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1 Introduction

In the world of atomic physics, the alkali atoms sit in a place of honour.
The basis for their continued popularity is their relatively simple structure -
they look a lot like hydrogen, Nature’s simplest atom. In this seat, they have
become the tool physicists use to test their theories of a number of physical
phenomena. The realisation of Bose-Einstein Condensation (BEC) in a dilute
gas of alkali atoms (Na, Li) in 1995 [1] after years of futile attempts to do the
same with hydrogen made the alkalis an ever more useful tool.

Dilute gases of neutral alkali atoms have been used to cleanly demonstrate a
number of fascinating physical effects, including interference of matter waves [2],
the transition to the Mott-insulator phase [3] and other superfluid effects such
as the creation of vortices [4]. Most work done in so-called “cold atom” experi-
ments has been done with bosonic species, since most of the alkali isotopes are
bosons, and since the last step towards quantum degeneracy relies on collisions
between cold atoms (for evaporative cooling [5]), which are forbidden between
cold fermions. However, these obstacles have been overcome by cooling non-
identical particles simultaneously and allowing for collisions between species to
perform the evaporative cooling. The first realisation of Fermi degeneracy was
in 1999, and has been followed by a number of other experiments [6].

Experiments with ultra-cold fermions are especially exciting in that they
allow for the physics of condensed matter systems to be explored within the
realm of atomic physics. The behaviour of fermionic atoms is analogous to
that of the fermionic electrons that establish the physics of condensed matter.
The precise control and measurement afforded by atomic systems is in stark
contrast to condensed matter systems, where the structure of a sample is fixed
and where impurities will always exist. Dilute atomic gases can be manipulated
in many ways; the interactions between particles can be changed, the potentials
in which they sit are easily controlled, and their distributions in momentum- or
position-space are readily found.

Unlike bosons, there are only two stable alkali isotopes which are fermionic
- 6Li and 40K. The choice between the two generally depends on the scatter-
ing properties needed for a particular experiment. Potassium atoms have a
repulsive interaction at low temperatures, while Li atoms are attracted to one
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another. This report will focus on 40K, which is used in a number of laboratories
throughout the world.

Knowledge of the structure of 40K is crucial when performing experiments
using this atom. To address specific states of the atom, the hyperfine structure
should be well-understood. This report endeavours to calculate the hyperfine
splitting in the 40K atom, as a function of magnetic field (taking into account
the Zeeman effect), and to calculate the transition matrix elements, which will
give the probabilities for transitions between different hyperfine states under the
influence of an optical field. Props to Daniel Steck for inspiring this compilation;
his collection of 87Rb data [7] is incredibly useful, and this is an attempt to begin
the same for 40K.

2 Fine Structure

A quick glance at the periodic table reveals that the alkali atoms (Li, Na, K,
Rb, Cs, Fr) fall beneath hydrogen, that one atom for which wavefunctions are
calculated in beginning quantum mechanics courses. To good approximation,
the alkalis are considered “hydrogen-like” in that they have a single electron in
the s-state orbitting a charged core, which for hydrogen is just the nucleus, and
for the higher atomic numbers is the nucleus surrounded by closed shell electron
orbitals. The Coulomb interaction of this electron with the core, together with
the interaction between the angular momenta of the electron’s orbit and its spin,
gives rise to the discretisation of energy levels for the electron, known as the
fine structure.

For an electron orbitting a charged core, we consider an angular momentum,
L, associated with the orbital angular momentum, and an intrinsic angular
momentum, S, which is the spin of the electron. These are coupled through
the spin-orbit interaction [8] and we are free to label these energy levels by the
value of the total angular momentum of the electron, J.

In that which follows, the two fine structure transitions that will be con-
sidered are the two lowest lying transitions. Since, by selection rules, L must
change by one in a transition, the first two transitions from the ground state
(L = 0) are to the L = 1 state. These two lines are known as the D1 and the D2
lines, for angular momentum J = 1

2 and J = 3
2 respectively, where J = L + S

and J follows the triangle rule (i.e., |L− S| ≤ J ≤ L+ S).
Given that the fine structure splitting is most accurately determined by

experiment, measured values will be used. Table 1 gives the fine structure
splitting for the D1 and D2 lines of 40K in units of the wavelength of light
which drives the transitions between them.

