion-like shaking of the lattice potential.

As was the case for the cooling lasers, it can be difficult to produce enough power from such

a stable laser. We de-couple these twin demands by using the narrow frequency light from a

dedicated master laser to seed a much higher power (40 W) optical amplifier.

2.2.1 40K cooling, optical pumping, and imaging lasers

The 40K master laser is a Toptica DL pro. It outputs 55 mW of power, 0.5 mW of which is needed

for frequency stabilization [69]. The 40K laser lock optics schematic is presented in Figure 2.2.

We lock the frequency to the ground state cross-over feature in 39K using frequency modulation

spectroscopy. The excited state structure of 39K is unresolved in saturation spectroscopy. Light

resonant with the F = 9/2 → F ′ = 11/2 trap transition in 40K is produced by shifting the

frequency-locked light by +700 MHz with a double-passed 170 MHz AOM, and either a single-

passed 320 MHz AOM (for MOT trap light), or a double-passed 170 MHz AOM (for probe

imaging light). We produce F = 9/2 → F ′ = 9/2 optical pumping light along the same beam

path as the probe light by shifting the frequency of the double-passed 170 MHz AOM. This is
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Figure 2.2: 40K laser frequency stabilization: A small amount of light from the 40K master
laser is used for frequency stabilization. Some of this light is passed through an Electro-Optic
Modulator (EOM) where it picks up frequency sidebands. This light is passed through a K
vapour cell where it interacts with atoms that have been excited by the counter-propagating
beam, producing a Doppler-free spectroscopy signal. The photodiode signal is then mixed with
a reference oscillator, resulting in an “error” signal that may be used for frequency locking.

possible because optical and probe light are never used simultaneously. Light resonant with the

F = 9/2 → F ′ = 9/2 repump transition is produced by shifting the frequency-locked light by

-700 MHz with a double-passed 320 MHz AOM. A schematic of the optics layout is presented

in Figure 2.3.

The trap light is amplified by injection locking a “slave” laser diode after transmission

through the AOMs. We use home-built tapered amplifiers (TA) to further amplify the trap and

repump light from approximately 10 mW to 600 mW and 300 mW, respectively.

2.2.2 87Rb cooling, optical pumping, and imaging lasers

We have two 87Rb master lasers: a Vortex ECDL 6013 repump master, and a home-built

interference filter external cavity diode trap laser constructed by Matthias Scholl [70], and

based on a design described in [71]. The repump master laser is frequency stabilized using

frequency modulation spectroscopy to the F = 1 → F ′ = 1 − 2 cross-over absorption feature.

The trap master laser is frequency stabilized by beat-locking it +6590 MHz away from the

repump light using a reference VCO [1].

Fast control over the frequency and amplitude of the 87Rb light is accomplished with the

help of AOMs. The trap light is shifted by a double-passed -110 MHz AOM to be resonant

with the F = 2 → F ′ = 3 transition. The optical pumping light is shifted by a double-passed

+110 MHz AOM to be resonant with the F = 2 → F ′ = 2 transition. The beat frequency can

also be changed on a 100µs timescale to allow F = 2 → F ′ = 3 probe light to travel along
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Figure 2.3: 40K optics layout

Figure 2.4: 87Rb laser frequency stabilization: See [1] for a description of the frequency
beat lock.
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Figure 2.5: 87Rb optics layout

the optical pumping beam path. Whereas a TA is needed to boost the MOT trap power to

600mW before the fiber, we need only 10 mW of repump power owing to the large excited state

hyperfine splitting of 87Rb. This power is easily achievable with an injection locked slave diode.

2.3 Vacuum system

An ultra cold gas of atoms has a density of 1019 m−3, about a million times more dilute than air

at atmospheric pressure and temperature. In order to thermally isolate a sample of cold atoms

and protect them from the background collisions that would knock them out of traps created

for them, a vacuum must be provided in which to conduct experiments.

A rule of thumb for most cold atoms experiments is that the vacuum should be separated

into two regions: a (dirty) atomic source chamber, and a (clean) experimental chamber. The

two chambers are connected, but kept at different pressures using either a narrow-diameter, low-

conductance tube to join them, or by placing a shutter between them. Atoms are transported

between the chambers either by creating a beam of atoms that then needs to be slowed down

and trapped, or by first trapping and cooling atoms in the source chamber so that they can

be shuttled to the experimental chamber in a well-controlled, if relatively weak, magnetic or

optical trap. Zeeman slowers and 2D MOTs are examples of the first method of transport, and

vapour cell MOTs plus magnetic or optical conveyor belt transport are examples of the second.
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There are some exceptions to this two-chamber rule. Experiments with fast evaporative

cooling cycles, for instance, do not have to worry as much about keeping their source and

experimental chambers apart. Thus, experiments that use the tight magnetic confinement

potential - and correspondingly large collision rate - from a lithographed atom chip, say, often

operate using a one chamber design. On the other hand, some experiments find it beneficial to

use three or more chambers. Such an experiment might have one chamber that is used as an

atomic source oven, another which collects a beam of atoms into a MOT, and a third chamber

that atoms are transported to which provides wide open optical access for trapping and imaging

beams. The increased optical access can be sufficiently valuable in these experiments to warrant

the extra effort required to engineer and build a more complex vacuum and transport system.

Choosing between these different options is very dependent on the atom and physics of

interest. In our case, we are interested in investigating the behaviour of fermions in a lattice.

Confining ourselves to the alkali atoms, this immediately limits our choice of atom to the two

stable fermions 40K and 6Li. Because 40K is much heavier than 6Li, it is well suited for lattice

physics because the relevant energy scale, the recoil energy ER, is much smaller. A smaller

recoil energy means that 40K is not “kicked” around as much by the light, something we wish

to avoid. Having narrowed the choice of atom to 40K, we must now find a way to produce it.

Unfortunately for us, 40K has a very low natural abundance; only 0.01% of all K isotopes are

40K. This fact makes an oven source + Zeeman slower design for 40K unattractive given that

ovens consume quite a bit of material during operation. Instead, we opted for a vapour cell

MOT design using 40K-enriched potassium dispenser sources. 40K atomic vapour is created by

heating a dispenser containing Ca and KCl salts enriched with 40K, producing 40K according

to the reaction [72]:

Ca + 2KCl→ 2K + CaCl2. (2.1)

In opting for a vapour cell MOT over a 2D MOT + MOT, we sacrifice the number of atoms

able to captured during the laser cooling process. This is due to the fact that vapour cell MOTs

produce additional “dirty” background gas during dispenser operation. This background gas

can collide with atoms in the MOT, knocking them out of the trap at a rate Γbg. The rate

equation that describes the number of atoms collected into a MOT is:

Ṅ = A− ΓbgN (2.2)

where A is the MOT loading rate which is proportional to the partial pressure of the atom of

interest. Equation 2.2 has the the steady-state solution N = A/Γbg.
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Figure 2.6: Vacuum system Image courtesy of Dave McKay [1].

A low MOT number can be catastrophic for a cold atoms experiment as the efficacy of

the evaporative cooling stage requires that we be able to throw away hot atoms in order that

the rest may thermalize to a lower temperature. We are able to circumvent this problem by

simultaneously cooling 87Rb alongside 40K. 87Rb is the most common atom in use in cold atoms

experiments around the world owing to its relatively large (28%) natural abundance, as well as

its good laser cooling and collisional properties. 87Rb atomic vapour can be readily produced

from commercial dispensers - ours are purchased from SAES. We are able to produce large 87Rb

MOTs of a few billion atoms in our vapour cell MOT, a number that is more than sufficient to

evaporatively cool both 87Rb and 40K.

A peculiar feature of our vacuum system is that we transport atoms not only horizontally,

from one chamber to the other, but vertically as well. Why do this? After all, having two

transport directions would seem (correctly, as it turns out) to involve a greater engineering and

construction effort. The payoff is greater optical access. All the optics required for probing and

manipulating atoms are allowed to rest on a second optical board, 50 cm above all the optics

required for the MOT. Having this definite separation defines a “be careful around here!” space

for the finely aligned science chamber beams. Perhaps most importantly, vertically transporting

the atoms simplified the design of the science chamber and high-resolution imaging system by

19



CHAPTER 2. APPARATUS 2.3. Vacuum system

moving the atoms along an axis of symmetry.

One of the costs of implementing our vertical transport design was that the vertical transport

coils had to be incorporated into the vacuum before the bake. That is, because the vertical

transport vacuum nipple must go through the coils, there is no way to remove the coils without

disassembling the vacuum system. Not only did this fact make baking and assembling this part

of the vacuum system especially challenging, but it requires that the vacuum system be opened

to air should any damaged vertical transport coil need to be replaced.

2.3.1 Overcoming vacuum problems

As presented above, it might seem as if design and construction of the vacuum system advanced

smoothly, with constantly increasing progress. In fact, our vacuum system was assembled and

baked over a half-dozen different times. Sometimes this had to be done to repair or replace

leaks suffered during the baking process. For example, we had to replace the imaging window

+ sub-flange assembly (pictured in Figure 6.5) due to a leak found in the sapphire-to-titanium

brazed connection. A leak in a science chamber port window, however, was able to be patched

up with a liberal application of VacSeal vacuum sealant.

Much tougher to diagnose were problems in producing enough 40K vapour to magneto-

optically trap. As mentioned above, producing a ready supply of 40K is a tough charge. Initial

attempts at a 40K MOT that used home-made Ca + KCl dispensers in a steel MOT chamber

resulted in a low MOT atom number - of order 106 atoms. At this stage in the experiment, we

were hoping to implement an all-40K evaporative cooling procedure, and so this atom number

was clearly not sufficient. The next solution was to move to a commercially purchased 40K-

enriched dispenser from Alvatec Alkali Vacuum Technologies. This increased the atom number

to a few 107, but still far below the number required.

A decision was then made to switch MOT chamber design, from a large steel chamber to

a small glass cell, in order to limit the suspected adsorption of alkalis onto the metal surface

of the vacuum chamber. This decision came with a consequence - we would not be able to

attach the dispensers to leads in the vacuum chamber ourselves, but would instead rely on the

glass-blower who was constructing the glass cell to perform this “ship-in-a-bottle” procedure.

Unfortunately, a miscommunication between Alvatec and the glass blower resulted in the dis-

pensers becoming too hot during this attachment process, reaching temperatures above the

156◦C melting temperature of the indium seal that protects the K from water vapour. It took

many months to diagnose the resulting poor performance of 40K dispensers as being due to

partial water contamination.

The following MOT cell design incorporated back-up 87Rb dispensers for coolant in case
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2007	   2008	   2009	   2010	   2011	   2012	   2013	  
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SAES	  87Rb	  
	  

MOT	  cell	  #3	  
Alvatec	  40K	  
“87Rb”	  (39K)	  	  
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MOT	  cell	  #1	  	  
Metal	  chamber	  
Home-‐made	  40K	  
	  

Try	  Alvatec	  40K	  
dispensers	  
	  

MOT	  cell	  #2	  	  
Glass	  cell	  
Alvatec	  40K	  
	  

!me	  
	  

Figure 2.7: Timeline of notable vacuum bakes

the Alvatec 40K dispensers under-performed. And unfortunately, they did. We were only able

to achieve MOT sizes of a few 108 40K atoms, an insufficient number for evaporative cooling.

Furthermore, the dispensers outgassed a black and yellow residue that stained the dispenser

region of the MOT cell. More bad news occurred when, after a few more months of effort in

which a new 87Rb laser system was constructed and tested, we could not produce an 87Rb MOT

with any more than 106 atoms. We soon learned, to our dismay, that our “87Rb” dispensers were

in fact 87Rb-contaminated 39K dispensers. We had fallen victim to another miscommunication,

whether the fault of the Rb dispenser vendor, the glass-blower, or ourselves.

It was not until January 2012, over 4 years into my doctoral work, that we conducted the

final vacuum bake. The new MOT cell, our fourth, included both home-made 40K dispensers

(courtesy of Graham Edge) and commercially purchased 87Rb dispensers. The vacuum system

has performed very well ever since (knock on wood).

2.3.2 Vacuum system details

A rendered image of the vacuum system is shown in Figure 2.6. The MOT chamber is a

custom design manufactured by Technical Glass. It features two CF flanges from which dis-

pensers can be attached and removed. The science cell is a 12-port custom stainless steel design

manufactured by Kimball Physics.

The MOT chamber is pumped with a 20 L/s ion pump. Magnetically trapped atoms have

a lifetime of a few seconds in this chamber when the dispensers are running. The science cell

is pumped with a 75 L/s ion pump and a Titanium sublimation pump, producing a pressure

below 10−12 Torr and an atomic lifetime of over two minutes.

A 365-mm-long horizontal tube with a minimum diameter of 0.43” joins at a right angle

with a 174-mm-long 0.6” diameter vertical tube to form the transport section of the vacuum

system. The tube has a vacuum conductance of approximately 1 L/s for H2O and H2 and there

is an all-metal gate valve (VAT 48124-CE01) that allows the chambers to be isolated from each

other when closed. This allows the two chambers to be baked separately, for instance, allowing
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Figure 2.8: Vacuum bake Top left: 40K dispensers mounted in arm of MOT cell. Bottom
left: fluorescence from resonant light during successful dispenser testing and outgassing. With
40K dispensers that produced large MOTs we were able to observe fluorescence with the naked
eye when shining in ∼200mW of resonant light. We did not observe fluorescence with poorly
performing dispensers, however. Right: H2 pressure as a function of all-metal vacuum bake
time (Image courtesy of Dave McKay [1]).

for the replacement of dispensers without disturbing the ultra-high vacuum in the science cell.

2.3.3 Vacuum clean and bake

Vacuum components must be cleaned and baked before use. The cleaning process (Alconox

detergent, acetone, methanol, distilled water, air dry) rids the components of any residual oil

resulting from manufacturing or handling. The baking process removes gas from the system,

especially H2 and H2O.

We employed a three-stage bake process for the metal components of our vacuum system.

In the first stage, the components were assembled and heated to 400◦C while being pumped

with a 60 L/s turbo pump (Pfeiffer TC-600) for 60 days. The goal of this stage was to pump

H2 away from not just the surface, but the bulk of the metal components. A plot showing how

the H2 partial pressure decreased with bake time is shown in Figure 2.8. The second bake

stage was an airbake where components were heated to 400◦C for a few days at atmospheric

pressure in order to produce an oxide layer at the surface that would seal any remaining H2

into the bulk. The final bake stage involved assembling all components of the vacuum system

(metal, glass, dispensers, valves, pumps, residual gas analyzer (RGA), and other) and heating

the system to the maximum possible temperatures, constrained by glass-to-metal connections,

dispenser activation temperatures, and the desire for small temperature gradients across the

system. This meant a temperature of 130◦C for the glass MOT cell and 200◦C for the science
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cell.

The final bake stage proceeded in three parts: a 3-day bake to pump away H2O, a cool-down

of the system in order to test-fire and clean dispensers, followed be another week of baking at

temperature. The temperature was never changed by more than 10◦C per hour. Figure 2.8

shows fluorescence from the home-made 40K dispensers, indicating that we have a robust source

of atoms. An RGA analysis of the gases detected during dispenser out-gassing can be seen in

Dave McKay’s thesis [1].

2.4 D2 Laser cooling

2.4.1 MOT

We capture and cool 40K and 87Rb atoms from a room-temperature vapour into a retro-reflected

magneto-optical trap. We run both the 40K and 87Rb dispensers continuously at low currents

(2.2A for 87Rb and 5.25A for 40K) to produce a steady supply of atoms. The windows of the

MOT cell are heated to 45◦C, and the dispenser arms of the MOT cell to 55◦C, by passing

current through thin counter-wound magnetic wire in order to prevent adsorption and increase

87Rb and 40K vapour pressure.

Atoms are cooled using light that is red-detuned from the D2 F = Fmax → F ′ = Fmax + 1

cycling transition. A second beam resonant with the F = Fmax − 1→ F ′ = Fmax transition is

also present to “repump” atoms that have been off-resonantly coupled into the F = Fmax − 1

state by the cooling beam. See Figure 2.9 for a 87Rb and 40K D2 level diagram and relevant

optical beams. A schematic illustrating how frequency stabilized 87Rb and 40K light is amplified

and shifted in frequency is presented in Figure 2.5 and Figure 2.3.

In our experiment, a typical MOT operates with 275 mW of 87Rb trap light and 10 mW of

87Rb repump light; 200 mW of 40K trap light and 100 mW of 40K repump light. This power is

spread among three, 4-cm diameter, retro-reflected beams. 87Rb and 40K light is combined on

a polarizing beam splitter. The polarization of the 40K light is aligned to the polarization of the

87Rb light using a 27-order waveplate (Lensoptics) that has λ/2 retardance for 767 nm and λ

retardance for 780 nm. Trap and repump light are combined on a non-polarizing beam splitter

so that both may have the proper “cooling” polarizations in the 10 G/cm magnetic gradient.

The 87Rb and 40K trap light is detuned by -30 MHz. The 40K repump light is detuned by

-20 MHz in order to help with trapping, whereas the 87Rb repump light is tuned to resonance.

We simultaneously collect 3 × 109 87Rb and 1 × 108 40K atoms at 200µK, a typical number

for these atoms. Figure 2.11 shows the effect that the presence of 87Rb has on the 40K MOT

number.

23



CHAPTER 2. APPARATUS 2.4. D2 Laser cooling

F’=2	  (-‐133	  MHz)	  

6834.7	  MHz	  

87
Rb

	  re
fe
re
nc
e	  

F=2	  

F=1	  

Co
ol
in
g	  
(t
ra
p)
	  

Pr
ob

e	  
(im

ag
in
g)
	  

Re
pu

m
p	  

O
pF

ca
l	  p
um

pi
ng
	  

Δ	   F’=3	  (133	  MHz)	  

F’=1	  (-‐290	  MHz)	  

F’=0	  (-‐362	  MHz)	  

F=2	  èF’=2-‐3	  x-‐over	  

87Rb	  reference	  

F’=9/2	  

1285.8	  MHz	  

39
K	  
re
fe
re
nc
e	  

F=7/2	  (646	  MHz)	  
	  

F=9/2	  (-‐640	  MHz)	  
	  

Co
ol
in
g	  
(t
ra
p)
	  

Pr
ob

e	  
(im

ag
in
g)
	  

Re
pu

m
p	  

O
pF

ca
l	  p
um

pi
ng
	  

Δ	   F’=11/2	  

F’=7/2	  

F’=5/2	  

F=1-‐2	  x-‐over	  èF’	  	  
in	  39K	  

39K	  reference	  

6P3/2	  

5S1/2	   4S1/2	  

5P3/2	  

87Rb	   40K	  

43
	  M

Hz
	  

33
	  M

Hz
	  
24
	  M

Hz
	  

20	  MHz	  

78
0.
24
1	  
nm

	  

76
6.
70
2	  
nm

	  

Figure 2.9: 87Rb and 40K D2 level diagram The optical beams used for laser cooling, op-
tical pumping and imaging 87Rb and 40K atoms. Upper oscilloscope traces show the saturation
spectroscopy signal, and lower traces show the error signal that the laser frequency is locked to.
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Figure 2.10: MOT optics
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Figure 2.11: Dual 87Rb/40K MOT
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2.4.2 cMOT

In order to better mode-match the MOT cloud with the magnetic quadrupole trap, we employ a

compressed-MOT (cMOT) stage. For 87Rb, the cloud is compressed by simultaneously detuning

farther from resonance with the trap light, and reducing the power of the repump light. Both

of these actions result in a reduction of the density-limiting radiation pressure from rescattered

photons by allowing atoms to spend more time in the dark F = 1 state. Our 87Rb cMOT stage

last 30 ms, with a trap light detuning of -40 MHz and a repump power that is 20% of its MOT

value. Empirically, we find that the best 40K cMOT parameters involve a detuning of -20 MHz

and reduction of the repump power to 20% of its MOT value, similar to what was found in [73].

Note that this is a detuning closer to resonance. We speculate that this may be beneficial due

to the fact that because 40K is already readily repumped to the dark F = 7/2 state, it benefits

more from the stiffer effective spring constant of the cMOT that detuning closer to resonance

provides, rather than a further reduction in scattering. Our 40K cMOT stage lasts 20 ms and

the magnetic gradient remains unchanged from that of the MOT.

2.4.3 Optical molasses

We significantly lower the temperature of 87Rb atoms by momentarily switching off the mag-

netic quadrupole field and allowing atoms time to be cooled in an optical molasses. We find

that a optical molasses cooling stage is also beneficial for 40K when measuring the number

and temperature after evaporative cooling, though we cannot measure a discernible change

immediately after the MOT. Our optical molasses cooling stage lasts 10 ms for both 87Rb and

40K, with the same powers used as in the cMOT, and trap detunings of -20 MHz and -15 MHz,

respectively.

2.4.4 Optical pumping

Atoms must have mF gF > 0 to be magnetically trapped. Optical pumping is used to collect

atoms in a single ground-state sublevel [74, 75]. For instance, by scattering light that is circularly

polarized along the local field direction, atoms increase their magnetic quantum number mF by

one during an average scattering event. Optical pumping is a quick process that requires only

200µs of our experimental cycle time.

We optically pump using light that is resonant with the F = 2→ F ′ = 2 transition in 87Rb,

and F = 9/2 → F ′ = 9/2 in 40K. This choice ensures that once atoms have been pumped to

the mF = F “stretched” state, they become transparent to the optical pumping light and do

not heat.
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The experimental cycle is very sensitive to the efficiency of the optical pumping stage. If

atoms are not well polarized in the stretched state, they are not as tightly magnetically trapped.

This leads to a reduced magnetic transport efficiency through the small diameter sections of

the differential pumping tube. Moreover, loose confinement from poor atomic polarization

leads to a much reduced evaporation efficiency due to the associated reduction in collision rate.

Practically speaking, an anomalous drop in atom number after evaporation can often be traced

to a misaligned or blocked optical pumping beam.

2.4.5 Laser cooling alignment

The MOT is aligned in a series of steps that seek to isolate the individual trapping effects

of beam power, alignment, magnetic gradient, and “shim” magnetic bias fields. The main

constraint is that the MOT must be aligned to the centre of the quadrupole magnetic field

so that the magnetic trapping stage is able to maintain the phase-space density of the MOT.

The first alignment step is to coarsely align the beams to the mechanical centre of the MOT

cell. The quadrupole centre is then identified by imaging the fluorescence of magneto-optically

trapped atoms on two orthogonally oriented cameras in a strong (50 G/cm) magnetic gradient.

Once identified, the shim bias coils are adjusted in order to align the fluorescence of trapped

atoms to the quadruple centre in a very weak (2 G/cm) gradient.

The MOT alignment procedure is inherently iterative as the magneto and optical effects can

never be fully decoupled. Optical alignment is fine-tuned by centering irises on the beams and

maximizing the fluorescence signal at the quadrupole trap centre with progressively smaller and

smaller iris apertures. The cancellation of stray magnetic fields can be fine-tuned by looking

at the expansion of the cloud in an optical molasses. The quadrupole field is turned off during

optical molasses, making this alignment step dependent only on beam powers and polarization

(both easily measured without atoms), and any remnant magnetic fields. The shim bias fields

are adjusted to optimize the isotropy and expansion time of the cloud in the light field. When

the magnetic field is properly cancelled, the fluorescence from 87Rb atoms can be seen for many

tens of seconds after shut-off of the magnetic gradient.

2.5 Magnetic trapping and transport

The field of a cylindrically symmetric quadrupole trap is B(r) = β/2x + β/2y − βz [34].

As trapped atoms move through the field, their magnetic moment follows the direction of B

adiabatically, such that the trapping potential is mF gFµB|B|.
Immediately after optically pumping the 87Rb and 40K atoms into the |2, 2〉 and |9/2, 9/2〉
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states, respectively, the MOT quadrupole field is switched on to 100 G/cm in less than 2 ms.

We transfer approximately 75% of the atoms without much evident heating. We immediately

begin transferring the atoms to the science chamber.

The magnetic transfer scheme in use was designed by Josefine Metzkes [76] and Michael

Yee [77]. Michael Yee also helped with initial assembly and characterization. It is based on the

design described in [78], relying on the smooth variation of current through three quadrupole

coil pairs at any one time in order to produce a moving quadrupole trap. The three currents

are determined by solving a set of three independent equations:

B (rpos) = 0 (2.3)

βz|rpos = 100 G/cm (2.4)

βx/βy|rpos = A0. (2.5)

The first equation makes sure that the cloud position rpos is at the trapping centre. The second

equation sets the magnetic trapping gradient. The third equation sets the aspect ratio A0.

For the horizontal transport section, a choice of A0 = 1.72 allows the aspect ratio to remain

constant throughout most of the transfer, with the exceptions occurring at the beginning of

transport when atoms are transferred out of the MOT cell, and at the end of horizontal transport

when atoms are transferred into the 6-way cube that joins the horizontal and vertical transport

nipples: see Figure 2.14. During the vertical transport section, atoms are transported along

the axial direction of the coils and so A0 = 1 due to symmetry.

The consequences of solving these three equations are that there are three independent

currents through three coil pairs in the horizontal transport section, and two independent

currents through four coils during the vertical section: two coils below the atoms that push,

and two coils above the atoms that pull, the atoms upwards. When atoms move through a coil

vertically, the coil has to switch from “pushing” to“pulling” and thus the current has to change

polarity. This requires bi-polar electronics. We find that the atoms are especially sensitive to

heating and loss at precisely the point where the current changes polarity. This is due to both

the difficulty in managing a low-noise bi-polar transition, and the close proximity of atoms to

the coils at precisely the same point, resulting in an increased amplitude of magnetic field noise

seen by the atoms.
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2.5.1 Transport hardware and electronics

Hardware

The coils used for magnetic transport and quadrupole evaporation were designed in-house and

constructed by Oswald GmbH, with the exception of the “push” coil, which was constructed

by Michael Yee [77]. The coils are attached to brass cooling mounts using thermal epoxy. The

brass mounts are cooled with 12◦C distilled water that is cycled in a closed loop through a

chiller (ThermoCube) that is cooled by the university chilled water system.

Electronics

The electronics used for current control were built primarily by Alan Stummer, and a thorough

description may be found on his website [79]. The transport system is powered by a single

30V/200A power supply (Delta SM 30-200). The current is feedback-controlled by comparing a

reference voltage with the voltage from a Hall probe (FW Bell CLN-50) measuring the current.

The feedback voltage is fed into the gate of a high power MOSFET (APT10M07JVFR) which

is able to conduct currents up to 225A. The voltage of the power supply is set remotely and

chosen to minimize the MOSFET drain-source voltage. See Figure 2.13.

While the uni-polar current control is replicated for all horizontal coil pairs, and the bi-polar

current control is replicated for many of the vertical coils, the current control for coils 15 and 16

- the final two vertical coils that provide the quadrupole trap in which evaporation takes place

- is non-obvious and so deserves explanation. The constraints driving the control design are

that 1) coil 15 is bi-polar, 2) coil 16 is uni-polar, 3) we wish to be able to independently control

the currents through both coils (though with the simplifying constraint that the current in coil

15 never exceeds that of coil 16), and 4) coils 15 and 16 are able to be run in series. The last

condition ensures that current noise results only in common-mode magnetic field noise and not

a shift of the trap position. This is especially important for a plugged quadrupole trap, where

the trap position must be stable to within 1µm. The current through coils 15 (Ic15) and 16

(Ic16) are determined by choosing the currents through the channels I15, I16, and I15/16, and

the switch I15sw:

Ic15 =





I15; (I15sw = open, I15/16 = short circuit, I16 = open) : Ic15 < 0

I16 − I15/16; (I15 = open, I15sw = short circuit) : Ic15 > 0

Ic16 = I16.
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Coil	  16	  

Coil	  15	  

Figure 2.12: Magnetic transport coils Image courtesy of Dave McKay [1].

Notable modifications

There are a few notable modifications to the design described in [79]. An additional coil

pair has been added to the end of the horizontal transport section due to the slightly longer

(5 mm) differential pumping tube section of the most recent version of the glass MOT cell. The

current through this “H-V transfer” coil is controlled with the same servo electronics as the

first horizontal coil pair, with current directed to one or the other coil pair using a double-throw

relay. We are able to do this because these two specific coil pairs are never on at the same time.

We have also implemented a fast-off for coils 15 and 16 that form the quadrupole field. A

fast-off is required for precise time-of-flight measurements. For coils of inductance L with a

voltage V over them, the current I changes at the rate

dI

dt
= V/L. (2.6)

For our quadrupole coils and operating voltage, it can take between 5 and 10 ms for the current

30



CHAPTER 2. APPARATUS 2.5. Magnetic trapping and transport

Figure 2.13: Quadrupole coil circuit

to shut off. This is comparable with time-of-flight times, and therefore not quick enough for

our purposes. By adding an additional high-power MOSFET with a 56V TVS across it, the

current is able to be shut-off in less than 100µs.

Relays have also been added in order to hard shut off I15 and I15/16 when the coils are being

run in series.

2.5.2 Trouble-shooting and optimizing transport

The magnetic transport system operates very reliably once optimized and is able to transport

20% of the atoms collected in the MOT to the science chamber. However, getting the transport

system optimized in the first place is no small feat. Here we detail some of the techniques and

procedures that have been helpful.

The first thing to check when trouble-shooting the transport system is that the measured

currents correspond to the set currents. The currents are plotted in Figure 2.14. While the

absolute current may be checked with a current probe, many standard probes have bandwidths

limited to 10 kHz and so are not able to detect higher frequency noise that atoms are sensitive

to. In order to detect this noise, the voltage over the coils, as well as the gate voltage on the

high-power MOSFETs, should be checked. Much of this noise can be avoided with proper choice

of the capacitance and resistance of the PID feedback circuit. We have also noticed that voltage

noise on the current supply leads to atom loss. This noise can be suppressed by dynamically

choosing the voltage to match the overall power consumption of the transport system.
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When testing the transport system with atoms, different sections of the transport system

can be isolated by transporting the atoms some distance, and then back to the MOT cell. If a

trouble section is identified, possible remedies such as changing the velocity, cloud aspect ratio,

current amplitude, translating the point at which the current turns on and off, identifying

and suppressing electrical noise, etc. can be attempted. In particular, the final number and

temperature of the atoms transported to the science chamber is very sensitive to the rate and

acceleration with which the cloud is transported. Clearly, we would like the transport to be as

smooth as possible, with minimal jerk j = d3x(t)/dt3. Mathematically, then, we are searching

for a solution for the distance as a function of time x(t) that minimizes the magnitude of the

jerk between the start time t = 0, and the end time t = t′. Thus, we want to minimize:

∫ t′

0

(
d3x

dt3

)2

dt. (2.7)

For the appropriate initial and final conditions (ẋ(0) = ẍ(0) = 0 and ẋ(t′) = ẍ(t′) = 0), the

solution that minimizes Equation 2.7 is:

x(t) = xi + (xf − xi)
(

10

(
t

t′

)3

− 15

(
t

t′

)4

+ 6

(
t

t′

)5
)

(2.8)

where xi is the starting point and xf is the final point. In the experiment, atoms are horizontally

transported 365 mm in 3.3 s using a minimum jerk distance versus time function that includes

a constant velocity section - which, of course, is “jerk-free” - during the final few millimetres

when the cloud aspect ratio is changing rapidly. Atoms are vertically transported 174 mm

using a piecewise linear distance versus time function. This function is helpful in navigating

through the sensitive polarity-switching regions by slowing down the transport every time the

atoms pass through a coil. While in principle a piecewise linear curve should contain regions

with infinite jerk, in practice the coils filter and smooth this motion out. We find that the

empirically optimized piecewise linear curve far outperforms any other distance versus time

function during the vertical transport section, minimum jerk or otherwise. See Figure 2.15 for

the combined horizontal + vertical distance versus time function.

A final note about transport system alignment. The magnetic transport is not mechanically

constrained by, or attached to, the vacuum system. It is aligned first by eye, then by imaging

the in situ cloud position using a probe beam propagating through either the horizontal or

vertical pumping tube. Final alignment is determined by maximizing the number of atoms that

are transported to the science chamber.
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2.6 RF evaporative cooling

In a successful evaporative cooling, temperature decreases with atom number as T ∝ Nα, where

α characterizes the evaporation efficiency. For instance, for α = 1, the temperature is reduced

by a factor of ten for each factor of ten reduction in atom number. Such a scaling would mean

that at least 108 atoms are needed after laser cooling (at approximately 100µK), if one would

like to have 105 atoms left at quantum degenerate temperatures (on the order of 100 nK). In

this section, Section 2.7 and Section 2.8, we discuss evaporatively cooling in a quadrupole,

plugged quadrupole, and crossed-dipole trap, respectively.

As the ensemble cools, cloud size decreases as T p in a D-dimensional trapping potential

whose strength is proportional rD/p, where r is the distance from the trap minimum [65].

This could increase the density and thus the collision rate γ = nσvT , however atom number

decreases during evaporation, and vT decreases at lower temperature. These three combined

effects produce an increasing collision rate for a sufficiently efficient evaporation, such that

α(p − 1/2) > 1 [31]. This runaway evaporation condition is typically a prerequisite for a

successful quantum gas experiment. In that case, it is the initial stages of evaporative cooling

that are the slowest, motivating continued research on laser cooling techniques to achieve high

density at sub-Doppler temperatures.

Buried within the efficiency α are the details of the forced evaporation trajectory, losses

due to background collisions, efficiency of energy removal, and the elastic collision rate. At the

lowest temperatures, evaporative cooling ceases to be effective either when spatial selection no

longer selects the highest energy atoms, or when heat transport is slow. Both of these issues are

encountered in optical lattices, for which alternative cooling approaches have been proposed.

[80, 81, 82]

The highest-energy atoms will reach the largest magnetic fields fields during their trajectory,

and those that can roll over the maximum potential leave the trap. Evaporation is forced with

a RF field that couples trapped gFmF > 0 states to untrapped gFmF ′ < 0 states.

Antenna and sources

An RF magnetic field is generated from a direct digital synthesizer (DDS) constructed by Alan

Stummer [79]. The field is transmitted to the atoms using thin wire (30 AWG tinned Cu) that

forms 3/4 of a 4 mm diameter loop. It is important that the antenna wire have line-of-sight

to the atoms through the sapphire imaging window. If not, the Rabi rate all but vanishes

for both RF (tens of MHz) and µ-wave (few GHz) frequencies. It is also important that the

antenna be as flat as possible in order for the imaging objective to be positioned a focal distance

(2.43 mm) away from the atoms. The antenna should also obscure as little of the window as
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possible. Figure 2.16 shows a picture of the antenna properly positioned over the sapphire

imaging window.

We use the same antenna to transmit RF and µ-wave frequencies to the atoms. Because RF

and µ-wave fields are not used simultaneously in our experiment, we are able to connect one or

the other to the antenna using a transfer switch (Mini-circuits MTS-18-12B+). We stub-tune

the antenna for 6.8 GHz ex situ by optimizing the field coupled to a nearby pick-up coil.

Two-stage evaporation

We force evaporation on a cloud of approximately 5× 108 87Rb atoms at a few hundred µK in the

science chamber. A cloud of 5× 107 40K atoms is sympathetically cooled by 87Rb. Sympathetic

cooling of 40K by 87Rb is possible because the Landé g-factor of 87Rb in |2, 2〉 is larger than

that of 40K in |9/2, 9/2〉: g2 = 1/2 > g9/2 = 2/9. Consequently, 87Rb atoms in the quadrupole

trap that are resonant with a given RF frequency will be a factor of g2/g9/2 = 9/4 hotter than

the 40K atoms resonant with the same field. Assuming we have thermal equilibrium between

the two species, this results in a method to selectively remove 87Rb without affecting 40K.

We evaporatively cool in two locations in the science chamber. The first stage of cooling

occurs 7.4 mm away from the imaging window in order to prevent atoms in the large, hot

cloud from being lost due to contact with a nearby surface. In a 230 G/cm quadrupole field

we apply a 45 MHz Rf knife and slowly sweep the frequency to 12 MHz in 25 s. Once atoms

have been cooled below 140µK, they are transported to the imaging position 800µm away from

the surface of the imaging window. RF evaporation is finished in a quadrupole trap that is

“plugged” with a blue-detuned optical beam. Figure 2.17 shows the atoms in different stages

of transport between the two evaporation positions.

2.7 Plugged quadrupole trap

2.7.1 Majorana loss

Evaporation in a quadrupole magnetic field occurs efficiently compared with a Ioffe-Pritchard

[83] or TOP [84] trap owing to the linear trapping potential. However, at the center of a

quadrupole trap, the magnetic field vanishes and atoms are no longer able to adiabatically follow

the field direction, becoming lost from the trap. This Majorana loss is extremely detrimental

to evaporative cooling as it disproportionately affects the atoms that spend most of their time

near the trap centre, i.e. the coldest atoms. In the following, we outline a simple model for

Majorana loss first articulated in [84], and then extend it to account for depolarization, which

is important for large F atoms.

35



CHAPTER 2. APPARATUS 2.7. Plugged quadrupole trap

Figure 2.16: RF and µwave antenna Left: Antenna positioned over imaging window. The
brass quadrupole coil cooling mounts can also be seen. Right: Schematic detailing how RF and
µ-wave frequencies are coupled into the antenna. The amplitude of the RF signal is controlled
with a voltage-variable attenuator (VVA) and switched on and off with a Mini-Circuits ZASWA-
2-50DR switch. The RF signal is then amplified by a 30W amplifier (Mini-Circuits LZY-Z2).
The µ-wave signal is switched with a Hittite HMC232C8 switch and amplified by a 3W amplifier
(Mini-Circuits ZVE-3W-83). The stub is made from co-axial cable and an SMA tee connector.

36



CHAPTER 2. APPARATUS 2.7. Plugged quadrupole trap
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Imaging	  window	  

Figure 2.17: Transporting atoms to imaging location Left: In situ image of atoms
at 140µK at the first RF evaporation location. Middle: Atoms mid-way during transport
between evaporation locations. Right: Atoms at 100µK at the imaging, and second evaporation,
location.

Assume that we have an atom travelling withe some velocity v near the centre of a quadrupole

magnetic trap with a distance of closest approach b0. The atom is able to adiabatically follow

the change in magnetic field direction so long as the rate of change v/b0 is less than the Larmor

frequency ωF = µB′b0/h̄. We can write this condition as an inequality:

µB′b20
h̄v

> 1 (2.9)

We can define a loss rate per atom ΓM as equal to the flux of particles lost through the ellipsoid

b20:

ΓM = nb20v/N (2.10)

where n = N/l3 is the density and l is the extent of the cloud in the quadrupole trap. We can

make use of both Equation 2.9, as well as the virial theorem which connects the kinetic energy

mv2 with the potential energy µB′l, to give:

ΓM =
h̄

ml2
. (2.11)

Then, using the equipartition theorem kBT = µB′l, we can show ΓM to be temperature depen-
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Figure 2.18: Number and temperature dependance on plug beam power A 87Rb and
40K cloud has been RF evaporatively cooled to 10µK in a plugged quadruple trap, corresponding
to a final RF frequency of 0.8 MHz. Left) The 87Rb and 40K atom number decrease in a similar
fashion for plug powers less than 275 mW. The atoms number at full plug beam power Nmax

is 3 × 106 for 87Rb and 3 × 105 for 40K. Right) The temperature increases with decreasing
plug power. However, the temperature increase is more severe for 40K due to its larger angular
momentum F .

dent:

ΓM =
h̄

m

(
µB′

KBT

)2

. (2.12)

The argument thus far has assumed that when atoms pass too close to the quadrupole trap

centre at too great a velocity, they are immediately lost from the trap. In fact, they are first

de-polarized, which amounts to the same thing as loss for F = 1 atoms. However, for atoms like

40K with large F , de-polarization can be just as pernicious as it happens even more quickly,

resulting not only in loss but weaker confinement and poor thermalization as well. We can

define a Majorana de-polarization rate ΓMP from the stretched state |mF | = F by modifying

the inequality in Equation 2.9, replacing the 1 with lnπ
√
F [85]. Repeating the same arguments

used to define ΓM , we find:

ΓMP =
h̄

m

(
µB′

KBT

)2

lnπ
√
F . (2.13)

This is the same expression as for ΓM but for the inclusion of the logarithmic factor. Equa-

tion 2.13 states that de-polarization happens more quickly for atoms with larger total angular

momentum F . This can be heuristically understood for gFF = 1 atoms as being due to the
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increased number of partially polarized states that atoms may become de-polarized through.

Consequently, we would expect 40K in |9/2, 9/2〉 to de-polarize 30% more quickly than 87Rb

in |2, 2〉. This is corroborated experimentally through the observation that 40K requires more

plug beam power to to be evaporatively cooled to low temperatures than does 87Rb.

2.7.2 Plugged-quadrupole evaporation

Our plug beam uses approximately 300 mW of 760 nm light that is focused to 30µm. The plug

beam propagates along the radial direction of the 150 G/cm quadrupole field. We use a lower

magnetic gradient, compared with the first stage of evaporation, in order to protect against

inelastic 3-body loss during the final stages of evaporation. A lower gradient also effectively

increases the repulsive barrier from the plug beam at the magnetic trap centre. Furthermore, the

lower gradient results in an adiabatic cooling of the cloud from 140µK to 100µK after transfer

between the two evaporation locations. Consequently, this second stage of Rf evaporation begins

with an Rf knife at 8 MHz, sweeping exponentially to 0.8 MHz in 5 s, resulting in a 7µK cloud.

2.7.3 Plug beam alignment

It is helpful for alignment to be able to couple resonant light along the plug beam path. It

is also helpful to have a camera imaging along an axis < 30◦ from the plug beam propagation

direction. The resonant light is useful for coarse alignment, positioned to best heat atoms of

the quadrupole trap. The initial alignment stage can be reduced to a one-dimensional problem

by positioning the beam far below the trap centre, keeping it on while the atoms are being

magnetically transferred upwards.

Once the beam has been aligned by optimizing the loss signal with shorter and less intense

light pulses, the in situ position of the trapped cloud is imaged and identified: see Figure 2.19a..

The resonant light is then used to excite fluorescence: see Figure 2.19b. The beam is aligned

so that its image coincides with the identified in situ position.

At this point, the wavelength used for the plugged quadrupole trap is coupled along the

beam path. If the cloud is evaporated below 2ṀHz, corresponding to an energy less than the

dipole potential of the plug beam, an in situ absorption image taken on the < 30◦ positioned

camera should be able to observe a “hole” in the cloud: see Figure 2.19c. The plug beam can

be aligned so that the hole is centred, or slightly (10µm) above, the quadrupole trap centre for

reasons to do with the potential shape articulated in Section 3.5.1.

The final plug alignment is done by maximizing the number and optical density while

simultaneously minimizing the width of the cloud after some fixed time-of-flight. We find that

we are sensitive to mis-alignments of a fewµm.
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Figure 2.19: Plug beam alignment steps a) The position of the cloud is identified in the
quadrupole trap by taking an in situ image. b) The fluorescence from a resonant light along
the plug beam path is overlapped with the in situ position. c) An in situ image of the cloud in
the plugged quadrupole is taken. The “hole” in the cloud is caused by the plug beam.

2.8 Optical trap

In order to produce large quantum gases and load them efficiently into the optical lattice, we

find that it is best to finish evaporation in a crossed optical dipole trap. Cold clouds of 2× 106

87Rb and 2×105 40K atoms are loaded from the plugged quadruple trap into the crossed dipole

trap using the procedure illustrated in Figure 2.20 and described below. The crossed-dipole

trap is created from two elliptically-shaped beams with wavelength 1053.6 nm and horizontal

and vertical waists (wh1, wv1) = (161µm, 38µm) and (wh2, wv2) = (230µm, 58µm). We use

elliptical beams in order to provide tight confinement against gravity. Because we are ultimately

interested in 2D lattice physics, loading from an elliptical crossed dipole trap into a 3D lattice

has the additional benefit of minimizing the number of atoms that we must “throw away” when

preparing a single lattice plane of atoms. The dipole light is generated from a 100mW master

laser (NP photonics “The Rock”) that seeds a 40 W fiber amplifier (NuFern).

2.8.1 Transfer from plugged-quadrupole to crossed dipole trap

Atoms are transferred from the plugged quadrupole trap to the crossed dipole in a series of

intermediate step illustrated in Figure 2.20. We ramp on a single dipole beam, dipole 1, to

4.5 W during the last 3 s of plugged quadrupole evaporation in order to evaporate atoms into the

dipole potential minimum. The quadrupole trap is then slowly ramped down from 150 G/cm

to 12 G/cm in 500 ms, a gradient that is slightly below the levitation gradient for 87Rb in |2, 2〉.
Simultaneously, the magnetic shim coils ramp to a value that keeps the plugged-quadrupole

minimum stationary. The plug beam is kept on during this process in order to protect against

Majorana loss and heating. Only after the quadrupole gradient has been reduced to 12 G/cm
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Figure 2.20: Evaporation and transfer: Plots above show a cross-section of the potential
seen by the atoms along the vertical direction.
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is the second dipole beam, dipole 2, ramped on. We have found that loading directly into a

crossed dipole trap from the plugged-quadrupole trap results in a significant amount of 3-body

loss due to too-tight confinement.

2.8.2 Magnetic field zeroing

In order to perform efficient sub-Doppler cooling in the science chamber and select a single plane

of a 3D lattice using a magnetic gradient, we need to be able to cancel any stray magnetic fields

using the magnetic shim coils.

The magnetic field is zeroed by varying the currents in each shim coil so that the difference

between the resonant µ-wave transition frequency and the bare hyperfine splitting ∆EHF/h̄ (see

Section A.1) is minimized. After iterating through the 3 orthogonal shim coils, we determine

that we have zeroed the magnetic field to better than 5 mG.

2.8.3 Crossed dipole trap alignment

The alignment of the crossed dipole trap is sensitive to alignment errors of a few microns, a

distance equal to a fraction of the plug and dipole beam waists. Here we present the series of

alignment steps used to efficiently align the crossed dipole trap in our system.

In the first alignment step, a dipole beam is turned on for the last few seconds of RF

evaporation in the plugged quadrupole trap. The beam is also allowed to remain on during

time-of-flight, after the plugged quadrupole trap has been turned off, and even through the

absorption image. The motivation behind this method is that even if atoms do not find their

way into the dipole beam during evaporation, they might after release and expansion. This

broadens the target radius from 100µm, to 1 mm. The first alignment signal will be that time-

of-flight cloud has been altered by the presence of the dipole beam - the spherical symmetry

interrupted by perturbation looking like a thin pencil: see Figure 2.21. Alignment is optimized

by maximizing the number of atoms trapped in this “pencil” trap. This alignment step is done

individually for both beams.

We find that the best loading into the crossed dipole trap is accomplished when we first

load into dipole 1, a beam almost perfectly co-linear with the plug beam. Loading into dipole 1

- versus dipole 2, or dipole 1 plus dipole 2 - seems to help due to its better spatial mode overlap

with the plugged quadrupole trap. Because of this, the next alignment step involves following

the loading procedure illustrated in Figure 2.20 while keeping dipole 2 off, and simultaneously

maximizing the number and density of atoms in the single beam trap. Because of the elliptical

dipole beam profile, we are especially sensitive to changes in the vertical alignment.

Dipole 2 can now be aligned by first maximizing the number and density of atoms transferred
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Figure 2.21: Dipole Alignment The image on the left shows a dipole beam having been
aligned by turning it on during the last few seconds of RF evaporation, and then having it
remain on during time of flight. One can notice the deformation of the cloud caused by the
beam. The image on the right shows a BEC that has been allowed to fall out the bottom of the
crossed dipole trap, resulting in a coherent beam of atoms. The crossed dipole trap alignment
can be fine-tuned by shortening this atomic beam.

to the crossed dipole trap, again using the transfer procedure illustrated in Figure 2.20. Because

a well-aligned crossed dipole trap corresponds to the deepest possible trap depth at a given

optical power, fine alignment of dipole 2 can be done by maximizing the number of atoms

present after crossed dipole evaporation.

A final check on the alignment of the dipole beams is done by creating an atom laser. This

done by ramping down the beam powers in 5 ms after creation of a BEC in a crossed dipole

trap. The quantity to optimize in this procedure is the length - or rather, shortness - of the

atom laser after some fixed time of flight: see Figure 2.21. A well-aligned crossed dipole trap

will hold on to the atoms later until later times in the power ramp, producing a coherent beam

of atoms with the shortest possible length.

2.9 From cold to ultracold

In this chapter we have described the apparatus and experimental procedures responsible for

cooling a gas of 87Rb and 40K at room temperature down to a few µK. Though cold, this

still corresponds only to a phase space density nλ3
dB of roughly 0.01. At phase-space densities

greater than 1, the gas will start to behave in fundamentally different ways. In this quantum

regime, atoms are no longer able to be described by classical Maxwell-Boltzmann statistics

because they are sensitive to the underlying discreteness of available states. The spin-statistics

theorem [41] governs how composite boson and fermion atoms are able to occupy these states,

with observable consequences for the density and momentum distributions.

In the next chapter, we develop a thermodynamic description of the transition from a
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classical to quantum gas. We also describe the experimental procedures used to cool a gas to

degeneracy in a magnetic and optical trap. Finally, we explain the measurement procedure

used to identify the transition between a gas described by classical versus quantum statistics.
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Chapter 3

Quantum Degeneracy

3.1 Thermodynamics of non-interacting quantum particles

A gas of cold atoms is an isolated system: atoms are held in a conservative optical or magnetic

trap in a vacuum, with energy E, volume V , and atom number N fixed. In statistical mechanics,

such a system is described by the micro canonical ensemble. However, it is convenient to make

calculations using the grand canonical ensemble - an ensemble which allows for the exchange of

E and N with a reservoir at temperature T . This is valid in the limit N → ∞, where energy

and number fluctuations become vanishingly small [86].

In the grand canonical ensemble, an ideal gas of ni non-identical particles in state i with

energies Ei, the partition function is defined as:

Z =

∞∏

i

Trie
−β(Ei−µ)n̂i =

∞∏

i

∑

n

(
e−β(Ei−µ)

)n
, (3.1)

where β = 1/kBT and the chemical potential µ is the energy required to add an atom to the

system. The partition function is a Boltzmann weighted sum of all possible micro-states in the

system. Because of this, it may be used to determine all thermodynamic quantities via the

grand canonical potential:

Ω(T, V, µ) = − 1

β
lnZ. (3.2)

As we have seen in Section 1.2, any integer number of bosons may occupy state i, so the

partition function for bosons is:

ZB =

∞∏

i

∞∑

n

(
e−β(Ei−µ)

)n
=

∞∏

i

1

1− e−β(Ei−µ)
. (3.3)
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Fermions, on the other hand, may never occupy the same state as another Fermion, and so:

ZF =

∞∏

i

∑

n=0,1

(
e−β(Ei−µ)

)n
=

∞∏

i

(
1 + e−β(Ei−µ)

)
. (3.4)

Using ZB and ZF, the grand canonical potential is then:

Ω(T, V, µ) = ± 1

β

∑(
1∓ eβ(Ei−µ)

)
, (3.5)

where the upper sign refers to bosons, and the lower sign to fermions. Knowing the grand

canonical potential allows us to calculate the the mean total atom number:

〈N〉 = −∂Ω

∂µ
=
∑

i

〈ni〉. (3.6)

The argument in the sum is the average occupancy of site i:

〈ni〉 = f(Ei) =
1

eβ(Ei−µ) ∓ 1
, (3.7)

with the upper sign again referring to bosons, and the lower sign to fermions. f(Ei) is the

famous Bose-Einstein and Fermi-Dirac distribution function.

3.2 TF for trapped Fermi gases

We may use the Fermi-Dirac distribution function to calculate the temperature at which the

quantum statistics of the atoms become important. This transition temperature TF is called the

Fermi temperature. Recalling the heuristic that a quantum gas is one in which the deBroglie

wavelengths of neighbouring atoms overlap, it becomes apparent that TF must be depend on

density or number. In principle, we can use Equation 3.6 to determine the relationship between

TF and N . However, this becomes cumbersome for a large number of particles and so it is easier

to take the continuum limit of this sum, integrating with respect to the energy and including

the density of states factor g(E) to properly count the number a states within the energy range

E to E + dE. In a harmonic trap, the density of states is:

g(E) =
E2

2 (h̄ω̄)3 . (3.8)
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where ω̄3 = ωxωyωz. The number of fermions in the trap is then:

N =

∫ ∞

0
dE

g(E)

eβ(E−µ) + 1
= −

(
kBT

h̄ω̄

)3

Li3

(
−eβµ

)
(3.9)

where Lis(z) =
∑∞

k=1
zk

ks is the polylogarithm function. A look at the T → 0 behaviour of

Equation 3.9 provides us with a definition for TF:

N =
T→0

∫ µ

0
dE g(E) =

1

6

( µ

h̄ω̄

)3
. (3.10)

That is, at zero temperature, atoms will fill all states up to the chemical potential µ. The T = 0

chemical potential defines the Fermi energy EF , and so the Fermi temperature is:

TF =
h̄ω̄

kB
(6N)1/3 . (3.11)

For 105 atoms in a ω̄ = 2π × 100 Hz trap, TF ≈ 400 nK.

3.3 Tc for trapped Bose gases

We may determine the transition temperature for a harmonically trapped gas of bosons, Tc,

in a similar way as we did TF. However, in making the continuum approximation, let us also

make the approximation that the ground state has E = 0 rather than E = h̄/2(ωx + ωy + ωz).

We can then define Tc as the temperature at which there is a macroscopic occupation of this

E = 0 ground state. The number of atoms condensed in this ground state is N0 = N − Nex

where N is the total number of atoms in the system and Nex is the number of atoms in excited

states, defined as:

Nex =

∫ ∞

0
dE

g(E)

eβ(Ei−µ) − 1
=

(
kBT

h̄ω̄

)3

Li3

(
eβµ
)
. (3.12)

The critical temperature is determined by setting N0 = 0 and µ = 0. That is,

Tc =
h̄ω̄

kB

(
N

Li3 (1)

)1/3

≈ h̄ω̄

kB
0.94N1/3. (3.13)

For 105 atoms in a ω̄ = 2π × 100 Hz trap, Tc ≈ 200 nK. Below Tc, the number of condensed

atoms grows. We can see this by inserting the implicit expression for N in Equation 3.13 into
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Equation 3.12:

N0(T ) = N

(
1−

(
T

Tc

)3
)
. (3.14)

3.4 Density distribution

In order to determine the density distribution of a trapped quantum gas it is helpful to work

with a semi-classical phase space distribution:

f(r,p) =
1

eβ(p2/2m+V (r)−µ) ∓ 1
. (3.15)

This distribution is semi-classical because although the form of the distribution function f(r,p)

is derived from quantum statistics, the energy is a continuous function of position r and mo-

mentum p. This approximation is valid so long as we are not worried about variations in r and

p close to the uncertainty limit. Equivalently, this is valid for large atom numbers where the gas

may be treated locally as if it was a bulk gas. This constitutes the local density approximation.

3.4.1 Density of a trapped Fermi cloud

In order to calculate the density, we need to integrate f(r,p) over the momentum, normalizing

by the average phase space volume (2πh̄)3 occupied by a single quantum state. For fermions,

the density is:

nF(r) =
1

(2πh̄)3

∫
dpfF(r,p) = − 1

λ3
dB

Li3/2

(
−eβ(µ−V (r))

)
. (3.16)

It is interesting to look at the high and low temperature results for nF (r). When T → ∞, we

can use the fact that Lis(z)
z�1−→ z, and so:

nF(r)|T→∞ = nT(r) =
N

π3/2σxσyσz
e−x

2/2σ2
x−y2/2σ2

y−z2/2σ2
z (3.17)

where σi =
√
kBT/mω2

i and we have taken the small factor βµ to be negligible. We can see

that fermions have a Gaussian density distribution at high temperature, exactly what one would

calculate for an ideal gas. On the other hand, if we look at T → 0 behaviour, and make use of

the limit Lis(z)
z→∞−→ lns (z)/Γ(s+ 1), where Γ(s) is the Gamma function, then:

nF(r)|T→0 =
8

π2

N

RFxRFyRFz
Re



(

1− x2

R2
Fx

− y2

R2
Fy

− z2

R2
Fz

)3/2

 . (3.18)
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Here, we have used the result from Section 3.2 that at zero temperature, µ = EF = h̄ω̄ (6N)1/3.

Equation 3.18 is written in terms of the Thomas-Fermi radius RFi ≡
√

2EF/mω2
i , defined as

the farthest in situ extent of a Fermi cloud at zero temperature. For 105 40K atoms in a

ω̄ = 2π × 100 Hz trap, RF ≈ 20µm.

3.4.2 Density of a trapped Bose cloud

We may follow the same approach as in Section 3.4.1 in order to find the density of excited

bosons in a harmonic trap:

nex(r) =
1

(2πh̄)3

∫
dp fB(r,p) =

1

λ3
dB

Li3/2

(
eβ(µ−V (r))

)
. (3.19)

In the T → ∞ limit, nex(r) = n(r) reduces to the same Gaussian distribution as Equation

3.17. We also know from Equation 3.14 that nex(r) = 0 in the T → 0 limit since all atoms

will be in the condensed state. However, properly determining the density distribution of the

condensed atoms n0(r) requires that we include the effect of interactions. We can do this using

the Gross-Pitaevski (G-P) equation [33]:

− h̄2

2m
∇2ψ(r) + V (r)ψ(r) + U0|ψ(r)|2ψ(r) = µψ(r). (3.20)

The G-P equation describes the time evolution of the order parameter ψ(r) =
√
n0(r)e−iµth̄

under the effects of an external potential V (r) and the mean-field contact interaction U0 =

4πh̄2a/m from Section 1.2. The equation is valid in the limit where the scattering length a is

much less than the inter-particle spacing. When the number of atoms is large and interactions

are repulsive, the kinetic energy term can be ignored. This is the Thomas-Fermi approximation,

as applied to the G-P equation. Using this approximation, it is easy to solve for the density

n0(r) = |ψ(r)|2:

n0(r) =
µ− m

2

(
ω2
xx

2 − ω2
yy

2 − ω2
zz

2
)

U0
. (3.21)

We can see that n0(r) has an inverted parabolic shape, different from nF(r)|T→0. We may use

Equation 3.21 along with the normalization condition N =
∫
drn0(r) to solve for the chemical

potential:

µ =
h̄ω̄

2

(
Na

σ

)2/5

(3.22)
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where σ =
√
h̄/mω̄ is the ground state harmonic oscillator length. In analogy with the fermionic

Thomas-Fermi radius RFi , we may define the bosonic Thomas-Fermi radius:

RBi =

√
2µ

mω2
i

= σ

(
15Na

σ

)1/5

. (3.23)

For 105 87Rb atoms in a ω̄ = 2π × 100 Hz trap, RB ≈ 6µm. This is more than a factor of 3

smaller than the RF calculated for an equivalent number of 40K fermions at zero temperature.

3.5 Evaporation to quantum degeneracy

In our experiment, we bring atoms to quantum degeneracy by evaporative cooling. This is done,

successively, in a magnetic and optical trap, as described in Section 2.6 and Section 2.8. In

this section, we show the onset of quantum behaviour for a gas of 87Rb in a plugged quadrupole

trap, and for both 87Rb and 40K in a crossed dipole trap.

3.5.1 A quantum gas in a plugged quadrupole trap

The first BEC of Na atoms was created in a plugged magnetic quadrupole trap [87]. It was

observed that a trap that combined the linear potential of a quadrupole field with a repulsive

optical potential offered both a large volume trap that allowed for efficient evaporative cooling,

and protection against Majorana loss and heating. Here we describe the plugged quadrupole

trap potential and demonstrate the evaporative cooling of 87Rb to degeneracy in it, noting that

40K may be sympathetically cooled simultaneously.

Our plugged quadrupole trap is a combination of a magnetic, optical, and gravitational

potential:

VPQ(r) = Vmag(r) + Vdip(r) + Vgrav(r) (3.24)

where Vmag(r) = µBgFmF|B(r)|, B(r) = β/2x + β/2y − βz is the quadrupole field with β

the magnetic gradient in the vertical z direction. Vdip(r) is defined in Equation A.10, and

Vgrav(r) = mgz is the gravitation potential. If we choose the plug beam to travel along the y

direction and through the centre of the quadrupole field, as depicted in Figure 3.1, then we

may define the effective harmonic trapping frequencies of VPQ(r) [87]:

ω2
PQy =

µBgFmFβ

2mx0
, ω2

PQz = 3ω2
PQy, ω2

PQx = ω2
PQy

(
4x2

0/w
2
0 − 1

)
. (3.25)

The oscillation frequencies are written in terms of the plug beam waist w0, as well as x0,
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Figure 3.1: Plugged quadrupole trap potential Left, a cartoon illustration of the hard-
ware ingredients that constitute our plugged quadrupole trap: a blue-detuned beam the prop-
agates horizontally through the centre of a magnetic quadrupole field formed from two sets of
coils. The plot on the top right shows a calculation of VPQ(r) when the plug beam is exactly
aligned to the centre of the magnetic field. Notice the two minima that are produced. We may
modify the trap so as to produce only one potential minimum by slightly mis-aligning the plug
beam. The plot on the bottom right shows VPQ(r) when the plug beam is positioned 12µm
above, and 12µm in the positive x direction of the magnetic field centre,

the distance of the plugged quadrupole trap minima from the magnetic field centre. x0 is

a solution to the equation ∂VPQ(r)/∂r|x0 = 0. For our chosen parameters (a plug beam with

300mW of 760nm light focused to w0 = 30µm combined with a β=150G/cm magnetic gradient),

x0 ≈ 40µm, and so {ωPQy, ωPQz, ωPQx} = 2π×{175, 302, 432}Hz.

We can see from Figure 3.1 that a plug beam aligned to the centre of the magnetic field

produces a trap with two minima. This is undesirable as it splits the cloud in two when the

gas becomes as cold, or colder than, the plug height ≈ Vdip(0)/kB. This makes the production

of a BEC more difficult, as well making the subsequent loading of atoms into the crossed

dipole trap less efficient. To circumvent these issues, we slightly mis-align the plug beam by a

distance roughly equal to w0/3. This destroys the symmetry, resulting in slightly modified trap

frequencies ωPQ from those defined in Equation 3.25 [88], but only one potential minimum. We

have found that it is best to align the plug beam equal parts above and to one horizontal side

of the magnetic trap zero. Doing so results in larger BECs, and more efficient loading into the

crossed dipole trap. Loading into the crossed dipole trap involves ramping down the magnetic

field, gently “dropping” the cloud into the optical potential formed by elliptical beams while

keeping the plug beam on. Aligning the plug beam above the trap centre allows for better mode

matching between traps.
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Figure 3.2: 87Rb Evaporation efficiency A comparison of the 87Rb evaporation efficiency
with and without the plug beam on. The parameter α is defined implicitly through the pro-
portionality T ∝ Nα, and discussed in Section 2.6.

Figure 3.2 shows the evaporation efficiency of 87Rb in a plugged and un-plugged quadrupole

trap. We can see the dramatic effect that the plug beam has on the ability to cool a large

number of atoms below 1µK. Using the definition for Tc in Equation 3.13 alongside the derived

oscillation frequencies ωPQ, we would predict that Tc = 10.78(N)1/3nK, equal to 500nK for 105

atoms. This is commensurate with what we observe. We note that in a plugged quadrupole trap,

the trap bottom is positioned at non-zero magnetic field. This means that the end frequency

of the RF sweep is very sensitive to plug beam alignment.

3.5.2 A quantum gas in a crossed dipole trap

In order to sympathetically cool a large cloud of 40K, it is useful to perform evaporation in an

crossed dipole trap. Optical evaporation can be preferable to magnetic evaporation for a number

of reasons: the absence of current through a large inductance coil means that the potential may

be changed quickly without residual eddy current potentials; the possibility of loose confinement

in optical traps results in lower 3-body loss rates; optical trapping allows atoms to be transferred

into their lowest hyperfine ground states, mitigating 2-body losses; Feshbach resonances may

be used to increase the thermalization rate. Furthermore, evaporation in an optical dipole trap

results in a cloud of atoms that may be adiabatically loaded into a mode-matched optical lattice

potential.

Our optical dipole trap is produced from two orthogonally propagating elliptical dipole
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beams, resulting in the potential:

VXDT(r) = Vdip1(r) + Vdip2(r) + Vgrav(r). (3.26)

Keeping the same axes as in Figure 3.1, we have Vdip1(r) propagating along the y direction and

Vdip2(r) propagating along the x direction:

Vdip1(r) = Vdip1 e
−2 x2

w2
x1(y)

−2 z2

w2
z1(y) , Vdip2(r) = Vdip2 e

−2 y2

w2
y2(x)

−2 z2

w2
z2(x) (3.27)

where wx1(y) = wx1

√
1 + (y/yRx,1)2 is the 1/e2 radius (or “waist”) of dipole 1 in the x direction,

yRx = πw2
x1/λ is the Rayleigh length of the focus in the x direction, and all other waists and

Rayleigh lengths may be likewise obtained by a suitable substitution of indices. It is convenient

to define a new Rayleigh length for each beam:

yR =
yRxyRz√(

y2
Rx + y2

Rz

)
/2
, xR =

xRyxRz√(
x2

Ry + x2
Rz

)
/2

. (3.28)

When the dipole potentials are strong enough that the gravitational potential may be ignored,

we may approximate VXDT(r) as a harmonic trap with frequencies:

ω2
XDT,x =

1

m

(
4Vdip1

w2
x1

+
2Vdip2

y2
R

)
(3.29)

ω2
XDT,y =

1

m

(
4Vdip1

w2
y1

+
2Vdip2

x2
R

)
(3.30)

ω2
XDT,z =

4

m

(
Vdip1

w2
z1

+
Vdip2

w2
z2

)
. (3.31)

Noting from Equation A.10 that Vdip1 ∝ I(0) = 2P/πwx1wz1, and similarly for Vdip2, we

can make the potential contributed by each beam equal by an appropriate scaling of the

powers to the waists. By doing this, Vdip1 = Vdip2 for all powers and we conserve the as-

pect ratio of the trap. That is, ωXDT,x : ωXDT,y : ωXDT,z remains fixed. For our trap pa-

rameters, 40K has the trap frequencies ωXDT,K ≡ {ωXDT,x, ωXDT,y, ωXDT,z} = 2π×{76, 53,

510}Hz×
√
P (W ) and 87Rb has the frequencies ωXDT,Rb = κωXDT,K, where the factor κ is

equal to
√
Vdip,Rb/Vdip,K

√
mK/mRb ≈ 0.73. Comparing the mean trap frequency at the end of

plugged quadruple evaporation ω̄PQ = 2π × 420Hz with the mean trap frequency immediately

after loading into the crossed dipole trap ω̄XDT = 2π × 180Hz indicates that we should expect

adiabatic cooling during transfer by a factor ω̄XDT,K/ω̄PQ,K. This is indeed what we observe:

the 40K cloud cools from 7µK in the plugged quadruple trap to 3µK in the crossed dipole trap.
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Figure 3.3: Crossed-Dipole trap potential Top left, the VXDT(r) potential profile for 40K
along x, y, and z for 1W of power in each beam. For comparison, the thermal width of a
3µK cloud of 40K in this trap is {σx, σy, σz}={52,75,8}µm. Bottom left, the crossed-dipole
trap potential depth for 87Rb (black) and 40K (grey) as a function of optical power. Note the
“kinks”, marking the point at which the potential depth becomes smaller in the vertical direction
rather than the horizontal direction. Right, the trap profiles along the vertical direction for
87Rb (black) and 40K (grey) immediately after loading the crossed-dipole trap (dashed), after
ramping to the sympathetic cooling regime (dotted), and at the end evaporation power (solid).

For dipole powers below a few hundred mW, the gravitational potential becomes important.

In fact, the gravitational potential is essential for evaporation - and specifically, for sympathetic

evaporation of 40K using 87Rb - to work. This is because the gravitational potential provides a

selective way of ejecting the heavier 87Rb atoms from the optical trap. This only works in the

sympathetic cooling regime of crossed dipole potential, where the power is below the threshold

value - 420 mW in our experiment - where the potential has a greater depth for 40K rather

than for 87Rb. See the plot of ∆VXDT in Figure 3.3 for an illustration. Above this value, 87Rb

is held more tightly due to the closer detuning of the 1054 nm light.

Gravity has the additional effect of reducing the effective oscillation frequencies in Equation

3.29, Equation 3.30, and Equation 3.31, and offsets the trap minimum. Because gravity affects

87Rb and 40K differently, there will be a “sag” between the clouds which reduces their spatial

overlap. This is to be avoided: sympathetic cooling requires that we maintain good thermal

contact between clouds since the inter-species scattering rate ΓRb−K is proportional to the

density overlap 〈nK〉Rb in the vertical direction [89]:

〈nK〉Rb =
1

NRb

∫
d3z nK (z − z0K)nRb (z − z0Rb) (3.32)
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Figure 3.4: A comparison of 40K loss for 87Rb in different hyperfine ground states.
40K and 87Rb atoms at 3µK are loaded into a crossed dipole trap. For the blue circles, 87Rb
atoms are adiabatically transferred into |F = 1,mF = 1〉 and the remaining |F = 2,mF = 2〉
are removed with a short pulse of resonant light.

where n (z − z0) = N
√
mω2/2πkBTe

−mω
2(z−z0)

2

2kBT is the 1D density, and z0K = −g/ω2
K and

z0Rb = −g/ω2
Rb are the offsets in the potential minima due to gravitational sag. The fraction

by which gravity reduces the density overlap is:

fsag ≡
〈nK〉Rb

〈nK〉Rb|g→0
= e
− (κ2−1)

2

2κ2(κ2+mK/mRb)2
mKg

2

ω2
K
kBT . (3.33)

We see that gravitational sag reduces the density overlap, especially near the end of evaporation

when the temperature is low and the trap frequencies are reduced. We may see this qualitatively

by looking at the vertical profile of VXDT(z) for different optical powers. However, we note that

choosing elliptical beams with tight confinement in the vertical direction, and thus large ωK,

counter-acts this problem.

87Rb state transfer from F = 2 to F = 1

Evaporation in an optical trap allows us the freedom to access the manifold of internal magnetic

states of the atoms as they are no longer simply needed for trapping. In particular, for a two-

species evaporation, this allows us to transfer atoms into states that stabilize the mixture,

protecting it against relaxation processes that can transfer energy from internal to external

states. Hyperfine relaxation, dipolar relaxation, and spin exchange are examples of these types

of processes.
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If we are able to place 87Rb and 40K atoms into their respective absolute ground states

(|F = 1,mF = 1〉 and |F = 9/2,mF = −9/2〉) then a cloud of 87Rb and 40K will be protected

against relaxation processes since there is no other state for a colliding Rb-K pair to relax

into [90]. However, we can make our job even simpler by noting that if we put 87Rb into

|F = 1,mF = 1〉, it doesn’t matter what state in the F = 9/2 manifold is in since the Landé

g-factor of 87Rb in F = 1 is greater than that of 40K in F = 9/2. That is, the mixture will

be stable because even if 40K would relax via a hypothetical collision with 87Rb to an adjacent

and lower mF state, the resulting energy is less than is required to excite 87Rb to an adjacent

and higher mF state, and so the process is forbidden in the first place.

In Figure 3.4 we compare the loss rate of 40K in the crossed-dipole trap when 87Rb is placed

in a state that protects against Rb-K loss (|F = 1,mF = 1〉), against the loss rate when 87Rb

is placed in a state that does not protect against loss (|F = 2,mF = 2〉).
We transfer 87Rb from F = 2 to F = 1 by applying a 50 ms long 6.8756 GHz µ-wave pulse

while sweeping the magnetic field from 20.1 to 20.0 G. We are able to transfer over 95% of the

atoms in F = 1, and we remove any atoms remaining in F = 2 with a short pulse of resonant

probe light.

Evaporation trajectory

We begin evaporation in the crossed-dipole trap by quickly reducing the dipole powers to a

regime where 87Rb can sympathetically cool 40K. Empirically, we find that ramping dipole 1

and 2 to 800 mW and 1.8 W, respectively, optimizes the phase space density of gas at the end

of evaporation. Note that this value is above the calculated sympthathetic cooling threshold

powers of 420 mW and 920 mW calculated using Equation A.10.

We proceed with evaporation by simultaneously reducing the powers in the two dipole beams

in such a way that each beam provides equivalent potential depth. The powers are reduced

exponentially in 22 s, until we produce a degenerate Fermi gas of 1 × 105 40K in |9/2, 9/2〉 at

300 nK: see Figure 3.6b. We can also make a BEC of 1× 105 87Rb in |2, 2〉 by evaporating in

the crossed-dipole trap in the same manner, save for the transfer from F = 2 to F = 1: see

Figure 3.6a.

3.6 Imaging and measurement

3.6.1 Absorption imaging

The first images of quantum degenerate gases were obtained by releasing the cloud from the trap,

allowing the density to decrease, and then measuring the absorption of a probe beam passing
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Figure 3.5: 40K evaporation in crossed-dipole trap 1.2×105 40K atoms are initially loaded
into the crossed dipole trap. The power in the crossed dipole trap is lowered exponentially in
22 s with a time constant of 7 s from 800 mW in dipole 1 to the power indicated on the horizontal
axis. The power in dipole 2 is reduced according to the scaling mentioned in Section 3.5.2.

through the cloud. Absorption imaging uses the Lambert-Beer Law, that the attenuation of

light is a simple exponential function of the column density. The resultant intensity Ia (y, z) is

recorded with a camera, where we take x to be the optical axis of the probe beam and imaging

system. A second image, I0 (y, z), without the atoms, is taken to calibrate the intensity of light

incident on the cloud. The divided image can be related to the atomic density via the scattering

cross-section σSC through

ln

(
I0 (y, z)

Ia (y, z)

)
= σSC

∫
n (x, y, z) dx ≡ OD(y, z) (3.34)

This measured quantity is the optical density (OD).

Free-flight expansion is typically required to reduce the OD to a measurable level, optimally

near unity [34]. Since the resonant cross-section is roughly λ2, a typical density of n ∼ 1019 m−3

would give an attenuation length of 1/nσSC ∼ 100 nm. This is on the order of the inter-particle

spacing, and thus only a cloud that was one atom thick can be imaged with resonant absorption.

For typical three-dimensional clouds of 105 atoms, the average radius is several microns, which

would give an OD> 10 in the trap. Instead, the cloud is released, allowed to expand for

10–20 ms, before imaging.
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Figure 3.6: A degenerate cloud of 87Rb and 40K. (a) A quasi-pure BEC of 5× 104 87Rb
atoms after evaporation in both a plugged-quadrupole magnetic trap and a crossed-dipole trap,
15 ms after release from the trap. (b) A quantum degenerate cloud of 1.1× 105 40K atoms at
320 nK, 12 ms after release from the trap. Color represents the integrated column density, or
optical density (OD).

3.6.2 Time-of-flight identification of a quantum gas

The temperature and degeneracy of a gas of atoms are usually identified by taking an absorption

image and fitting the optical density after some time of flight. In this section, we describe how

the in-trap density evolves under time of flight, studying the specific examples of a thermal,

Fermi, and Bose gas.

Degenerate Fermi gas

We have seen in Section 3.4.1 that the density of fermions in a cylindrically symmetric harmonic

trap is nF(ρ) = − 1
λ3dB

Li3/2
(
ζe−βV (ρ)

)
, where ζ = eβµ is the fugacity and ρ = x2 + y2 + λ2z2

is the scaled coordinate. We can then use the result from [91] that for an ideal gas in the

Thomas-Fermi limit released from a harmonic trap, time of flight expansion is equivalent to a

re-scaling of the coordinates xi → xi√
1+(ωit)2

, resulting in a density n (ρ)→ n(ρ)

(1+(ωrt)2)
√

1+(ωzt)2
.

Making this substitution in Equation 3.34, we get:

ODF (y, z) = − σSC

2
√

1 + (ωrt)2
√

1 + (ωzt)2

m(kBT )2

πh̄3ωr
Li2

(
−ζe−

y2

2σ2r
− z2

2σ2z

)
(3.35)
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where σ2
r = kBT

mω2
r

√
1 + (ωrt)2 and σ2

z = kBT
mω2

r

√
1 + (ωzt)2. In the long time limit, ωrt, ωzt�

1, the cloud expands isotropically and the optical density loses its explicit dependence on the

trapping frequencies ωr and ωz:

ODF (y, z) |ωt�1 = −3NσSCm

πt2

(
T

TF

)2 1

kBT
Li2

(
−ζe−(y2+z2)m/2kBTt2

)
. (3.36)

Thermal gas

As in Section 3.4.1, we may take the high temperature limit of the density nF(ρ) to find the

thermal distribution nT(ρ) = N
π3/2σ2

rσz
e−βV (ρ). We may again re-scale the coordinates and

density as above, finding the optical density:

ODT (y, z) = −2πN

π3/4

σSC√
1 + (ωrt)2

√
1 + (ωzt)2

mωrωz
kBT

e
− y2

2σ2r
− z2

2σ2z . (3.37)

In the long time limit, the cloud expands isotropically:

ODT (y, z) |ωt�1 = −2πN

π3/4

σSCm

kBTt2
e−(y2+z2)m/2kBTt2 . (3.38)

We can see that the width of the cloud after time of flight is an explicit measure of the tem-

perature.

Degenerate Bose gas

We saw in Section 3.4.2 that in the Thomas-Fermi approximation, a BEC has the density

distribution n0(ρ) = (µ− V (ρ)) /U0 which, for a harmonic trap V (ρ) = 1
2mω

2
rρ

2, results in a

density with an inverted parabolic distribution. Upon sudden release from the trap, potential

energy is converted into kinetic energy 1
2mv

2
i = 1

2mω
2
i x

2
i , and so the final position x′i after some

time-of-flight time t is related to the initial position xi via:

x′i =
√
x2
i + (vit)2 = xi

√
1 + (ωit)2 (3.39)

For longer time-of-flight times, the imaged position is just the scaled initial position, x′i =

xiωit, and thus the cloud retains its inverted parabolic density distribution save for an inversion

of the aspect ratio.

Figure 3.6 shows absorption images of quantum gases. The different nature of Bose and

Fermi statistics is evident when comparing images of 87Rb and 40K: the bosonic 87Rb cloud
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expands less than the fermonic 40K cloud. Whereas bosons “condense” into low-momenta states

of the trap, Fermi pressure forces fermions apart and into higher-momenta states.
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Chapter 4

Optical Lattices

The behaviour of atoms in periodic optical lattice potentials has been of interest since the

first investigations of atoms diffracting [131] and scattering [132] off of standing light waves.

During the hunt for a fast, laser-cooling approach to quantum degeneracy, optical lattices

were employed due to the protection they provided against density and temperature limiting

photon re-absorption process [133]. They have found uses in optical atomic clock experiments

where they suppress interaction broadening of a narrow linewidth transition [134]. Optical

lattices have been used in cavities to couple to macroscopic mechanical oscillators [135] and

realize exotic phase transition [136]. They have even been proposed as system for cluster state

quantum information [137].

Perhaps the most prevalent use of optical lattices in the past decade has been as a platform

for the quantum simulation of condensed matter materials. Ever since the observation of the

Superfluid-Mott insulator phase transition by Greiner et al. [138], optical lattices have been an

area of concentration for investigating the behaviour of strongly correlated many-body systems.

We begin this chapter with a review of optical lattice potentials, using as a starting point

the optical dipole potential Vdip (r) derived in Section A.2. The next sections are devoted

to calculating the relevant states and energies of atoms in these potentials. We discuss the

experimental implementation and characterization of our optical lattice system in Section 5.7.

The final sections of this chapter describe our observations of the 87Rb superfluid-Mott insulator

transition and the localization of 40K atoms in Section 5.8 and Section 5.9, respectively.
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CHAPTER 4. OPTICAL LATTICES 4.1. Gaussian optical lattices

4.1 Gaussian optical lattices

If a linearly polarized optical beam travelling along the z direction is retro-reflected upon itself,

a standing-wave intensity pattern is formed:

Vlatt1D (r) = 4Vdip (r) cos2 (kz) , (4.1)

with k = 2π/λ the spatial frequency and λ the wavelength of the optical beam. Equation 5.1

describes an optical lattice potential, with Vdip (r) defined in Equation A.10. Because Vdip (r)

is produced from a beam with a Gaussian intensity profile, the optical lattice potential depth

will vary in space with the underlying harmonic intensity envelope. In the following, we derive

what the effective harmonic trap frequencies are as a function of beam parameters.

A Gaussian beam travelling in the z direction has the intensity profile:

I (r, z) =
2P

πw2 (z)
e
−2 r2

w2(z) (4.2)

where P is the the power of the beam, w (z) = w0

√
1 + (z/zR)2 is the 1/e2 radius of the beam,

and zR = πw2
0/λ is the Rayleigh length. Optical beams along the x and y directions may also

be added to produce a three-dimensional standing-wave pattern:

Vlatt (r) = Vxe
−2 y

2+z2

w2
x(x) cos2 (kx) + Vye

−2x
2+z2

w2
y(y) cos2 (ky) + Vze

−2x
2+y2

w2
z(z) cos2 (kx) (4.3)

where Vx,y,z collects the pre-factors from Equation A.10 and Equation 5.2. Because of their

low kinetic energy, cold atoms will only sample the bottom regions of the potential, and so

the Gaussian intensity envelope may be expanded to second order in r about the potential

minimum:

Vlatt (r) = Vx cos2 (kx) + Vy cos2 (ky) + Vz cos2 (kz) +
m

2

(
ω2
xx

2 + ω2
yy

2 + ω2
zz

2
)

(4.4)

where ωx,y,z are the trapping frequencies of the effective harmonic trap:

ω2
x =

4

m

(
Vy
w2
y

+
Vz
w2
z

)
(4.5)

and ω2
y,z are similarly obtained through cyclic permutation.
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4.1.1 Lattice oscillation frequency and zero-point corrections

For sufficiently deep lattice depths we may define a lattice oscillation frequency at r = 0 by

expanding the cosinusoidal terms in Equation 5.4 to second order:

ωlatt,x =

√
Vx

2k2

m
, (4.6)

and similarly for ωlatt,y and ωlatt,z. Away from r = 0, the lattice oscillation frequency is reduced

by the square root of the Gaussian intensity profile:

ωlatt,z (r) = ωlatt,ze
−x

2+y2

w2
z(z) (4.7)

≈ ωlatt,z

(
1− x2 + y2

w2
z (z)

)
. (4.8)

This causes a reduction in the ground state energy EGS = h̄/2 (ωlatt,x + ωlatt,y + ωlatt,z) away

from the centre of the beam, with a corresponding reduction in the squared effective harmonic

trap oscillation frequency ω2
x defined in Equation 5.5 by an amount:

ω2
anti,y + ω2

anti,z =
2

mw2
y

√
VyER +

2

mw2
z

√
VzER, (4.9)

where ER = (h̄k)2 /2m is the recoil energy. The squared - and corrected - effective trap

oscillation frequencies for a red-detuned optical lattice are then:

ω2
x =

2

m

(
2Vy −

√
VyER

w2
y

+
2Vz −

√
VzER

w2
z

)
(4.10)

and ω2
y,z are obtained through cyclic permutation of indices.

The underlying harmonic confinement is unavoidable when creating optical lattices from

red-detuned Gaussian beams. This may at first appear to present a problem for cold atom

simulations of condensed matter materials where harmonic confinement is absent. In fact, the

harmonic confinement is another parameter that may be tuned in order to observe different

phases of the Hubbard model in a single sample. This is possible owing to the local variation

of the chemical potential:

µLDA = µ− m

2

(
ω2
xx

2 + ω2
yy

2 + ω2
zz

2
)
. (4.11)

Equation 5.11 expresses the local density approximation (LDA), valid when the kinetic energy

may be ignored and the the harmonic energy varies slowly. Tuning of µLDA is possible using a
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combination of both red and blue Gaussin beams [17], Hermite-Gauss beams [139], and with

spatial light modulators [140]. We will see in Section 5.6 the role that the harmonic confinement

plays in determining the system behaviour. However, we first examine the Eigenstates and

Eigenvalues of an atom in a homogenous lattice potential.

4.2 Band Structure

The Schrödinger equation that governs the behaviour of an atom in a one dimensional periodic

potential along x is given by:

Ĥ0φ
(n)
q = E(n)

q φ(n)
q , (4.12)

where the Hamiltonian is:

Ĥ0 =
p̂2

2m
+ Vlatt (x) . (4.13)

Because the lattice is separable along the three spatial directions, we are justified in considering

the one-dimensional case and combining solutions in order to obtain the three-dimensional case.

The solutions to Equation 5.12 are the Bloch functions [141], which can be written as the

product of a function u
(n)
q that has the same periodicity as the lattice potential Vlatt (x), and

the phase factor eiqx/h̄:

φ(n)
q = eiqx/h̄u(n)

q . (4.14)

Here, q labels the quasi-momentum and n is the band index. What these two quantities

represent will become apparent below. First, we insert φ
(n)
q into Equation 5.12 in order to find

a Schrödinger equation for the periodic function u
(n)
q . Doing so, we find:

Ĥ ′0u
(n)
q = E(n)

q u(n)
q (4.15)

with

Ĥ ′0 =

(
p̂2 + q2

)2

2m
+ Vlatt (x) . (4.16)

As Ĥ ′0 is a functional of the momentum operator p̂, it is useful to Fourier transform the po-

sition dependent functions u
(n)
q and Vlatt (x). Because these functions are periodic with the
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fundamental spatial frequency 2k, this may be done as a discrete series:

Vlatt (x) =
∑

r

Vre
i2rkx (4.17)

u(n)
q =

∑

l

c
(n,q)
l ei2lkx. (4.18)

We can easily evaluate Equation 5.17 for the lattice potential given that Vlatt (x) = Vlatt cos2 (kx) =

Vlatt

(
ei2kx + e−i2kx + 2

)
/4. That is, there are only three non-zero Fourier amplitudes Vr:

V1 = V−1 = Vlatt/4, V0 = Vlatt/2. (4.19)

Furthermore, since V0 represents only a constant energy offset, we may set it equal to zero to

simplify matters. We may now substitute the Fourier representations of u
(n)
q and Vlatt (x) into

the Schrödinger equation for Ĥ ′0 using Equation 5.16:

∑

l

(2h̄kl + q)2

2m
c

(n,q)
l ei2lkx +

Vlatt

4

∑

l′

c
(n,q)
l′

(
ei(l
′+1)2kx + ei(l

′−1)2kx
)

= E(n)
q

∑

l

c
(n,q)
l ei2lkx(4.20)

Because ei2lkx forms an orthogonal basis of plane waves, we can create a set of linear equations

for the coefficients c
(n,q)
l by collecting all terms in front of plane waves that have the same

spatial frequency 2lk. Inspecting Equation 5.20, we can see that this sets a constraint on what

the index l′ can be, specifically l′ = l±1. With this substitution, we can rewrite Equation 5.20

as:

∑

l

(
(2l + q/h̄k)2ER − E(n)

q

)
c

(n,q)
l + Vlatt/4

(
c

(n,q)
l−1 + c

(n,q)
l+1

)
= 0. (4.21)

The index l represents the contributions from 2lk spatial frequency waves. Inspecting Equation

5.21, we can see that higher |l| terms only add to an energy offset, and are thus unimportant

when (2l + q/h̄k)2ER � Vlatt/4. Most interesting lattice physics occurs below Vlatt = 50ER,

meaning that we may truncate the sum in Equation 5.21 at |l| = 5. When imaging, the lattice

depth approaches Vlatt = 500ER, and so we must sum all indices up to |l| = 15.

We have plotted solutions of E
(n)
q as a function of the quasi-momentum q in Figure 5.1 for

different lattice depths Vlatt. We see that for Vlatt = 0, the dispersion relation is quadratic, just

as one would expect for free particles. Thus, the quasi-momentum maps to the momentum p.

For larger lattice depths, however, multiple gaps open up between the band energies, indexed by

n, at the edge of the first Brillouin zone, q = ±h̄k. For lattice depths greater than Vlatt = 20ER,

the lowest energy bands begin to flatten, becoming harmonic oscillator-like with energies nh̄ωlatt.
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Figure 4.1: 40K Band Structure The top for plots show the band energies of an atom in
scientifically interesting range of optical lattice potential depths. The dashed lines show the
band energies in the reduced zone scheme. The horizontal dotted line indicates the optical
lattice depth for each plot. The bottom three plots show the calculated band energies in a very
deep lattice.
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4.3 Wannier functions

For deeper lattices, tunnelling between sites is suppressed and atoms become more and more

localized. In this case, it is helpful to work in a basis of orthogonal, localized Wannier states.

The Wannier states are made up of a superposition of Bloch states, and are given by:

w(n) (x− xi) =
1√
M

∑

q

e−iqxi/h̄φ(n)
q (4.22)

=
1√
M

∑

q

e−iq(x−xi)/h̄u(n)
q , (4.23)

where M is the number of lattice sites, and the phase factor e−iq(x−xi)/h̄ ensures that we have

constructive interference at the lattice site xi. Recalling the Fourier representation of u
(n)
q

presented in Equation 5.18, we may write w(n) (x− xi) in terms of the coefficients c
(n,q)
l that

we solved for in Equation 5.21:

w(n) (x− xi) =
1√
M

∑

q

e−iq(x−xi)/h̄
∑

l

c
(n,q)
l ei2lkx. (4.24)

The quasi-momentum takes on discrete values between q = ±h̄k with a step-size determined by

the number of lattice sites. The Wannier states become approximate Eigenstates of the system

in the deep-lattice limit when the lowest bands flatten, becoming harmonic oscillator-like. In

this case, Wannier functions approach the Gaussian ground-state harmonic oscillator functions.

4.4 Fermi-Hubbard model

In 1998, it was proposed that atoms loaded into the lowest band of an optical lattice could

realize the Hubbard model [42]. The Hubbard model is the simplest model that describes

the competition between kinetic and interaction energies of particles in a lattice potential.

In the field of cold atoms, it has been used to explain the transition between superfluid and

insulating states of bosons in an optical lattice [138], the analogous metallic-insulator transitions

in fermions [16, 17], as well as providing a starting point for investigating the effect of disorder

[51] and spin interaction effects [142, 11]. Cold atoms are able to faithfully emulate the Hubbard

model owing to the short-range, contact nature of atom-atom interactions. In the following, we

derive the Hubbard model starting from a second quantized form of the Hamiltonian and by

then applying the simplifications that our cold atoms system allows.
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The Hamiltonian for our system is:

Ĥ = Ĥ0 + Ĥint + Ĥtrap, (4.25)

where

Ĥ0 =
∑

σ

∫
d3r ψ̂†σ(r)

(
− h̄2

2m
∇2 + Vlatt(r)

)
ψ̂σ(r) (4.26)

Ĥint =
U0

2

∑

σσ′

∫
d3r ψ̂†σ(r)ψ̂†σ′(r)ψ̂σ′(r)ψ̂σ(r) (4.27)

Ĥtrap =
∑

σ

∫
d3r ψ̂†σ(r)Vtrap(r)ψ̂σ(r). (4.28)

In these equations, U0 = 4πh̄2a/m parametrizes the interaction energy and

Vtrap(r) =
m

2

(
ω2
xx

2 + ω2
yy

2 + ω2
zz

2
)

(4.29)

is the underlying harmonic confinement discussed in Section 5.1.1. The Hamiltonian has been

written in terms of field operators ψ̂†σ(r)(ψ̂σ(r)) that create(annihilate) a particle with spin σ

at position r. We are interested in the localized states of the system and so it is helpful to

expand the field operators in terms of the Wannier functions:

ψ̂σ(r) =
∑

n

∑

i

b̂iσw
(n) (r− ri) . (4.30)

If we restrict ourselves to the lowest band of the optical lattice, Equation 5.30 becomes:

ψ̂σ(r) =
∑

i

b̂iσw (r− ri) , (4.31)

where w (r− ri) = w(1) (r− ri) in order to simplify notation. The tunnelling energy can be

written in terms of the Wannier functions:

Jij ≡ −
∫
d3r w∗ (r− ri)

(
− h̄2

2m
∇2 + Vlatt(r)

)
w∗ (r− rj) . (4.32)

We can make some additional simplifications. The tight-binding limit, valid when the lattice

depth is greater than a few recoil energies, allows us to neglect tunnelling to all but nearest-

neighbour sites. Also, we may neglect inter-site interactions due to the energy dominance of

on-site interactions between neutral atoms. With these simplifications, the Hamiltonian in
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Equation 5.25 may be written in terms of the parameters J , U , and εi:

J ≡ −
∫
d3r w∗ (r)

(
− h̄2

2m
∇2 + Vlatt(r)

)
w∗ (r− ax̂) (4.33)

U ≡ U0

∫
d3r|w∗ (r− ri) |4 (4.34)

εi ≡
∫
d3r|w∗ (r− ri) |2Vtrap(r) ≈ Vtrap(ri), (4.35)

where a is the lattice constant, and we have made the approximation in Equation 5.35 due to

the slow variation of Vtrap(r) compared with w∗ (r− ri). The Hamiltonian is then:

Ĥ = −J
∑

σ

∑

<i,j>

b̂†iσ b̂jσ +
U

2

∑

σσ′

∑

i

b̂†iσ b̂
†
iσ′ b̂iσ′ b̂iσ +

∑

σ

∑

i

εib̂
†
iσ b̂iσ. (4.36)

We have used the notation < i, j > to refer to nearest neighbour tunnelling between sites i

and j. A competition amongst the tunnelling J , interaction U , and harmonic εi energies will

determine the behaviour of the system. For instance, when U is large compared with J , the

Hamiltonian is diagonalized in the number-state (Fock) basis - i.e. atoms tend to be localized.

4.4.1 Tunnelling and bandwidth

There is an intimate connection between the tunnelling energy J and the width of a Bloch

energy band Eq. This becomes evident when substituting the representation of the Wannier

function in terms of Bloch states described in Equation 5.22 into Equation 5.32, the equation

defining Jij . We do this in order to make use of the Eigenvalue equation for Ĥ0, described

in Equation 5.12, which is diagonal in the Bloch states. With this substitution, we get an

equivalent expression for the tunnelling energy:

Jij = − 1

M

∑

q

e−i(rj−ri)qEq, (4.37)

where the quasi-momentum sum is taken over the first Brillouin zone. We can then write Jij

as a Fourier series:

∑

i

Jije
i(rj−ri)q = − 1

M

∑

q′

∑

i

ei(rj−ri)qe−i(rj−ri)q
′
Eq′ . (4.38)

Making use of the identity
∑

i e
i(q′−q)ri = Mδq,q′ , and working in the tight-binding limit

(ri − rj) = ±a, we can solve for the energy Eq:

Eq = −2J cos (qa) . (4.39)
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Inspecting Equation 5.39, we can see that J is related to the energy bandwidth:

J =
|E±h̄k − E0|

4
. (4.40)

Within the tight-binding limit, an analytical expression for J may be calculated by solving the

one-dimensional Mathieu equations [143]:

J =
4ER√
π

(
Vlatt

ER

)3/4

e−2
√
V0/ER . (4.41)

4.4.2 Analytical expression for U

An analytical expression may also be calculated for U in the tight-binding limit when Wannier

functions may be approximated as Gaussians. Using the additional fact that the 3D Wannier

functions are separable along the three spatial dimensions:

w (r) = w (x)w (y)w (z) , (4.42)

we may write Equation 5.34 as

U = U0

(∫ ∞

∞
dx|w∗ (x− xi) |4

)3

. (4.43)

Then, using the harmonic oscillator ground state function (mωlatt/πh̄)1/4 e−mωlattx
2/2h̄ in place

of the Wannier function, the interaction energy is:

U = U0

(mωlatt

h̄

)3/2
= U0

(
k2

2π

√
Vlatt

ER

)3/2

. (4.44)

4.5 Double-well example

We can gain insight into the behaviour of the the Fermi-Hubbard model by looking at double-

well system with two atoms: one with spin up | ↑〉, and one with spin down | ↓〉. This minimal

model has an analytic solution, yet is not too trivial to capture the basic features of the Fermi-

Hubbard model. Note that we exclude the harmonic contribution to the Hamiltonian εi in this

example. We start by making use of the anti-commutation relations between the fermonic field

operators {b̂iσ, b̂†jσ′} = δσ,σ′δi,j and write Equation 5.36 as:

ĤFH = −J
∑

σ

∑

<i,j>

b̂†iσ b̂jσ + U
∑

i

n̂i↑n̂i↓ +
∑

i

εi (n̂i↑ + n̂i↓) . (4.45)
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Figure 4.2: Energy spectrum of double-well Fermi Hubbard Hamiltonian The
Eigenenergies are plotted versus the dimensionless interaction parameter U/J : E1 (gray,
dashed), E2 (gray, solid), E3 (black, dashed), E4 (black, solid). It is evident that the ground
state of the system is |ψ4〉.

where n̂i↑(↓) is the number operator for up(down) spin atoms at site i. Then, restricting ourselves

to two sites (i = 1, 2), we can write down the double-well Fermi-Hubbard model:

ĤDW = −J
(
b̂†1↑b̂2↑ + b̂†1↓b̂2↓ + b̂†2↑b̂1↑ + b̂†2↓b̂1↓

)
+ U (n̂1↑n̂1↓ + n̂2↑n̂2↓) . (4.46)

The Hamiltonian ĤDW may be cast in matrix form if we work in the basis of the Fock states

{| ↑↓, 0〉, | ↑, ↓〉, | ↓, ↑〉, |0, ↓↑〉}, where | ↑, ↓〉 would describe the state with a spin up atom in site

i = 1 and a spin down atom in site i = 2:

ĤDW =




U −J −J 0

−J 0 0 −J
−J 0 0 −J
0 −J −J U




The Eigenvalues of ĤDW can be readily obtained, and are:

E1 = 0 (4.47)

E2 = U (4.48)

E3/4 =
U

2
±
√

4J2 +
U2

4
, (4.49)
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with the corresponding Eigenstates:

|ψ1〉 ∝ | ↑, ↓〉 − | ↓, ↑〉 (4.50)

|ψ2〉 ∝ | ↑↓, 0〉 − |0, ↓↑〉 (4.51)

|ψ3/4〉 ∝ | ↑↓, 0〉+ |0, ↓↑〉+

(
U/4J ∓

√
1 + (U/4J)2

)
(| ↑, ↓〉+ | ↓, ↑〉) . (4.52)

We can see that |ψ1〉 corresponds to an anti-symmetric spin state with atoms localized in sepa-

rate wells. On the other hand, |ψ2〉 corresponds to an anti-symmetric spin state where the spin

up and spin down atoms sit together in either site 1 or site 2, picking up an interaction energy

U . The Eigenstates |ψ3〉 and |ψ4〉 are a superposition of all the basis states and correspond to

the largest and smallest energy states of the system, respectively. The ground state of the sys-

tem, |ψ4〉, is symmetric under spin exchange. It therefore must have an anti-symmetric spatial

wave function. We can see by looking at a plot of E4 v.s. U/J in Figure 5.2 that |ψ4〉 behaves

similarly to |ψ4〉 when U is large and negative. That is, the ground state is the state with

atoms predominantly in the same well, with a small energy correction that lowers the energy

by 4J2/U due to the allowance of a spin exchange process. On the other hand, when U is large

and positive, |ψ4〉 becomes similar in character to |ψ1〉, with atoms localized in separate sites.

Again, |ψ4〉 is lower in energy than the localized state |ψ1〉 by the exchange energy 4J2/U . The

exchange energy can be understood as the the energy associated with two spins exchanging

position, requiring two tunnelling events (and the associated J2 tunnelling energy) and the

tunnelling to a site detuned by ±U in energy due to an intermediate double occupancy. The

factor of 4 arises because each tunnelling process can occur in one of two different ways.

We also see the origins of the bandwidth from this simple model. Inspecting Figure 5.2

at the U = 0 point, the difference between the largest (E3) and smallest (E4) energies is 4J .

This defines the bandwidth in the double-well model, consistent with the bandwidth for the

many-site Fermi-Hubbard model derived in Equation 5.40.

4.5.1 The Heisenberg model as a limiting case of the Hubbard model

In the two-spin double-well system just described, we saw that in the U/J → ∞ limit, the

ground state exhibited antiferromagnetic order: an alternating arrangement of up and down

spins. Admittedly, this anti-ferromagnetic order was rather trivial: any state in which the

atoms were localized corresponded to a state with staggered spin direction. However, we can

show that antiferromagnetic ordering remains a feature of the many-site Fermi-Hubbard model

at half-filling (that is, with a system that is filled with an average of one atom per site) in the

U � J limit. In this limit, we show that the Fermi-Hubbard model reduces to the Heisenberg
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model:

ĤHeisenberg = Jex

∑

〈i,j〉

Ŝi · Ŝj. (4.53)

The Heisenberg model describes the interaction between spins on neighbouring sites i and j.

The energy of the system is lowered when the spins are antiferromagneticaly aligned. We can

see this by investigating the double well Heisenberg model, which has the Eigenstates:

|ψs〉 ∝ | ↑, ↓〉 − | ↓, ↑〉 (4.54)

|ψ+
t 〉 ∝ | ↑, ↑〉 (4.55)

|ψ0
t 〉 ∝ | ↑, ↓〉+ | ↓, ↑〉 (4.56)

|ψ−t 〉 ∝ | ↓, ↓〉. (4.57)

Using the fact that Ŝ1 · Ŝ2 = 1/2
(
Ŝ+

1 Ŝ
−
2 + Ŝ−1 Ŝ

+
2

)
+ Ŝz1 Ŝ

z
2 , we can determine the corre-

sponding Eigenvalues for the singlet and triplet states:

Es = −3Jex

4
(4.58)

Et =
Jex

4
, (4.59)

and see that they are separated in energy by Jex.

For comparison, we can do second order perturbation theory on ĤDW. We do this in the

U/J →∞ limit, where the Hamiltonian can be written in terms of the small parameter J/U :

ĤDW = U
(
ĤU + J/UĤJ

)
, (4.60)

where ĤU is the interaction (second) term and ĤJ is the tunnelling (first) term in Equation

5.46. We do perturbation theory on |ψ1〉, the ground state of ĤU, and find a second order

energy correction:

∆E(2) = −4J2

U
. (4.61)

Comparing our results from U/J → ∞ perturbation theory on the Fermi-Hubbard model to

the diagonalization of the Heisenberg model, we notice that the Eigenstates and Eigenvalues

are the same, after identifying the super-exchange energy:

Jex = −4J2

U
. (4.62)
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Thus the Fermi-Hubbard reduces to the Heisenberg model in this limit. The exchange energy

also defines the Néel temperature, TN = Jex/kB, the temperature at which a transition to an

antiferromagnetically ordered state occurs in the U � J limit. In the U < J region, it turns

out that there is also an instability towards the Néel state, and the transition temperature

varies as TN ≈ Je−
√
J/U [144]. Because TN decreases with U/J in the U � J limit and

increases with U/J in the U < J region, we might guess that it would reach a maximum at a

few U/J . Monte-Carlo studies confirm this estimate, predicting a maximum Néel temperature

at U/J = 14 [145].

4.6 Metal-Insulator transition in the U → 0 limit.

In previous sections, we have explored the behaviour of atoms in a periodic potential under

certain simplifying conditions that allowed us to notice different aspects of the system. For

instance, in Section 5.2, we saw that the state of an atom in a purely periodic potential may be

written in a basis of de-localized Bloch waves. In Section 5.3, we saw that localized Wannier

states form a more natural basis when the lattice depth becomes deeper than a few ER. While

we were able to define the Fermi-Hubbard model in Section 5.4 in terms of these Wannier

states, we did not solve for the Eigenvalues and Eigenstates, settling instead for a solution of

the simple double well model in Section 5.5.

In this section, we calculate the energy spectrum and states of a system described by the

1D Hamiltonian:

Ĥ = − h̄2

2m
∇2 + Vlatt (x) +

1

2
mω2

xx
2 (4.63)

Notice that this is the same Hamiltonian - albeit in position-space representation - as described

in Equation 5.25, minus the interaction term. We present a 1D Hamiltonian to solve because

solutions to periodic and Harmonic potentials are separable. This Hamiltonian is important

because it is relatively simple to experimentally implement, exactly calculable, and describes

interesting metallic - insulating phase transition physics. Physically, we may think of Equation

5.63 as describing either a spin-polarized cloud of fermions, or a system of spin-up and spin-down

fermions where a Feshbach field has tuned the s-wave scattering length to zero.

We numerically diagonalize Equation 5.63 and plot the solutions to the Eigenvalue equation

Ĥψi (x) = Eiψ
i (x) (4.64)

in Figure 5.3. In contrast to Figure 5.1, we do not observe a gap in the energy spectrum between
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Figure 4.3: Eigenvalues and Eigenstates of a 10ER optical lattice: The plot on the
left shows shows three different regions of behaviour in the energy spectrum. For Ei < 4J ,
corresponding to less than 10 atoms, the energy spectrum is linear. This is the harmonic

oscillator region. For 4J < Ei < E
(2)
min, corresponding to atom numbers between 10 and 96, the

energy spectrum is harmonic. This is the localized state region. For Ei > E
(2)
min, corresponding

to atoms numbers greater than 96, atoms start to fill a combination of second band harmonic
oscillator states and first band localized states. The corresponding Eigenstates are plotted on
the right, offset by their energies. We can see that the lowest states, the harmonic oscillator
states, have probability densities spread across many lattice sites. This is in contrast to the
higher lying, localized, states whose probability densities are centred on only a few sites. The
black and grey dashed lines define the minimum and maximum allowed energies of the first
band, offset by the harmonic energy.
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different bands. This is due to the inclusion of the harmonic confinement term in Equation 5.63.

In Figure 5.3, the energy increases linearly with the site index of (or, equivalently, the number

of particles in) the system up to 4J . The dispersion relation in this region, E ∝ i, suggests that

these are harmonic oscillator-like states, de-localized across lattice sites. If there are enough

atoms in the system to populate energy levels above 4J , then the dispersion relation becomes

quadratic: E ∝ i2. Here, we have filled up all the energy levels in the band, with each additional

atom increasing the system size, filling a newly available site. Once there are enough atoms to

fill energies above E
(2)
min, the dispersion relation is no longer quadratic. This defines the point

at which second band states begin to be filled.

In order to see how these energies and state might manifest themselves in the observables

of our local probe apparatus, we use the states ψ(i) (x) to define the local filling probability at

site j from state i:

〈nij〉 =

∫ xj+λ/2

xj

|ψi (x) |2dx. (4.65)

In order to calculate temperature-dependent quantities, we must include the Boltzmann factor:

P (Ei) =
1

1 + e(Ei−µ)/kBT

1

Z
(4.66)

where Z =
∑

i e
(µ−Ei)/kBT is the partition function, µ ≡ Ei=N is the chemical potential, and

N is the number of atoms in our system. We may then define a filling probability at site j by

summing over all states:

〈nj (T )〉 =

∑
i P (Ei) 〈nij〉

Z
. (4.67)

A plot of 〈nj (T = 0)〉 v.s. lattice site index j for different N can be seen in Figure 5.4. We

notice that when we do not have enough atoms in the system to fill states with energies at or

above the bandwidth energy 4J , 〈nj (T = 0)〉 < 1. When we have enough atoms to populate

states above 4J , but not enough to population states with energies at or above the minimum

energy of the second band E
(2)
min, then 〈nj (T = 0)〉 = 1. When we have so many atoms that

second band sites begin to be populated, then 〈nj (T = 0)〉 > 1. We hasten to add the obvious:

that our single-site imaging apparatus will be able to directly measure the local filling, allowing

for the position-space measurement of band populations.

Another quantity that is both useful for differentiating phase behaviour and directly mea-
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Figure 4.4: Numerical simulation of site filling in a 10ER lattice The left plot shows
the zero temperature local filling density 〈nj (T = 0)〉 as a function of the radial site index.
We can see that when there are an insufficient number of atoms to fill states up to the band
energy, the local filling fraction is less than 1. The filling fraction is equal to 1 when we have
enough atoms to fill up the first band, but not so much that we start populating the second.
The filling fraction rises above 1 when second band states begin to be populated. The plot on
the right shows 〈nj (T = 0)〉 (black lines) and 〈∆n2

j (T )〉 (grey lines) for 60 atoms at different
temperatures: T = 0.1EF (solid), T = 0.3EF (dashed), T = 0.7EF (dotted). We see that it
becomes hard to distinguish Band insulating physics from a normal Fermi gas for temperatures
above 0.3EF .

surable with a single site imaging probe are the fluctuations in the local density:

〈∆n2
j (T )〉 = 〈(nj (T ))2〉 − 〈nj (T )〉2. (4.68)

This quantity may be used alongside 〈nj (T )〉 to determine the local entropy:

s = −kB
∑

i

P (Ei) lnP (Ei) . (4.69)

The local entropy is a useful quantity because it provides an intuitive way to distinguish phase

behaviour in our system. We can see this by considering the case of a spin-polarized gas of

Fermions with enough atoms to fill a single band. Near the centre of the system where insulating

behaviour is prevalent, we expect only one atom per site, and so s/kB ≈ ln 1 ≈ 0. Farther away

from the center, at a distance corresponding to a harmonic energy roughly equal to the chemical

potential j ≈
√

8µ/mω2
xλ

2, the system is exhibiting metallic behaviour with either 1 or 0 atoms

expected in each site. With two possible states in this region, the local entropy is s/kB ≈ ln 2.

At distances j �
√

8µ/mω2
xλ

2, the local density is expected to be zero, and so s/kB ≈ ln 1 ≈ 0,

again. We can see in Figure 5.4 that 〈∆n2
j (T )〉 qualitatively follows s/kB.

In Section 5.9 we discuss the experimental realization of a localized state of spin-polarized

fermions in an optical lattice, measured using time-of-flight imaging.
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4.7 Experimental creation of an optical lattice

The optical lattice is produced from light derived from the same amplified 100 kHz linewidth

1053.6 nm source as is used for the optical dipole trap. Light is directed to the optical lattice

path or the optical dipole path using a motorized rotating wave plate and a polarizing beam

splitter cube. We use AOMs to actively control the amount of optical lattice light using a

PID feedback servo. Optical lattice light is coupled into a high-power fiber (PMJ-3AHCP-

1064-6/125-5AS-2-1-SP) to clean up the spatial mode of the light and de-couple the thermally-

dependent AOM deflection direction from the alignment of the lattice.

The three-dimensional optical lattice potential is created from the interference of three retro-

reflected beam pairs. Light is focused onto the atoms to a waist of 60µm and 85µm for the

horizontal and vertical lattice beams, respectively, using a 200 mm lens sitting just outside the

science chamber. The beam is collimated with another 200 mm lens, reflected off of a dichroic

mirror (DMSP850), and is then retro-reflected along the same path as the forward beam. We

use an optical isolator to prevent back-coupling through the optical fiber. The optical lattice

optics schematic is presented in Figure 5.5.

4.7.1 High power fiber coupling

Optical fibers are a convenient way to spatially filter and transport light. However, fiber-

coupling high power optical beams of over 1W involves a set of challenges not present in lower

power applications. One of these challenges is spontaneous Brillouin scattering (SBS). SBS is a

process whereby an incident radiation field E1(z, t) = E01e
i(k1z−ωt)+c.c. scatters off of an acous-

tic density wave present in thermal equilibrium in the fiber ρ(z, t) = 〈ρ0〉+
(
ρ0e

i(qz−Ωt) + c.c.
)
,

resulting in a back-scattered radiation field E2(z, t) = E02e
i(−k2z−ωt) + c.c.. Here, 〈ρ0〉 is the

equilibrium density value. The more power there is in the incident field, the more likely back-

scattering is to occur. Any back-scattered radiation E2(z, t) will interfere with the incident

field E1(z, t) to produce a standing wave intensity pattern. The standing wave intensity pat-

tern causes density modulations in the fiber by a process of electrostiction, and these density

modulations will in turn cause more radiation scattering. The process is phase-matched and so

it exponentially builds upon itself above a certain threshold, limiting the amount of power that

is able to be transmitted through the fiber.

The intensity threshold above which SBS becomes dominant can be estimated by solving
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Figure 4.5: Lattice optics
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Figure 4.6: High power fiber coupling A plot showing the relationship between incident
power Pin and transmitted power Pout. The incident power is related to the power in the fiber
P1 via the efficiency that we are able to initially couple light into the fiber fc: P1 = fcPin.
Accounting for the fiber coupling efficiency of fc = 0.78, we measure a threshold power of
approximately 25 W.

the coupled equations for the intensities [146]:

dI1

dz
= −g (Ω) I1I2 − αRI1 (4.70)

dI2

dz
= −g (Ω) I2I1 + αRI2 (4.71)

where αR is the loss coefficient in the fiber (3 dB/km for our fiber), and g (Ω) is the SBS gain

factor given by

g (Ω) = g0
(ΓB/2)2

(ΩB − Ω)2 + (ΓB/2)2 . (4.72)

ΓB is the rate at which acoustic phonons decay (typically 2π×50 MHz), ΩB = 2nvs/λ is the

doppler-shifted frequency of the Brillouin scattered field E2(z, t), n is the index of refraction

and vs is the velocity of sound in the fiber. ΩB is typically 2π×10 GHz. The resonance gain g0

is also a function of these parameters, and is given by:

g0 =

(
n2 − 1

)2
ω2

nvsc3〈ρ0〉ΓB
. (4.73)

80



CHAPTER 4. OPTICAL LATTICES 4.7. Experimental creation of an optical lattice

6 8 10 12 14 16

590

600

610

620

630

640

C
C

D
 P

ix
el

s 
in

 v
er

tic
al

 d
ire

ct
io

n

VM1 mirror ticks 
0.00 0.02 0.04 0.06 0.08 0.10

0.0

0.2

0.4

0.6

0.8

1.0

O
D

 fr
ac

tio
n 

in
 d

iff
ra

ct
ed

 p
ea

k

Y lattice pulse time (ms)

Figure 4.7: Forward lattice beam alignment: A forward propagating lattice beam (with
retro beam blocked) is pulsed on for 1 ms at 250 mW. The plot here shows a scan of the vertical
alignment of the beam. The resulting “dispersion” curve measures the force F = −∇U imparted
to the atoms by the beam in directions perpendicular to the imaging axis.

For optical fibers, g0 is typically 5× 10−11m/W. The threshold intensity Ith is dependent on an

empirically determined constant C = 21 [147], a polarization factor p which can vary between

1 and 2, as well as the gain factor g (Ω) and the effective fiber length LE which, for short fibers

and small loss αR, is equal to the physical fiber length L:

Ith =
Cp

g (Ω)L
(4.74)

For a fiber of cross-sectional area 30µm2, length L = 2 m, and p = 1, this corresponds to a power

threshold of 6 W. This is to be compared to the 5 W that we would like to couple through for the

dipole and lattice beams. Figure 5.6 shows the measured fiber coupling efficiency as a function

of input power P1. The amount of power able to be transmitted through the fiber is better than

expected from Equation 5.74, perhaps as a result of imperfections in the polarization purity.

Whereas the Brillioun scattered radiation E2(z, t) is broadened by ΓB, the incident light that

is not Brillouin scattered remains narrow-band as long as Rayleigh scattering (loss) processes

are small [146].

4.7.2 Optical lattice alignment

Atoms are loaded into the optical lattice from the crossed dipole trap after evaporation. The

adiabatic criterion requires that this process be slow and controlled, so that atoms do not pick

up any kinetic energy during the transfer that unduly heats them out of their low-entropy state.
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This, in turn, requires that the optical lattice beams be well aligned to the cross-dipole trap at

final evaporation powers. The optical lattice beam alignment proceeds in four steps for each

beam pair: A coarse, then fine, alignment of the forward, then retro-reflected, beam.

The coarse alignment of the forward beam is accomplished by first taking an in situ ab-

sorption image of the atom cloud in the crossed dipole trap using a CCD camera focused to

the atoms along the same axis as the lattice beam being aligned. The imaged cloud position is

noted, and then the lattice beam can be aligned to the same position ex situ. This alignment

step is requires only a single experimental run worth of time, and is made possible by the fact

that we have incorporated dichroic optics into the optical lattice design that transmit imaging

light, and reflect optical lattice light: see Figure 5.5.

Fine alignment of the forward beam is accomplished by pulsing it on for 1 ms at high power

(≈250 mW) immediately after release from the crossed-dipole trap. We use a 87Rb BEC for this

procedure due to the inherent stiffness of the cloud, and make sure to block the retro-reflected

lattice beam. When the forward beam is aligned, it will “blow-up” the cloud symmetrically,

increasing its width, but not changing its centre-of-mass position. Conversely, a slightly mis-

aligned beam will both “blow up” the cloud asymmetrically and push its centre-of-mass off to

the side: see Figure 5.7.

After aligning the forward beam, we are ready to coarsely align the retro-reflected beam.

This is done by maximizing the light coupled back through the optical isolator and out the

rejection port. We can check whether there is any spatial overlap, and thus interference, of the

forward and retro-reflected beams by pulsing them on for a few tens of µs at some tens of mW

of power and observing whether or not atoms are diffracted by the lattice and have picked up

an extra h̄k of momentum. Quantitatively predicting how much the atoms should be diffracted

by the lattice for a given power and pulse duration lies at the heart of the subsequent fine

alignment process, and so we discuss it in detail in the following section.

4.7.3 Diffraction alignment

The diffraction alignment of an optical lattice beam involves the sudden turn-on, wait for a

variable hold-time, then turn-off of the lattice potential. The amount of diffraction from the

q = 0 into the q = ±2h̄k states varies sinusoidally with the wait time τ . We explain why this

is so by following the argument articulated in [148].

We begin with a BEC of 87Rb in a harmonic trap. We make the approximation that because

the Thomas-Fermi radius of the BEC is much larger than the lattice spacing, the corresponding

momentum spread of the BEC is small compared with that of atoms in the lattice, and we may

approximate the state of the BEC as a plane wave |φq〉. In fact, this argument suggest that
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Figure 4.8: Kaptiza-Dirac Alignment The picture on the left shows a 87Rb BEC that
has been partially diffracted by the y lattice beam. The un-diffracted peak sits in the middle,
whereas the diffracted satellite peaks have travelled an extra distance ±h̄kt/m in time t due to
the ±2h̄k of momentum imparted to them by the lattice. The picture on the right shows the
OD fraction in the diffracted peaks as a function of the lattice pulse time. Fitting this gives a
Kaptiza-Dirac period of τKD=68µs. We may consult with the predicted τKD in Figure 5.9 to
determine a lattice depth of 8ER. If this equals the measured power in beam, then the lattice
has been well aligned.

we may neglect the harmonic confinement for this particular problem altogether, using results

calculated in Section 5.2. Therefore, upon sudden switch-on of the lattice, the plane-wave state

may be written as a discrete sum of the Bloch states:

|ψ (t = 0)〉 =

∞∑

n=0

|n, q〉〈n, q|φq〉. (4.75)

After some wait time τ , the state evolves, with each stationary Bloch state acquiring a phase:

|ψ (τ)〉 =

∞∑

n=0

e−iE
(n)
q τ/h̄|n, q〉〈n, q|φq〉. (4.76)

The lattice is then suddenly switched off. This action projects the state back into the plane-

wave basis. However, because the Bloch states have the same spatial periodicity as the lattice,

and thus momentum contributions at integer multiples of the reciprocal-lattice vector 2h̄k, we

must allow for non-zero coupling to these higher momenta states:

|ψ
(
τ+
)
〉 =

∞∑

m

∞∑

n=0

e−iE
(n)
q τ/h̄|φq+2mh̄k〉〈φq+2mh̄k|n, q〉〈n, q|φq〉. (4.77)
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Figure 4.9: Calculated Kapitza-Dirac diffraction period Calculation of τKD from band
structure.

We can simplify the interpretation of Equation 5.77 by considering lattice depths below 10ER.

In this limit, we only have significant population of the n = 0, 1 and 2 bands. Furthermore,

because the BEC plane wave state is even and the n = 1 Bloch state is odd in position, |ψ (τ+)〉
will only have n = 0 and n = 2 contributions. Therefore, we will have beating between states

|0, q〉 and |2, q〉, with the period:

τKD =
4πh̄

E
(2)
q − E(0)

q

. (4.78)

This is Kapitza-Dirac scattering [149]. In Figure 5.8 we plot the fraction of atoms in the +2h̄k

or −2h̄k peaks as a function of the y lattice beam pulse (on) time. We then compare the

observed diffraction period to the one calculated in Figure 5.9.

4.7.4 Optical lattice heating and switch-off

After alignment of all three lattice beams using the methods described in Section 5.7.2 and

Section 5.7.3, atoms are able to be loaded into the optical lattice. In Figure 5.10 we measure

the amount heating experienced by atoms loaded into a single optical lattice beam. Doing this

for all three beams, we can make sure that the heating rate is negligible compared with the

energy and time scales of our system. After optimizing the intensity stabilization servo, we

measure a heating rate of roughly 30 nK/s at 50ER in Figure 5.10. This is very close to the

heating rate predicted from spontaneous recoil heating:

ṪR ≈
ΓscER
kB

≈ 20 nK/s. (4.79)

84



CHAPTER 4. OPTICAL LATTICES 4.8. 87Rb SF-MI transition

0 200 400 600 800 1000 1200 1400 1600

0

25

50

75

100

125

150

175

T
e
m

p
e
ra

tu
re

 (
n
K

)

Hold time in 50E
R

  Y lattice (ms)

Figure 4.10: Lattice heating

Most experiments will involve atoms confined in a potential created by 3 lattice beams at powers

of roughly 10ER for approximately 100 ms. This translates to a temperature increase of 2 or

3 nK during the course of an experiment. This is small compared with a Fermi temperature of

order 100 nK.

We also measure the time it takes the optical lattice to switch off. For both shallow (< 10ER)

and deep (> 500ER) lattice depths, the lattice may be shut off with a TTL in <100 ns. It is

important for this shut-off time to be as fast as possible for time-of-flight thermometry. Briefly,

time-of-flight imaging requires diabatic shut-off. That is, if the fastest time scale in our problem

is associated with the lattice oscillation frequency ωlatt, then we wish to shut off the laser power

from P = Pmax to P = 0 quickly enough that it satisfies the diabaticity criterion:

ω̇latt

ω2
latt,max

� 1→
d
dt (lnP )

2ωlatt,max
� 1. (4.80)

This criterion is satisfied for all accessible lattice depths (i.e. for ωlatt,max up to 2π×200kHz) in

our experiment.

4.8 87Rb SF-MI transition

Because our apparatus is a dual 40K and 87Rb system, we may sensitively test the alignment

and power regulation of our optical lattice system by attempting to observe the superfluid-

Mott insulator (SF-MI) phase transition. The SF-MI transition was first seen in a bosonic cold
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atoms system in 2002 by Greiner et al. [138]. It has since been observed in systems of different

dimensions [150, 151] and geometries [152], as well as being used as medium to store light [153].

The SF-MI transition may be described by the same Hubbard model as described in Equa-

tion 5.36, with the changes that b̂†i are bosonic operators that obey the commutation relations

[b̂i, b̂
†
j ] = δi,j and we have a single spin state of bosons. The Bose-Hubbard model is then [42]:

ĤBH = −J
∑

<i,j>

b̂†i b̂j +
U

2

∑

i

n̂i (n̂i − 1) +
∑

i

εin̂i. (4.81)

When J � U , the states which diagonalize ĤBH, |ψJ�U 〉, must have the non-zero expectation

values −〈J∑<i,j> b̂
†
i b̂j〉, and thus 〈b̂j〉 must also be non-zero. States that are Eigenfunctions

of the annihilation operator are called coherent states, and can be defined in the basis Fock

(number) states |n〉:

|ψJ�U 〉 ≈ |α〉 ≡ e−
|α|2
2

∞∑

n=2

αn√
n!
|n〉. (4.82)

For a sufficient number of atoms, the expectation value of the annihilation operator is 〈b̂j〉 =
√
〈nj〉eiφj , and so the expectation value of HBH becomes:

〈HBH〉 ≈ −〈J
∑

<i,j>

b̂†i b̂j〉 = −J
∑

<i,j>

√
〈nj〉〈ni〉 cos (φj − φi) . (4.83)

Equation 5.83 expresses that in the limit J � U , the Eigenstates of HBH have a definite phase

relationship (φj − φi) between sites j and i.

We contrast this to the states which diagonalize HBH in the J � U limit, the Fock states:

|ψJ�U 〉 ≈ |n〉. Because Fock states are Eigenstates of the number operator, the J � U Bose-

Hubbard model describes a state with a definite number of atoms on each site. Furthermore, we

can use the conjugate relationship between number and phase [φ̂, n̂] = i to derive an uncertainty

relationship:

∆φ∆n ≥ 1

2
. (4.84)

In the experiment, ∆φ is the observable we are able to experimentally access. We adiabatically

load atoms into an optical lattice potential of different depths in 200 ms. After a 10 ms hold time,

the lattice is instantaneously switched off. After 15 ms of free-fall, the atoms are absorption

imaged. Images may be seen in Figure 5.11. The critical ratio of J to U in our system is

(J/U)C = 0.0341 [154], corresponding to a critical lattice depth of Vlatt,C ≈ 13ER. We can see
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5ER	   10ER	  0ER	  

12.5ER	   15ER	   20ER	  

Figure 4.11: Superfluid-Mott insulator transition The diffraction pattern after releasing
the 87Rb cloud from a lattice of varying depth. The diffraction peaks are spaced ±2h̄k from the
central peak in momentum. That diffraction peaks exist above the critical depth Vlatt,C ≈ 13ER
may be evidence of double occupied sites for which J →

√
2J .
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that for depths less than Vlatt,C, corresponding to (J/U) > (J/U)C, we see a diffraction pattern

resulting from the interference of coherent states of atoms in the lattice that share a definite

phase relationship.

In contrast, when the lattice depth is greater than Vlatt,C, the diffraction visibility disappears.

Here, the Eigentstates of the system are Fock states, with definite number at each site but -

because of the number-phase uncertainty relation in Equation 5.84 - an indeterminate phase.

We may more quantitatively explain the difference in time-of-flight images between SF and

MI phases by considering how a cloud of atoms expand upon release from a one-dimensional

lattice potential. After release from position xi, the expansions results in a re-scaling of the

coordinates:

xi →
xi√

1 + (ωit)
2
→ωit�1→

xi
ωit

(4.85)

We will work in the ωit � 1 limit, where the cloud will be assumed to have expanded to be

much larger than its original size. Furthermore, if we work in the tight-binding limit where the

Wannier functions may be approximated as Gaussians, then we may then write the expanded

wave-function as:

ψi (r, t) = f (r, t) eim|r−ri|
2/2h̄t, (4.86)

where f (r, t) is the envelope function. Including contributions from each site, the combined

wave-function is:

ψ̂ (r, t) =
∑

i

ψi (r, t) b̂i, (4.87)

and so the density is:

n̂ (r, t) = |f (r, t) |2
∑

〈i,j〉

eim(r−ri)·r/h̄tb̂†i b̂j . (4.88)

In a time-of-flight image, we measure the average density 〈n (r, t)〉. This quantity involves the

expectation value 〈b̂i〉, and so for ri = iπ/k, 〈n (r, t)〉 in the SF regime is equal to:

〈n (r, t)〉SF = |f (r, t) |2
∑

〈i,j〉

e2πi(i−j)x/l√ni√nj = |f (r, t) |2 sin2 (πNx/l)

sin2 (πx/l)
(4.89)
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Figure 4.12: 40K localization A band-mapped cloud of 6× 104 40K atoms after an adiabatic
ramp-on and fast (200µs) exponential ramp-off of a 100ER lattice. The mask that is super
imposed over the image identifies the first three Brillouin zones for a 2D lattice. The inset
figure labels the Brillouin zones and indicates that the second and third Brillouin zones are
degenerate in energy.

whereas 〈n (r, t)〉 in the MI regime is equal to:

〈n (r, t)〉MI = |f (r, t) |2
∑

〈i,j〉

eim(r−ri)·r/h̄tδi,jni = N |f (r, t) |2. (4.90)

Here, l = 2h̄kt/m and N is the number of atoms. We see that whereas 〈n (r, t)〉SF is sinusoidally

modulated, 〈n (r, t)〉MI retains only the unmodulated envelope function, in agreement with the

images in Figure 5.11.

4.9 40K localization

In contrast to 87Rb atoms in an optical, Fermi-Dirac statistics prohibits a coherent state of 40K

for low lattice depths. Atoms are still free to tunnel, however, exhibiting “metallic” behaviour

analogous to electrons hopping between sites in a crystal. As seen in Figure 5.3, when there

are enough atoms (or, equivalently, harmonic confinement) to fill states above the bandwidth

energy 4J , atoms populate the localized “edge” states. These edge states not only clamp the

average filling per site at 1, but also have identical momentum distributions.

We can see from Figure 5.1 that if we populate only the lowest band of the optical lattice,

then atoms will be restricted to quasi -momentum between −h̄k and +h̄k. We may experi-

mentally access the quasi-momentum of our system by quickly ramping down the lattice depth

in 200µs, a time that is fast compared with the tunnelling time but slow compared with the

energy difference between the ground and first excited band. This quasi-momentum conserving
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band-mapping process [155] has the effect of reducing the momentum contribution from the lat-

tice, leaving only the quasi momentum q to be imaged after time of flight. That is, the position

of an atom with quasi momentum q after time-of-flight time t is x = qt/m. Figure 5.12 shows

an image of a band-mapped cloud of 40K. Notice that the cloud retains the symmetry of the

lattice potential.

Band-mapping is unable to distinguish between localized band insulating states and localized

edge states due to the similarity in quasi momentum distributions. A single-site measurement

would be able to discriminate between the two states, however. In the following chapter, we

outline our approach to realizing a local probe measurement of 40K in an optical lattice.
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Chapter 5

New tools for single-site imaging

We have described in previous chapters the apparatus responsible for cooling a cloud of 40K

and 87Rb to quantum degeneracy, and then controlling its behaviour in an optical lattice. This

work is preparatory, however, to our goal of imaging quantum states with resolution on the scale

of the inter-particle, or lattice, spacing. In this chapter, we describe the tools and techniques

developed in order to achieve this goal.

Atoms have been imaged with single site resolution before. In 2007, Nelson et al. fluo-

rescence imaged 133Cs atoms that had been loaded into a 3D optical lattice with 4.9µm site

spacing [21]. 133Cs atoms have also been absorption imaged in situ in a 2D 532 nm-spaced

optical lattice [20]. In two separate observations, the site occupation of 87Rb atoms in a single

plane of a 640 nm [9] and 532 nm [10] 3D optical lattice were determined by capturing the

scattered fluorescence from atoms as they were being sub-Doppler cooled. In a novel experi-

ment, 87Rb atoms loaded into a 1D 600 nm-spaced optical lattice were individually ionized by

a narrowly-focused electron beam and detected [156]. The only single-site imaging to date of a

Fermi gas has been the absorption imaging of 6Li atoms trapped in a 4x4-site 2D optical lattice

with a minimum site-spacing of 1.2µm [157].

It is possible to determine the number occupation of a lattice site even when the diffraction

limited resolution is larger than the site spacing [158, 159]. The site occupation of 133Cs atoms

loaded into a 433 nm 1D optical lattice was measured using an imaging system with a diffraction

limited resolution of 1.79µm, over four times that of the lattice spacing [158]. The problem of

imaging atoms was reduced to one of parameter estimation when prior information about the

discrete positioning of atoms was used alongside a thorough characterization of the point spread

function (PSF). Prior information about the lattice structure has also been used to determine

the 3D distribution of atomic nano particles with atomic resolution by combining information

from two orthogonal scanning transmission electron microscopy images [159].
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The Rayleigh criterion for resolving point source emitters is a more stringent imaging mea-

sure, though a useful heuristic. It states that two point sources may be resolved if the position of

one source sits at the minimum of the Airy function of the other [160]. The minimum Rayleigh

resolvable distance for point sources emitting light with wavelength λ is 0.61λ/NA, where NA

is the numerical aperture of the imaging system. It is evident that the resolution is minimized

when λ is small and NA is large. Because the critical temperatures for phase transitions in a

lattice scale as the square of the lattice period, we would like to be able to image distances that

are as small as possible.

The vacuum and magnetic transport systems have been designed in order to allow for the

integration of a high NA imaging system. We describe the imaging system in detail in Section

6.1. The choice of λ is constrained by the available optical transitions in 40K. We showed in

Chapter 4 the ability to control atoms with light near-detuned from the 405 nm 4S1/2 → 5P3/2

transition. Due to shot noise, the ability to identify the occupation of a lattice site depends on

the detected photon number: if the pixels on a camera capture an average of Nγ photons, there

will be a
√
Nγ variation in the number of detected photons on each individual pixel. In order

to increase the signal-to-noise of the imaging system, we would like to collect many hundreds

of photons per atom. This means scattering many times more, due to the finite collection,

transmission, and detection efficiencies of the system. Each time that an atom scatters a photon

it picks up 2ER = h̄2k2/m in energy. This means that an atom that scatters just a few hundred

photons would have enough energy to escape from the optical lattice. It is therefore necessary

to cool atoms to a temperature much less than the lattice depth, while simultaneously collecting

fluorescence from them. In Section 6.2, we demonstrate a sub-Doppler cooling technique that

uses the 770 nm 4S1/2 → 4P1/2 transition to cool atoms to 10µK, a temperature much less than

the 200µK lattice depth. We describe the properties of this transition and show evidence that

D1 sub-Doppler cooling plus 405 nm fluorescence is a promising approach towards single-site

imaging of 40K in an optical lattice.

5.1 Imaging hardware

5.1.1 Imaging requirements

We consider here the numerical aperture, photon wavelength, and detected photon numbe

necessary for measuring the number occupancy of individual lattice sites with high fidelity.
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Figure 5.1: Single-site imaging approach: A 2D plane of atoms (yellow disk) are trapped
800µm below a 200µm thick sapphire imaging window. On the air side of this window is an
NA=0.6 imaging objective with a working distance of 2 mm. Atoms are simultaneously cooled
using light tuned near the 770 nm D1 transition and excited with a 405 nm beam.

Single-plane imaging

The Debye integral for the 3D electric field near the focus of an imaging lens is given by [160]:

E (x, y, z) = −iA2π

λ

(
a

f

)2

ei(
f
a )

2
u

∫ 1

0
J0 (vρ) e−iuρ

2
ρdρ (5.1)

where u and v are the scaled axial and radial coordinates, respectively:

u =
2π

λ

(
a

f

)2

z, v =
2π

λ

(
a

f

)√
x2 + r2. (5.2)

Here, f is the effective focal length, a is the radius of the aperture, λ is the wavelength of the

light being collected, A is the amplitude of the electric field, J0 (x) is the zeroth order Bessel

function, and ρ is the scaled aperture coordinate that we integrate over. The Debye integral

Equation 6.1 is valid over all space when f →∞, and becomes approximate in the parameter

a/f otherwise. The intensity is:

I (x, y, z) =
cε0
2
|E (x, y, z) |2 (5.3)
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Figure 5.2: 3D Intensity distribution from a point source: The intensity distribution
of light focused to the z = 0 plane by an imaging system with aperture radius a and effective
focal length f .

We can make Equation 6.3 an explicit function of the numerical aperture by making the sub-

stitution:

a

f
=

1√
(n/NA)2 − 1

(5.4)

Figure 6.2 shows a projection of the intensity onto the xz plane.

We see from Figure 6.2 that the first intensity minima - the distance which defines the

resolution - is farther away in the axial direction (2λ/NA2) versus the transverse direction

(0.61λ/NA). The intensity in the axial direction also propagates well beyond the first minima

before decaying, in contrast to the transverse direction. For these reasons, it is necessary to

isolate a single plane of atoms to image.

The transverse PSF of an imaging system is the 2D intensity distribution in the focal plane:

PSF (x, y) = I (x, y, 0) . (5.5)

A criteria for choosing the imaging NA

One measure that we can use to determine the NA and Nγ required in order to measure

occupation of a lattice site is to imagine whether it is possible to distinguish between the two

scenarios depicted in Figure 6.3. In these scenarios, our problem is to correctly identify whether
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there is an atom at the site of interest, or not, when there are zero or one atoms randomly

distributed in neighbouring sites. We are helped by the fact that we have prior knowledge of

our system. We know, for instance, that all 40K atoms are identical and will scatter, on average,

the same number of photons. We also know that the atoms will sit at discrete points of the

optical lattice. Finally, because of high probability that two atoms sitting in the same lattice

site will undergo light-assisted collisions when illuminated by the cooling and fluorescing light,

each site will have either zero or one atom.

The number of photons collected on pixel i, j on a focused camera (z = 0) with pixel size

dp in time ∆t is:

Nij = I (idp, jdp, 0) d2
p ∆t/h̄ω (5.6)

Let’s call N0 the average number of photons scattered into the pixels circumscribed by the box

in Figure 6.3a with zero atoms, and N1 the average number of photons scattered for the one

atom scenario depicted in Figure 6.3b:

N0(1) =

box 0(1)∑

i,j

Ni,j (5.7)

Photon shot noise will add uncertainty to the number of photons collected at each pixel di,j . If

the most likely scattered photon number is 〈N〉, the probability of capturing k photons is given

by the Poissonian distribution:

Pi,j (〈Ni,j〉; k) =
〈Ni,j〉ke−〈Ni,j〉

k!
(5.8)

The total probability distribution from the collection of pixels within the measurement area

abox is:

P =
d2
p

abox

box∑

i,j

Pi,j (〈Ni,j〉; k) (5.9)

The fidelity with which we are able to correctly identify the presence, or not, of an atom

decreases the more two probability distributions overlap:

F = 1−
∑∞

Nγ=0 P (N0;Nγ)P (N1;Nγ)
∑∞

Nγ=0 (P (N0;Nγ) + P (N1;Nγ))
(5.10)

The ratio of photons collected to photons scattered depends on the solid angle subtended
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Figure 5.3: Discerning the presence (or not) of an atom A scenario imagined to estimate
the numerical aperture and detected photon number necessary to correctly identify the presence,
or not, of an atom. We assume that the only information available is the number of photons
collected on each pixel within the measurement area circumscribed by the box.
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Figure 5.4: Fidelity: Left), the probability distributions for N0 (solid line) and N1 (dashed
line) for atoms that each scatter an average of 40 photons. If we detect a photon number
that lies in the overlap region of the two probability distributions, we are unable to distinguish
between there being an atom at the site of interest or not. Right), the fidelity versus detected
photon number of correctly identifying the presence of an atom on site when capturing 405 nm
photons through a NA=0.4 (dark blue), NA=0.5 (blue), and NA=0.6 (light blue) objectives.
The fidelity when capturing 767 nm photons through a NA=0.6 (red) objective is also shown.
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by the imaging system. For small numerical apertures, the collected photon fraction can be

estimated to be 1/4((n/NA)2− 1). Accounting for transmission and camera efficiencies (which

we conservatively estimate to be 25% total) we conservatively estimate that it is necessary for

an atom to scatter 100 photons for every one photon that we detect. If we are using an NA=0.6

objective at 405 nm then we need to scatter at least a few thousand photons per atom.

Throughout, we have made the approximation that atoms are stationary in lattice sites

and not jiggling about with some thermal uncertainty. This approximation is valid since
√
kBT/mω2 � λ/2NA at 10µK.

Note that image reconstruction techniques can make use of additional bits of information,

such as the shape of the intensity distribution, in order to more accurately determine lattice

occupation. In fact, with enough signal to noise, an image may be reconstructed with any

resolution imaging system [161].

5.1.2 405 nm objective and sapphire imaging window

Our objective is custom made from Special Optics. It has an NA=0.6 at 405 nm and an

NA=0.45 at 767 nm. We do not have single-site imaging capability at 767 nm but the resolution

is sufficient to aid in coarse alignment and focusing. The effective focal length of the objective

is 3.3 mm and the working distance is 2.43 mm. The objective is paired with a 170 mm focal

length tube lens for a 51× magnification.

The objective sits on the atmosphere side of the experiment, separated from the atoms in

vacuum by a 200µm thick Sapphire window. The feasibility of using a thin Sapphire window to

image through was first investigated by Amir Mazouchi [162]. The window is 12 mm in diameter

and was brazed to a Titanium sub-flange by the UK Atomic Energy Authority. The window is

chosen to be thin in order to accommodate conventional commercial microscopy designs that

correct for 200µm thick cover-slips. The attachment method constrains the choice of window

material. Brazing is a high-temperature process, and sapphire and Titanium have similar

coefficients of thermal expansion (6 × 10−6K−1 and 8.6 × 10−6K−1, respectively), compared

with 0.6× 10−6K−1 for fused quartz. Sapphire is also more tolerant of mechanical stress than

quartz, with a modulus of rupture that is 10× as large, and a Young’s modulus that is 5× as

large. Sapphire is slightly birefringent. This effect is reduced by cutting the window along its

c-axis.

Objective characterization

We have attempted to characterize our imaging system ex situ in three different ways: imaging

a nano hole array [163], imaging a 500 nm pinhole [163], and imaging an MRS-5 target [164].
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Figure 5.5: Sapphire window brazed to Ti sub-flange. Image courtesy of Dave McKay
[1].

Imaging through the sapphire window makes a negligible difference to imaging quality.

The nano hole array consists of 200 nm diameter holes, etched in Ag, spaced 500 nm apart.

The 100 nm thick Ag layer sits on top of a glass substrate. The sample was provided by the

group of Sang-Hyun Oh at the University of Minnesota [165]. Figure 6.6 shows the optical

image of this object. The objective collects the light transmitted through the sample. The

narrow-band light has a wavelength of 405 nm and is made temporally incoherent by including

a rotating diffuse material in its path before Köhler illuminating the sample [166]. Inspecting

Figure 6.6, we can clearly distinguish light emanating from different holes in the array. This

method provides qualitative confidence that the objective is able to resolve atomic point sources

in a 523 nm spaced lattice. See Carolyn Kieran’s report [163] for a quantitative study. We have

also imaged diffuse light through a 500 nm pinhole (National Aperture) in an attempt to extract

the PSF of our imaging system. The convolution of the PSF with the pinhole window function

(w (r < d) = 1, w (r > d) = 0) gives the observed intensity distribution:

Ipinhole (x, y) =

∫ ∞

−∞
PSF (x0, y0)w (x− x0, y − y0) dx0dy0. (5.11)

An MRS-5 reflective target (Geller Microanalytical Laboratory) has also been imaged. The

MRS-5 target is made from tungsten on an SiO2 layer. The sample was reflectively Köhler

illuminated during tests. In Figure 6.6, it is clear that features down to 600 nm are resolvable.

The PSF may be inferred from the Fourier transform of the pitch contrast. Similarly to the

nano hole method, it is encouraging that features comparable in size to the lattice spacing may

be resolved. However, due to the ambiguous effect of the reflective illumination of the MRS-5

target, we hazard to draw quantitative conclusions about our imaging system from this method.
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Figure 5.6: Methods for objective characterization Nano-hole array with 200 nm diam-
eter holes spaced 500 nm apart (top), MRS-5 target (middle), 500 nm pinhole (bottom).
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5.1.3 Objective mounting and alignment

The objective is attached to the science chamber using aluminum mounts that support a three-

axis manual translation stage (Newport M406), a two-axis tilt stage (Newport TTN80), and

a focusing piezo stage (PI P-733.Z). The aluminum mounts were designed by Carolyn Kierans

[163] and the microscope stack was stability tested by Thomas Maier [167].

The objective is transversely aligned by imaging the small amounts of vertical lattice beam

transmitted through the AR coated imaging window. The alignment is fine-tuned by absorption

imaging progressively colder (i.e. smaller) clouds of atoms.

The objective is aligned in the focal direction in two steps. First, the focal position of the

objective is chosen to minimize the absorption-imaged cloud size of a small BEC. Then, the

objective is positioned to maximize the fluorescence signal of a small resonant beam through

a thermal cloud of atoms. We image the wavelength tuneable 35µm plug beam which is well-

aligned to the quadrupole trap centre. This final alignment step positions the objective focus

to within the plug beam width of the atom’s position.

5.1.4 Prospects for imaging

We have commissioned and characterized a high resolution objective for imaging 405 nm fluo-

rescence from atoms trapped in a 527 nm-period optical lattice through a 200µm-thick sapphire

window. The objective has been characterized ex situ by imaging a reflectively illuminated pitch

target, and the transmitted light through a nano hole array and a 500µm diameter pinhole. We

have been able to qualitatively resolve transmitted light through the nano hole array, giving us

confidence in our ability to resolve similarly spaced atomic point sources in an optical lattice.

5.2 Sub-Doppler cooling

As discussed in Section 2.1 and Chapter 4, Doppler cooling can cool atoms to a temperature

TD set by the transition linewidth Γ:

kBTD =
h̄Γ

2
. (5.12)

For alkali atoms such as 40K and 87Rb with Γ ≈ 2π × 6 MHz this translates into TD ≈ 150µK,

or for narrower line excited state transitions as discussed in Chapter 4 and [168], a Doppler

temperature TD ≈ 70µK. These temperatures are not small compared to our available lattice

depth of 200µK. Using the Arrhenius model for thermal hopping defined in Equation 1.3 with

Γa an average of the two previously measured attempt rates for neutral atoms in an optical

100



CHAPTER 5. NEW TOOLS FOR SINGLE-SITE IMAGING 5.2. Sub-Doppler cooling

lattice [21, 22], we can estimate a hopping rate of ∼1 Hz for atoms at 70µK in a 200µK-deep

lattice. We argued in Section 1.1 that a 10 mHz hopping rate was necessary for high fidelity

imaging and that achieving this requires cooling the atoms to 30µK in a 200µK-deep lattice.

This temperature is below any observed Doppler temperature in 40K.

Fortunately, we can cool below the Doppler limit when coherent effects between the cooling

beams and atoms with a multiplicity of ground states are included. This new limit is set by

the AC Stark shift of the ground state, h̄∆′, which can be an order of magnitude less than h̄Γ.

These sub-Doppler cooling mechanisms can achieve temperatures of order the recoil temperature

kBTR = h̄2k2/2m and lower. For 40K atoms that scatter 767 nm photons, TR = 414 nK.

Sub-Doppler cooling, first observed in 1988 [169], is a common technique in laser cooling

and cold atom experiments. A sub-Doppler cooling mechanism can be achieved by creating a

polarization gradient in the light field. Polarization gradient cooling on the D2 transition has

been widely demonstrated in 87Rb and other bosonic alkalis, including as a way to cool and

image atoms trapped in an optical lattice [21, 9, 10].

However, D2 polarization gradient cooling of 40K is either weak [97, 98] or difficult to observe

[99], likely due to the unresolved and inverted excited hyperfine state structure. Recently it

was shown that with a precise tuning of the D2 wavelength within the similarly unresolved

excited state structures of 39K and 41K it was possible to cool these isotopes to 25µK and

47µK, respectively [170].

In 1996, a new type of polarization gradient cooling was demonstrated in 133Cs [171]. This

cooling mechanism makes use of internal states on the F → F −1 transition that are uncoupled

from the light field. As an atomic sample cools, atoms spend more time in these dark states,

with a corresponding reduction in the density-limiting radiation pressure from re-scattered

photons. Recently, it was shown that this “gray” cooling mechanism was also present in 40K

on the D1 4S1/2 → 4P1/2 transition: Fernandes et al. were able to cool a cloud of 40K initially

at 4 mK to 20µK [172].

The idea of velocity trapping atoms in a dark state was first demonstrated in 4He [173].

In this velocity selective coherent population trapping (VSCPT) technique, atoms near zero

velocity were coherently trapped in a dark superposition of Zeeman ground states, allowing

for cooling below the recoil limit. Sub-recoil cooling can also be achieved by making use of

the Raman coherence between different hyperfine ground states [174]. Because the Raman

transition linewidth can be extremely narrow, so too can the velocity class of atoms addressed

by the two-photon cooling process.

Recent work with 6Li [175] and 39K [176, 177] has shown that it is possible to combine

gray D1 cooling with an additional polarization gradient cooling mechanism resulting from a
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Figure 5.7: Toy atom level diagram (a) F = 1/2→ F ′ = 3/2 level scheme with associated
Clebsch-Gordan coefficients. (b) F = 1/2 → F ′ = 1/2 level scheme with associated Clebsch-
Gordan coefficients. (c) Light shift of the F = 1/2→ F ′ = 3/2 ground states in a red-detuned
lin ⊥ lin polarization lattice. (d) Light shift of the F = 1/2 → F ′ = 1/2 ground states in a
blue-detuned lin ⊥ lin polarization lattice.

two-photon Raman cooling process. In this section, we report on the combined D1 + Raman

cooling of 40K to 16µK in free space.

In addition, we investigate the laser cooling of 40K atoms that have been loaded into the

lowest band of an optical lattice. In previous work, 133Cs atoms trapped in a 2D 29µm-period

optical lattice were cooled with a gray molasses to 2µK and n ≈ 1019 m−3 [178]. We observe

cooling to 12µK in a 250µK-deep 3D 527 nm-period optical lattice, to our knowledge the lowest

laser-cooled temperature of 40K yet reported. We also explore whether 40K atoms in an optical

lattice may be laser cooled while being simultaneously excited on the 405 nm 4S1/2 → 5P3/2

transition.

5.2.1 The Sisyphus cooling mechanism

Sisyphus cooling is a sub-Doppler cooling technique where the polarization gradient is created

from the interference of lin ⊥ lin-polarized counter propagating beam pairs in one dimension,

or with σ+ − σ− polarized beam pairs in all three dimension. The common feature among all

Sisyphus cooling realizations is that optical pumping is most likely to occur at the at the top

of a light-shift potential rather than at the bottom. In the following, we illustrate this effect

using model F = 1/2 → F ′ = 3/2 and F = 1/2 → F ′ = 1/2 transitions that contain the

ingredients required to understand and compare the Sisyphus mechanism on the 5S1/2 − 5P3/2

D2 transition in 87Rb and the 4S1/2 − 4P1/2 D1 transition in 40K, respectively.
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Figure 6.7a shows the atomic levels for the F = 1/2 ground and the F ′ = 3/2 excited

state. The atom sits in a 1D polarization lattice formed from the interference of counter-

propagating beams with crossed linear polarizations, i.e. the lin ⊥ lin configuration. The

resulting polarization lattice is shown on the horizontal axes of Figure 6.7c. and d. The state

dependent light shift potential is:

h̄∆′ ≈ h̄

4δ

∑

q;i,j

Ω2
q |cij |2 (5.13)

where q is the polarization that connects states i and j, cij is the Clebsch-Gordan coefficient,

and Ωq is the Rabi rate for light with polarization q. If the detuning is chosen to be negative

δ < 0, as is required for Doppler cooling, it becomes evident that |g′1/2〉 is shifted to its lowest

energy in the σ+ region of the polarization lattice, and shifted the least in the σ− region. In

contrast, |g′−1/2〉 is shifted to its lowest energy in the σ− region of the polarization lattice, and

the shifted least amount in the σ+ region.

The optical pumping rates are also position dependant: an atom in |g′1/2〉 is most likely to

be pumped into |g′−1/2〉 when at the σ− point of the polarization lattice - i.e. at the top of

the light-induced potential. This is indicated in figure 6.7 as a broadening of the energy shift.

Similarly, an atom in |g′−1/2〉 is most likely to be pumped into |g′1/2〉 when at the σ+ point of

the polarization lattice, also at the top of its light shift. This broadening can be understood as

an admixture of the excited state with the ground state:

|g′〉 ≈ |g〉 − iΩ/δ|e〉. (5.14)

We can infer an optical pumping rate proportional to the probability that an atom is in the

excited state, which in the large detuning limit is:

Γ′ ≈ Γ|Ω
δ
|2. (5.15)

Every time that an atom is pumped from |g′±1/2〉 to |g′∓1/2〉, it coherently absorbs a σ∓ photon

and emits a σ± photon, losing h̄|∆′1/2 −∆′−1/2| ∼ h̄∆′ in energy. Because this process happens

every optical pumping time 1/Γ′, we can define a cooling rate:

(
dE

dt

)

cool

= h̄∆′Γ′. (5.16)

Note that this cooling mechanism would turn into a heating mechanism if the red-detuning

became blue. In this case, the light shift would take on the opposite sign at the same points in
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the polarization lattice - with hills in the potential becoming valleys, and vice versa - yet with

the optical pumping’s position dependance remaining unaffected. An atom would instead gain

an additional h̄∆′ worth of energy every optical pumping time.

However, for the case of a F = 1/2 → F ′ = 1/2 atom as illustrated in Figure 6.7b, a

Sisyphus mechanism only exists for blue-detuned light. This is because certain transitions are

“dark” to the incident light. For example, an atom in |g′1/2〉 sitting at the σ+ point in the

polarization lattice will not experience a light shift because all Clebsch-Gordan coefficients for

this polarization are zero. But, as can be seen in Figure 6.7d, optical pumping from |g′±1/2〉 to

|g′∓1/2〉 will still happen most frequently at the σ∓ points in the polarization lattice, that is, at

the top of the light-induced potentials. In this case, red-detuning δ would lead to heating, in

contrast with the F = 1/2→ F ′ = 3/2 case.

There are a few key points to consider when choosing parameters for a Sisyphus cooling

stage:

• Capture velocity: Similar to Doppler cooling where the capture velocity is determined

by the line width of the transition Γ, sub-Doppler cooling captures atoms travelling with

velocities determined by the optical pumping rate Γ′:

kvc ≈ Γ′ ≈ Γ|Ω
′

δ
|2. (5.17)

This suggests that in order to capture as many atoms as possible it is best to use high

powers and small detunings.

• Equilibrium temperature: The Sisyphus cooling mechanism works only as long as an

atom is able to climb high enough on the light shift potential to be optically pumped

into a lower energy state. This argument sets the minimum temperature at a fraction of

the light shift h̄∆′, and indeed a semi-classical calculation [179] estimates the equilibrium

temperature to be:

kBTS =
h̄∆′

8
=

h̄Ω2

32|δ| (5.18)

This would encourage low powers and large detunings, contrary to what one would like

maximize for capture velocity. A common technique, then, is to have high powers during

the initial stage of the Sisyphus molasses in order to capture as many atoms as possible,

then lower the power in order to achieve low temperatures.

• Sisyphus cooling v.s. Doppler heating in a blue detuned molasses: In the

F = 1/2 → F ′ = 1/2 blue-detuned molasses scheme, a natural question to ask is how
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the cooling from the Sisyphus mechanism compares with the heating from the Doppler

mechanism. In the low-temperature limit, when kv � Γ′, we saw that the Sisyphus fric-

tional force, and thus the cooling rate, was a factor ∆′/Γ′ = δ/4Γ as strong as that of

Doppler cooling. This means that blue-detuned Sisyphus schemes must work at detun-

ings δ greater than the natural line width Γ in order to overcome the Doppler heating

mechanism.

5.2.2 The 40K D1 Sisyphus mechanism

In real alkali atoms, the level structure is more complicated than the simple transitions consid-

ered in the previous section. A complication arises when there are F → F ′ + 1 and F → F ′ or

F → F ′ − 1 transitions close to each other in energy. In this case, the Sisyphus cooling from

one transition may have to compete with the Sisyphus heating from another. This is evidently

the case on the D2 transition in 40K: if we red-detune from the bright F = 9/11→ F ′ = 11/2

transition, we are also red-detuned from the dark F → F and F → F − 1 transitions, only a

few line widths away. This fact may explain why sub-Doppler cooling is known to work best

for atoms with a resolved and non-inverted excited state hyperfine structure such as 87Rb and

133Cs.

There exists a Sisyphus cooling mechanism on the 770 nm 4S1/2−4P1/2 D1 transition shown

in Figure 6.8. This is a F = 9/2→ F ′ = 7/2 transition and so it has two dark states. Notably,

there are only two excited states in this hyperfine manifold, well-separated in energy and both

providing a Sisyphus cooling mechanism to blue-detuned incident light. Figure 6.8 shows the

eigenvalues of this transition in the presence of a lin ⊥ lin cooling F = 9/2 → F ′ = 7/2 and

repumping F = 7/2 → F ′ = 7/2 light. From the broadening of the levels in Figure 6.8 it is

evident that atoms are most likely to be optically pumped when at the top of the light shift

potential. This then realizes the Sisyphus condition.

Inspecting Figure 6.8, we see that there are dark eigenstates that are unshifted by the light

at every point in space. This would seem to be a bad thing - if atoms were pumped to these

dark states, they would be lost to the cooling process. However, these states are not completely

dark. There are two mechanisms which bring atoms back into bright states: motional coupling

and off-resonant coupling. Motional coupling describes the process whereby an atom in a dark

state that is moving through the polarization lattice hops into a bright state. The motional

coupling rate increases with velocity [180], and has been estimated to be equal to Γm = kv [172].

Because this process is most likely to occur at the valley points of the light-shift potential, when

the two levels are closest, this process does not heat. Off-resonant coupling transfers atoms from
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Figure 5.8: 40K D1 energy levels in lin ⊥ lin polarization lattice. Left) Energies of the
coupled system with Ωr = 0.1 Ω in a blue-detuned lin ⊥ lin polarization lattice. Energies are
broadened in proportion to the optical pumping rate Γ′ = Γ|Ω/δ|2. Dark states (at h̄∆′ = 0)
are are not shifted or broadened by the light. Right) 40K D1 atomic level structure.

dark states into bright via a nearby excited state h̄δ2 away in energy:

Γoff ≈ Γ
Γ

δ2

I

Isat
. (5.19)

As with motional coupling, the off-resonant process usually couples atoms into the bottom

of the bright state potential and so does not add any energy. These two coupling processes

are equal in magnitude when v ≈ Γ
k

Γ
δ2

I
Isat

, corresponding to a temperature of 50µK for typical

experimental parameters. Atoms below this temperature spend more and more time in the dark

state, owing to the decrease of Γm, hence the name “gray molasses” for this type of Sisyphus

cooling technique. A gray molasses is especially well-suited for the cooling of cold, dense clouds

where the re-absorption of scattered photons from nearby atoms can be a limitation.

5.2.3 Raman-enhanced cooling

The temperature of the D1 gray molasses can be lowered if the frequency of the repump beam

is chosen carefully. Our explanation of this effect follows the arguments presented in [175]. The

3-level system in Figure 6.9 represents a simplified picture of the Λ-coupled 40K D1 system in

Figure 6.7. The choice of repump frequency δr determines whether atoms in the dark state

|1〉 (representing F = 7/2) are more likely to absorb into the excited state |3〉 (representing

F ′ = 7/2), or into the bright state |2〉 (representing F = 9/2). These two processes occur with

the rates:
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Γ1→3 =
Γ

2

s

1 + s+ (2 (δr + δ + h̄∆′))/Γ)2 , Γ1→2 =
Γ′

2

s′

1 + s′ + (2 (δr − h̄∆′) /Γ′)2 (5.20)

where s = 2 (Ω/Γ)2 and s′ = 2 (Ω/Γ′)2. If the atom absorbs into |3〉 at the top of the

light-shift potential, it will immediately decay to |2〉 in a valley. This is a cooling process as the

atom has to climb the potential in order to scatter back into |1〉. On the other hand, the atom

is most likely to scatter from |1〉 into |2〉 at the top of the potential where Γ′ is largest. This is

a heating process as the atom may only be pumped back into |1〉 when at a lower point in the

potential.

Different cooling behaviour is expected for different values of the repump detuning δr: for

δr < 0 and |δr| < Γ, strong cooling is expected as the atom preferentially scatters from |1〉 into

|3〉; for δr > 0 and |δr| < Γ, strong heating is expected as the atom preferentially scatters from

|1〉 into |2〉; for δr < 0 and Γ < |δr| < few Γ, weak cooling is expected as the atom only slightly

prefers scattering from |1〉 into |3〉; for δr > 0 and Γ < |δr| < few Γ, weak heating is expected as

the atom only weakly prefers scattering from |1〉 into |2〉; for |δr| > few Γ, sub-Doppler cooling

ceases to be effective as atoms get caught in |1〉 without any way to couple back into |2〉.

5.3 D1 cooling observations

We present an observation of the D1 Sisyphus cooling of 40K atoms in two different locations

in our apparatus: the MOT cell and the science chamber. Cooling in the MOT cell was

investigated in order to directly compare our observations to those of Fernandes et al. [172].

Investigating cooling in the MOT cell before the science chamber has a few practical advantages

as well. First, the ability to shine a D1 probe beam onto a continuously loaded trapped cloud

of atoms and see an immediate “push” or “quench” from the D1 light allows for quick trouble-

shooting of the early stages of laser-locking and AOM set-up. Second, the use of an interference

filter (Semrock FF01-769/41-25) aligned at the appropriate angle allows the 770 nm D1 light

to be overlapped onto the 767 nm D2 beam path, obviating alignment, polarization, and power

balancing work that would otherwise need to be done. Third, the short cycle time needed to

load and image a MOT + molasses sequence compared with transporting and evaporatively

cooling a cloud in the science chamber allows for a quick optimization of molasses parameters.

In the science chamber, D1 cooling observations are presented for atoms in free space, as

well as atoms trapped in harmonic and optical lattice potentials of varying depths. We present

evidence suggesting that D1 cooling used in combination with 405 nm excitation light is a

promising approach towards single-site imaging of 40K atoms in an optical lattice.
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Figure 5.9: Λ-cooling mechanism Atoms in the dark state |1〉 can either scatter into to the
excited state |3〉 (blue arrow), or into the bright state |2〉 (red arrow). For small detunings,
δr < |Γ|, scattering into |3〉 is most likely at the top of its light-shift potential. The atom
immediately decays to |2〉 at the bottom of its light-shift potential. The atom completes the
cooling cycle by scattering back into |1〉, something it is most likely to do after losing energy
climbing near the top of the potential. Scattering into |2〉 from |1〉, on the other hand, is most
likely to happen at the top of the light shift potential where Γ′ is largest. It decays back to |1〉
at a lower point in the potential, on average, causing heating. Note that the we have considered
the specific case where Ω and Ωr are in phase. The inset plot shows the critical detuning δcr
determined from the condition Γ1→3 = Γ1→2. For any δr < δcr, cooling occurs.
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Figure 5.10: 40K D1 level structure and spectroscopy: The 39K Doppler-free spec-
troscopy signal that we use for frequency locking is shown at left. Notice that the excited state
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Figure 5.11: D1 laser table schematic 770 nm light is generated with a home-built inter-
ference filter laser. A portion of the light is used to frequency stabilize the light by sending
(almost) counter-propogating beams through a K vapour cell. The probe beam is frequency
modulated at 10MHz using an EOM and the resultant photodiode signal is mixed with the
10 MHz reference in order to produce the error signal seen in figure 6.10. The remaining portion
of the light is shifted by +474 MHz using a 2×180 MHz AOM and a 110 MHz AOM. Sidebands
resonant with the repump transition are generated using an 1286 MHz EOM.

Figure 5.12: D1 cooling sequence from MOT Note that axes are not to scale. The D2
cooling light changes frequency between the MOT (δ = −30 MHz), cMOT (δ = −10 MHz), and
molasses (δ = −15 MHz) stages.
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5.3.1 Creation of 770 nm light

The D1 master laser is a home-built interference filter laser assembled by Simon Heun, similar

to the lasers used to generate D2 light and 87Rb trap light [70, 181]. The laser outputs 20 mW

of light, 0.5 mW of which is needed for frequency stabilization. The laser is locked to the

F = 1 → F ′ = 2 D1 transition in 39K using frequency modulation spectroscopy [182]: see

Figure 6.10. In contrast with D2 spectroscopy, the excited state hyperfine structure can be

resolved. Figure 6.11 shows the schematic for the D1 laser system. The light needs to be shifted

by +474 MHz in order to be resonant with the F = 9/2 → F ′ = 7/2 D1 cooling transition in

40K. This is done with a double-passed 180 MHz AOM and a single-passed 110 MHz AOM.

Light resonant with the F = 9/2 → F ′ = 9/2 D1 repump transition is generated with the use

of an EOM tuned to a frequency equal to the ground state hyperfine splitting ∆EHF/h. For

the MOT cell experiment, a tapered amplifier was added in between the final AOM and the

fiber coupler in order to boost the MOT-side power to 70 mW, corresponding to 25 Isat of total

intensity for beams 1 cm in waist.

5.3.2 D1 cooling in free space

As discussed in Section 6.2, Sisyphus cooling has a low capture velocity. This means that

in order for atoms to be sub-Doppler cooled, they must first be Doppler cooled. We collect

2.5×107 atoms in our MOT at temperatures of around 200µK. We use 5 Isat of cooling power

per beam, red-detuned by 5 Γ, and 3 Isat of repump light red-detuned by 3 Γ. The beams are

σ+/σ− polarized and a 10 G/cm magnetic gradient is applied. After a cMOT and D2 molasses

stage in which the cloud has been compressed to fit within the smaller-width D1 beams, the

temperature has increased to 300µK.

The D2 beams are then quickly shut off as the D1 trap and repump light are turned on to

Icool = 4Isat and Irepump = Icool/10, respectively. The detuning is initially chosen to be δ = 2Γ

for the trap and δr = 0 repump light. Because the D1 light travels along the same path as the

D2 beams, it is also σ+/σ− polarized. We can observe the cooling dynamics in Figure 6.13.

The D1 molasses cools the 300µK cloud to 30µK within 2 ms. The cooling time shortens to

200µs and final temperature increases to 60µK with only a very slight amount of D2 repump

light present. We attribute this to a “brightening” of the dark state: atoms are more quickly

coupled out of the dark state to join the cooling process, but the final temperature is higher

due to the increased rate of photon rescattering.

Next, we measure the number and temperature of atoms captured as a function of D1

trap detuning δ. As shown in Figure 6.14, for δ ∼ Γ we capture 2.5×107 atoms, the same

number initially present in the MOT. The captured number v.s. δ is peaked: too close to
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Figure 5.13: D1 sub-Doppler cooling time: Beginning from a 300µK D2 cMOT, the
temperature as a function of D1 cooling time with δ = 6 MHz and δr = −0.4 MHz. The
temperature of the cloud is seen to drop to 80µK within 100µs, taking a further 2 ms to
reach an asymptotic temperature of 30µK. This value may be compared a previously observed
asymptotic time of 6 ms [172] and a predicted value of 14 ms [183].

resonance, and atoms are heated out of the molasses; too far from resonance, and the capture

velocity becomes too small. We see that the temperature behaviour is also consistent with the

arguments presented in Section 6.2: the cloud cools as δ is increased. We observe that the

molasses is largely insensitive to the repump power above a 5 % ratio of of repump power to

trap power.

Perhaps the most striking aspect of the D1 sub-Doppler cooling mechanism is the sensitivity

of the final temperature to the repump detuning δr. Figure 6.14 shows that by changing δr

from 0 to 2 MHz, we heat the cloud from 30µK to temperatures greater than 180µK. This is

due to the Raman Sisyphus mechanism discussed in Section 6.2.3. When δr < 0, atoms in dark

states are more likely to absorb into the states with strong excited state character and undergo

a cooling cycle before returning to the dark state. Conversely, when δr > 0 an atom is most

likely to scatter via a two-photon transition directly into the bright state and be heated before

returning to the dark state. Because the Raman heating and cooling mechanism relies on the

presence of a polarization lattice, it is a sensitive measure of beam alignment and so can be

used to optimize the alignment of the much smaller-width beams that are used for cooling in

the lattice.

We notice in Figure 6.14 that the δr-dependent heating and cooling mechanism is unaffected

by the presence of an exciting 405 nm beam directed onto the atoms. The affect of the 405 nm

light is to couple more atoms from F = 9/2→ F = 7/2. Therefore, we do not expect a 405 nm
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Figure 5.14: D1 sub-Doppler detuning dependence: Left) The number and temperature
of atoms captured into a D1 molasses after 20 ms as a function of the trap detuning δ. Right)
The temperature of atoms captured into a D1 molasses after 20 ms as a function of the repump
detuning δr, with and without an exciting 0.05Isat 405 nm beam. For both plots Icool = 4Isat

and Irepump/Icool = 0.1.

beam to ruin the dark state cooling mechanism. However, the addition of 405 nm will result in a

new heating source (dE/dt)405
heat = E405

R Γ′405 that must be compensated by the cooling from the

D1 molasses (dE/dt)cool defined in Equation 6.16. This gives an upper bound on the allowed

405 nm scattering rate Γ′405:

Γ′405 � Γ′h̄∆′/E405
R . (5.21)

Finally, in order for sub-Doppler cooling to work, it must be the light field which lifts

the energy degeneracy of the different Zeeman sub-levels. The presence of a magnetic field

strong enough to compete with the light field µBB ≈ h̄∆′ would be expected to ruin the

state-dependent light shifts and destroy the sub-Doppler cooling mechanism. Indeed, we have

seen that by applying a bias magnetic field of different strengths, we increase the temperature

quadratically according to δT = 100µK/G2.

5.3.3 D1 cooling in an optical lattice

Sub-Doppler cooling a cold, dense cloud of atoms in a far-detuned optical lattice involves a set

of considerations not present when cooling atoms in free space. Because atoms are trapped

in lattice sites separated by only 527 nm, the cloud has a number density of around 1019 m−3,

compared with 1014 m−3 after the MOT. This increase in density means that atoms are much

more likely to be heated from the re-absorption of scattered photons from neighbouring atoms.
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To avoid this process, the scattering rate Γ′ should be kept small. In the lattice, it is the

oscillation frequency ωlatt that sets the kinetic energy scale. To prevent photon re-absorption,

the scattering rate should be kept smaller than the lattice oscillation frequency:

Γ′ < ωlatt. (5.22)

Equation 6.22 expresses the festina lente condition: the scattering rate must not be broadened

such that it can span two vibrational levels separated by ωlatt, allowing an atom by to be heated

by Raman scattering from one level to the next [133, 184]. Previous experiments [133] have

shown that the heating from rescattered spontaneously emitted photons is negligible when the

festina lente condition is met. For atoms at 10µK, the atoms are sufficiently dark to the cooling

beam that it is the off-resonant coupling rate Γoff that sets the condition in Equation 6.22.

Using the expression for Γoff defined in Equation 6.19, we get a constraint on the saturation

parameter:

I

Isat
<

δ2ωlatt

Γ2
. (5.23)

Using our experimental parameters (δ2 ≈ 160 MHz and ωlatt ∼ 2π × 200 kHz) we may evaluate

the RHS of Equation 6.23, and determine that I/Isat should be kept below 1. Note also that

we are within the Lamb-Dicke regime η ≡
√
ER/h̄ωlatt < 1 for both the 770 nm (η = 0.2) and

405 nm (η = 0.4) transitions in a 200µK deep lattice.

Another consideration when sub-Doppler cooling in a lattice is that the same light shift

potential which traps atoms also causes a shift in the transition energy. A multi-level calculation

of the AC Stark shift [1] shows that the 4P1/2 state is shifted by a factor of almost 5 up in

energy for every amount that the 4S1/2 ground state is shifted down. This means that for a

lattice of depth Vlatt, the D1 resonance will be blue-shifted by 6Vlatt. To first order, then, the

effect of the optical lattice is to make δ position dependent:

δ ≈ δ0 − 6Vlatt cos2 (kz) (5.24)

where δ0 is the free-space detuning. We have argued that Sisyphus cooling works when the

optical pumping rate Γ′ is greatest at the top of the light shift potential h̄∆′. Because Γ′

and h̄∆′ have different functional dependences on the detuning δ, the optical lattice might be

expected to confuse this relationship when h̄∆′ becomes comparable to 6Vlatt.

Atoms at 10µK are trapped to within
√
kBT/mωlatt ≈ 35 nm in a deep lattice, a distance

that is small compared to the λD1/4 polarization gradient period that an atom must traverse
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Figure 5.15: D1 lattice optics

in order to be cooled.

In order to circumvent both of these issues, we shake the polarization lattice at 400 Hz in the

vertical and one of the horizontal directions, and 600 Hz in the other horizontal direction. The

shaking is accomplished by placing a piezoelectric transducer onto the mirror that retro-reflects

the D1 light: see Figure 6.15. The shaking rate is slow compared with Γ′, but fast compared

with time required for imaging, and so allows us to average the Sisyphus cooling force over the

polarization lattice wavelength.

D1 lattice optics and alignment

Figure 6.15 shows the D1 optics schematic. After the fiber, we have 1.5 mW of 770 nm of light

to split between the trap and repump frequencies. We control how much repump power we

want by changing the amplitude of the 1286 MHz signal that is sent to the EOM. Note that the

repump power comes at the expense of trap power. We choose a beam waist of 1 mm, limited by

the distance between the atoms and imaging window. After transmission and coupling losses,

we are left with a maximum of 200µW per beam, or 4 Isat. We choose a σ+ − σ− polarization

configuration, similar to the free space experiment conducted in the MOT cell.

Coarse alignment of the 1 mm waist D1 beams is accomplished by making use of the large

87Rb atom number in the science chamber. Coupling 87Rb 780 nm light into the fiber, we

perform the first alignment iteration by attempting to heat atoms out of the lattice with a
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single beam. Once this has been done individually for all (non-retro-reflected) beams, the

alignment of a retro-reflected beam pair is fine-tuned by optimizing the fluorescence signal of

a re-captured 1D MOT using the quadrupole coils in the science cell. This allows us to check

that the polarization of the light has been set correctly. After all three retro-reflected beam

pairs have been aligned using the re-captured MOT fluorescence, the beams are aligned again

by optimizing the 1D, then 3D, fluorescence signal after a re-captured molasses stage. This

alignment procedure accounts for any spatial differences between the magnetic field zero of the

quadrupole coils and optical lattice trap.

Having aligned the beams to this point using a 87Rb signal, we switch to 770 nm 40K light for

final alignment stage. With the D1 light, we can no longer optimize alignment using a fluorescent

signal as the D1 light shelves atoms into a dark state. Instead, we can use absorption imaging

to align the beams so that the atom cloud is symmetrically “pushed” (for a single beam) or

“squeezed” (for a retro-reflected pair). Finally, we measure whether we have aligned the beams

well-enough to create a polarization lattice by changing the repump detuning δr to observe the

heating and cooling mechanisms described in Section 6.2.3.

D1 lattice cooling sequence and results

The lattice cooling experiment is performed after evaporating a cloud of 5×104 40K atoms to

approximately 200 nK in the cross-dipole trap. Before loading the 40K atoms into the lattice,

the F = 1 87Rb coolant atoms are removed by applying a 5 ms pulse of trap and repump light.

The optical lattice is then ramped on in 250 ms to a final depth between 0 and 200µK. The

20 G quantizing field is ramped off slowly (50 ms) in order to prevent eddy currents in the

surrounding metal chamber. If measurements are being made using absorption imaging, we

have found that it is important to pulse (0.5 ms) a D2 repump and optical pumping beam onto

the atoms in order to efficiently image them.

We measure the equilibrium temperature of atoms after 20 ms of D1 cooling as a function

of the lattice depth. This is done by fitting the width after time-of-flight after a diabatic (see

Equation 5.80) shut-off of the lattice. For zero lattice depth, we surpass our free-space results

from the proof-of-principle experiment in Section 6.3 and achieve a temperature of 16µK. This

could be the result of better magnetic field zeroing and better stray-light shielding. We observe

that increasing the lattice depth lowers the temperature of the laser-cooled atoms slightly to

10-12µK.

Figure 6.17 shows a plot of the in situ temperature v.s. repump detuning δr for atoms

trapped in an crossed dipole trap and a 200µK lattice. We can see that the temperature has

the same qualitative dependence on δr as in the free-space results plotted in Figure 6.14. That
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Figure 5.16: Temperature v.s. lattice depth: Approximately 105 40K atoms are cooled to
200 nK in a crossed dipole trap (XDT) and then loaded into an optical lattice of varying depth.
20 ms of D1 cooling light is then applied and the temperature is then measured by fitting the
width of the cloud after time of flight. The data points at 0µK lattice depth show the initial
temperature of the cloud (200 nK) and the temperature of the cloud after D1 cooling in free
space (16µK).
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Figure 5.17: In situ temperature v.s. repump detuning: Approximately 105 40K atoms
are cooled to 200 nK in a crossed dipole trap (XDT). We may then load the atoms into an optical
lattice (or not). We then apply 20 ms of D1 cooling light for various repump beam detunings
δr and then measure the temperature after time of flight imaging.
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is, the presence of the optical lattice does not destroy the Raman Sisyphus cooling mechanism.

In addition, we have observed that it is possible to continuously collect fluorescence from

lattice trapped atoms when simultaneously D1 cooling and exciting using a low-power 405 nm

beam. This preliminary data suggests that using both 770 nm and 405 nm light for cooling and

imaging represents a promising approach towards the high-resolution imaging of 40K atoms in

an optical lattice.
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Chapter 6

Conclusion and Outlook

We have designed, built, rebuilt, tested, and demonstrated full functionality of an apparatus

with the capability of imaging individual 40K atoms that have been loaded into an optical

lattice. We have created low-entropy states of matter that, when loaded into an optical lattice

potential, simulate the Hubbard model. We have described a novel approach to the problem

of imaging 40K with single-site resolution: combining a gray sub-Doppler laser cooling with

fluorescence from the 5P3/2 → 4S1/2 excited state transition. Here we summarize the main

results of this thesis.

A new ultracold atoms apparatus for 40K and 87Rb: The design and construction

of a new apparatus for cooling and magnetically transporting a cloud of 87Rb and 40K atoms

is presented in Chapter 2. In particular, we outline the particular benefits and challenges

encountered in our vacuum system design, magnetic transport system design, and choice of

atomic species for evaporation. We have found that the most reliable way to attain a high

vapour pressure of 40K is through a home-made dispenser source. Having a well-studied and

abundant boson such as 87Rb that is able to sympathetically cool 40K has proven invaluable in

trouble-shooting all aspects of the apparatus. The magnetic transport of 87Rb and 40K along

the axial direction of a set of coils has been shown to be well-suited for an apparatus that prizes

optical access. The sympathetic evaporation of 87Rb and 40K atoms in a quadrupole, plugged

quadrupole, and crossed dipole trap has been performed less than 1 mm from air, at the focus

of a high-NA imaging system. We have described the experimental sequence developed in the

lab, and provided alignment and trouble-shooting suggestions that we have found to be helpful

in optimizing the performance of our apparatus.

A quantum gas of 40K and 87Rb: In Chapter 3 we outlined the thermodynamics describ-

ing a quantum gas of bosons and fermions. In particular, we described the density distributions

expected for 87Rb and 40K in a harmonic trap. We described the plugged quadrupole potential
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and used it to evaporate of 87Rb to quantum degeneracy. Evaporation of both 87Rb and 40K

in a crossed dipole trap was observed, and we observed the importance of transferring 87Rb to

its lowest hyperfine ground state in order to protect against spin relaxation processes.

A 405 nm MOT for 40K: Chapter 4 provides an observation of Doppler cooling along

the 4S1/2 → 5P3/2 transition in 40K. We chose to explore cooling on this transition due to its

narrow linewidth compared and the possibility of capturing high frequency photons for singe-site

fluorescence imaging. We observed a minimum temperature of 63(6)µK and an increase phase

space density by a factor of twenty in the MOT. When cooling without a magnetic gradient

present, the lowest temperature that we observed was 85µK.

Optical lattices for 40K and 87Rb: The energies and states of atoms loaded into an optical

lattice potential were calculated in Chapter 5. In particular, we derived the Hubbard model

for a gas of cold atoms with short-range interactions in the lowest band of the optical lattice.

We described our experimental implementation of an optical lattice, including high-power fiber

coupling, optics layout, and beam alignment procedures. We present an observation of the 87Rb

superfluid-to-Mott insulator phase transition as a demonstration of our capability to create a

quantum many-body state in an optical lattice. We also observed the site-localization of 40K

atoms in an optical lattice as an example of a state that is ripe for probing with a single-site

imaging tool.

High-resolution imaging and 40K sub-Doppler cooling: We present an approach to

the single-site imaging of 40K in Chapter 6. We develop an intuitive criteria for determining the

objective NA required for determining the optical lattice site occupancy. The imaging objective

is characterized by imaging a nano hole array, 500 nm pinhole, and reflective target through a

200µm-thick sapphire window. We investigated the gray Sisyphus cooling of 40K on the D1

transition, observing a minimum laser cooled temperature of 16µK in free space, and 12µK in a

250µK-deep optical lattice potential. We observed that the cooling mechanism is not destroyed

when exciting the sample of atoms with 405 nm light.

Outlook: In the near future, we expect this apparatus to contribute towards a better

understanding of locally ordered states described by the Fermi-Hubbard model. In particular,

we are curious about the equilibration rates of Band insulating and Mott insulating states,

the onset of anti-ferromagnetic correlations, and the use of a single-site probe as a sensitive

thermometer to develop novel cooling techniques. We also expect this apparatus to be a useful

tool in exploring a broad range of bosonic and fermionic systems at the local level.
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Appendix A

Atoms in Electromagnetic fields

A.1 Atom in a Magnetic field

In the presence of a magnetic field, there are four terms in the Hamiltonian of hydrogen-like

atoms,

Ĥ0 = Ĥel + ĤFS + ĤHF + ĤZ, (A.1)

where Ĥel contains the non-relativistic kinetic energy of the electrons and the Coulomb inter-

action between them; ĤFS is the fine structure term that accounts for the interaction between

an electron’s spin Ŝ and orbital angular momentum L̂; ĤHF is the hyperfine structure term

induced by the interaction of the nuclear magnetic moment Î and the total electronic angular

momentum Ĵ; and ĤZ describes the interaction between the magnetic of the atom and an ex-

ternal magnetic field. The energy contributions of Ĥel and ĤFS are of order hundreds of THz

and a few THz, respectively, much larger than the MHz - GHz scales of ĤZ and ĤHF which can

mix in strong magnetic fields. When considering the behaviour an atom in a magnetic field, we

will therefore restrict ourselves to the Hamiltonian:

Ĥmag = ĤHF + ĤZ. (A.2)

For atoms with nonzero nuclear and electronic spin, ĤHF splits the ground states:

ĤHF =
AHF

h̄2 Î · Ĵ +
BHF

h̄2

3(̂I · Ĵ)2 + 3
2 (̂I · Ĵ)− Î2Ĵ2

2I(2I − 1)J(2J − 2)
, (A.3)

with AHF the magnetic dipole constant and BHF the electric quadrupole constant. Using

the identity Î · Ĵ = 1/2(F̂2− Î2− Ĵ2), we may find the energy splitting between J = ±1/2 states
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of the S = 1/2 ground state manifold:

∆EHF =
AHF

2
(I +

1

2
). (A.4)

For 87Rb, AHF = 2πh̄ × 3.417 341 305 45215(5) GHz and I = 3/2, giving ∆EHF ≈ 2πh̄ ×
6.834 682 GHz. For 40K, AHF = −2πh̄ × 285.730 8(24) MHz and I = 4, giving ∆EHF ≈ 2πh̄ ×
1.285 785 GHz [56].

The Zeeman Hamiltonian ĤZ describes the interaction of the atom with an external magnetic

field B:

ĤZ =
µB
h̄

(gJ Ĵ + gI Î) ·B, (A.5)

where gJ is the Landé g-factor of the electron and gI is the g-factor of the nucleus. In 87Rb the

S = 1/2 ground state, gJ = 2.002 331 13(20) and gI = −0.000 995 141 4(10), while in ground

state of 40K, gJ = 2.002 94, 1(24) and gI = 0.000 176 490(34) [56]. Because gI � gJ , the

interaction between the nucleus and the external magnetic field is negligible compared to that

of the electron, and so may be neglected in ĤZ.

Using this approximation, we may then calculate the eigenvalues of Ĥmag defined in Equation

A.2 using the Breit-Rabi formula [185]:

E

∆EHF
= − 1

4F+
± 1

2

√
1 + 2

mF

F+
x+ x2, (A.6)

where x = gjµBB/∆EHF, mF = mI±1/2 is the magnetic quantum number (projection of total

angular momentum along the field axis), B = |B| is the magnitude of the field, ∆EHF is the

hyperfine splitting, given in Equation A.4, and F+ = i+ 1/2.1

For weak magnetic fields, the magnetic dipole term ĤZ can be treated as a perturbation,

and the Zeeman shifts are linear: ∂E/∂B → gFmFµB, where gF is the Landé factor. For

ground states of alkalis, gF = ±1/F+, such that the stretched state has the moment of one µB.

The Breit-Rabi equation also gives the Zeeman energy at higher fields. The deviation from

linearity is called the quadratic Zeeman shift, and is proportional to (µBB)2/∆EHF. At very

high fields, B � ∆EHF/µB, the magnetic dipole term is the dominant effect. With the hyperfine

interaction now treated as a perturbation, the atomic levels become increasingly well described

1There is a sign ambiguity in the square root. When mF = F+ the ± 1
2

√
. . . term should be replaced by

+ 1
2
(1 + x); and when mF = −F+ the same term should be replaced by + 1

2
(1 − x). We have neglected the

interaction of the nuclear magnetic moment with the external field in this formula (ie, taken gi = 0), but still
retain i and mi as quantum numbers affecting the hyperfine energy and projection of the electronic spin. To
calculate microwave transitions to a precision better than 1%, these terms should be added back in: add a term
+(mFx)/(gJ/gI − 1) to the energy, and replace gJ with (gJ − gI) in x.
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by the quantum numbers mJ and mI , these being the individual spin projections of the electron

and nuclear angular momenta. Since the magnetic moment of the electron is much larger than

that of the nucleus, the energy states break up into a higher-energy set of mF = +1/2 (spin

up) eigenstates and a lower-energy set of mJ = −1/2 (spin-down) eigenstates. In this regime,

E → mJgJµBB +AHFmJmI . In each mJ set, level spacing is AHF.

A.2 Atom in an Electric field

An atom is polarizable. Take the Alkali atom, for instance: one electron orbiting around a

collection of closed shell electrons and a positively charged nucleus, functioning effectively like

a Hydrogen atom. The internal ground state of this atom is an nS state with l = 0 angular

momentum, the electron orbiting the nucleus with perfect symmetry. This symmetry can

be broken if an electric field is applied, resulting in an induced dipole moment between the

electron and the positively charged core proportional to the electric field p (ω) = α (ω) E. The

proportionality constant α (ω) is the complex polarizability which depends on the frequency ω

of the electric field.

The polarizability can be calculated by considering a classical model of an electron with

mass me bound to an atom with an oscillation frequency ω0 and damping rate Γω and driven

by an electric field: ẍ+Γωẋ+ω2
0x = −eE/me. The classical oscillation frequency ω0 corresponds

to the atomic transition frequency whereas the classical damping rate Γω = e2ω2/6πε0mec
3 is

due to the radiative energy loss experienced by the electron and related to the atomic transition

linewidth via Γ = ω2
0/ω

2Γω . Integrating for x yields the polarizability

α (ω) =
xe

E
=

e2

me

1

ω2
0 − ω2 − iωΓω

. (A.7)

We see right away that α (ω) is complex. A simple check also tells us that the real part of α (ω)

will dominate the atom’s behaviour in the limit when (ω2
0 −ω2)2 � ω2Γ2

ω. This limit describes

the off-resonant light-matter interaction regime in which the atom interacts dispersively, and

without energy loss, with the field, acquiring an energy shift proportional to the intensity I (r):

Vdip (r) = −1

2
< ~p · ~E >= −1

2
Re (α (ω)) I (r) . (A.8)

In limit where the imaginary part of the polarizability α (ω) dominates, (ω2
0 − ω2)2 � ω2Γ2

ω,

the atom radiates energy away by scattering photons, doing so at a rate:

Γsc (r) =< ~̇p · ~E >=
1

h̄ε0c
Im (α (ω)) I (r) . (A.9)
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This is the resonant light-matter interaction regime. Note that there is different detuning

(∆ ≡ ω − ω0) dependence between the potential energy and the scattering rate: whereas

Vdip ∝ I (r) /∆, Γsc ∝ I (r) Γ/∆2. For this reason, if the optical power is available, far-

detuned optical traps are generally preferable to near-detuned traps due the the reduced photon

scattering and associated heating.

Real atoms have more than two states, and thus more than one transition frequency ω0. In-

cluding the D1 and D2 excited states present in both 87Rb and 40K, we can derive an expression

for the dipole potential [186]:

Vdip (r) =
πc2

2

(
2ΓD2

ω3
D2

(
1

∆D2

− 1

∆D1 + 2ωD2

)
+

ΓD1

ω3
D1

(
1

∆D1

− 1

∆D1 + 2ωD2

))
I (r) (A.10)

where {ΓD1 , ωD1 ,∆D1 ≡ ω−ωD1} and {ΓD2 , ωD2 ,∆D2 ≡ ω−ωD1} are the line widths, transition

frequency, and detuning of the D1 and D2 states, respectively. The D2 line contributes twice

as much to the dipole potential as the D1 line owing to its greater line strength factor.

When understanding optical dipole traps, the conceptual point that should not be lost is

that an induced dipole moment allows an atom to lower its energy as long as the electromagnetic

field is changing slowly enough for the atom to respond. The response rate of the atom to an

electromagnetic field is given by the transition frequency. Inspecting Equation A.10, we can see

that when the field frequency is lower than the transition transition frequency, ∆ and Vdip (r)

are negative and so atoms prefer to in regions of high intensity. The opposite is true when the

field frequency is greater than the transition frequency. In this case, atoms are repelled from

regions of high intensity since they are not able to respond quickly enough and so are out of

phase with the driving field.
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