3 Hyperfine Structure

The next degree of precision in determining the energy levels of the alkali atom
is to consider the effect of the nucleus. There will be two main contributions to
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Atomic number (Z) 19
Total nucleons (Z +N) 40

Relative natural abundance 0.0117% [9]
Atomic mass (m) 39.963886(28) amu [9]
Nuclear spin (I) 4 [9]

D1 Transition Wavelength (2S1/2 → 2P1/2) 770.10929 nm [10]
D2 Transition Wavelength (2S1/2 → 2P3/2) 766.70207 nm [10]

Table 1: General properties of 40K

the Hamiltonian which describes the energy of the atom: one due to the effective
magnetic field arising from the spin of the nucleus, I, the other from the finite
extent of the charge distribution of the nucleus and the associated higher order
electric multipole moments.

3.1 Effects of nuclear spin

In the first approximation, nuclear spin is neglected because of the large mass
of the nucleus in comparison to the electron. In going beyond the fine structure
calculations, it is, however, one of the first things for which we must account.
In simple terms, the spin of the nucleus interacts with the effective magnetic
field created by the orbital electron or with an external magnetic field.

3.1.1 Internal effects

As with the electron spin, S, we can associate with the nucleus an intrinsic
angular momentum, or spin, which shall be called I. It is the result of the
addition of the spins of each of the constituent particles in the nucleus, and is
determined by experiment. The spin of the 40K nucleus is I = 4 [9]. [As a note
of interest, it is the spin of the nucleus which determines whether the atom is a
boson or fermion. Since half-integer spin particles are fermions, and the spin of
the single valence electron is always S = 1/2, fermionic alkalis have integer spin
nuclei, which means they must have an even number of particles (since protons
and neutrons also have S = 1/2). Therefore, the mass number of a fermionic
alkali is even (like 40K) while bosons have odd mass numbers (like 87Rb).]

In the absence of an external magnetic field, we can write a term in the
Hamiltonian that accounts for the magnetic field of the electron,

HB,el = −µI

~
·BJ (1)

where µI is the magnetic moment of the nucleus, BJ is the effective magnetic
field due to the orbitting electron, defined by its angular momentum, J. Whereas
with the fine structure, we considered LS coupling, here, we consider IJ cou-
pling, that is, we consider that there are separate electron energy levels well
defined by the angular momentum J, which are much smaller than the energy
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levels calculated in the fine structure. A result of this approximation is that I
and J will be two good quantum numbers. Using this, we can take the nuclear
magnetic moment to be proportional to its angular momentum and apply the
projection theorem [8]

µI =
µI · I
I(I + 1)

I = gIµNI (2)

where we define an effective g-factor for the nucleus, gI and make use of the
nuclear magneton, µN = me/mN · µB , which is related to the Bohr magneton,
µB . This expression is written, for clarity, as

µI =
µI

I
I. (3)

Since, in writing down Eq. (1) we assume that BJ acts only in the electronic
(and not the nuclear) subspace, we can assume it is proportional to J and we
obtain an expression

HB,el = AhfsI · J (4)

where A is some yet-to-be-defined parameter, which is also measured experi-
mentally. To find an expression for A, we must consider the magnetic field at
the nucleus due to the orbital motion of the electron and the spin magnetism of
the electron some distance from the nucleus. Such an expression can be obtained
by considering the magnetic dipole moment in classical electromagnetism, and
the expression for the Hamiltonian is given by Ref. [11]:

Bel =
µ0

4π

{
−8π

3
µeδ(r) +

1
r3

[
µe ·µN −3

(r · µe)r
r2

− e

m
L

] }
. (5)

where µe = −2µBS with gs = 2. Inspection of this term reveals that the first
term vanishes for all states with L ≥ 1, since these wavefunctions vanish at the
origin. For these states,

HB,el =
(

2µ0µBµI

4~πI

)
I ·N
r3

(6)

with

N = L− S +
3(S · r)r

r2
. (7)

Since we wish to consider states diagonal in J, we may use the projection the-
orem, recognising that the operator N is a vector operator (it has components
like r), and obtain an expression [12]

HB,el =
(

2µ0µBµI

4~πI

)
N · J

J(J + 1)
I · J
r3

. (8)

The term N · J can be rewritten using J = L + S as

N · J = L2 − S2 + 3(S · r)(r · L)/r2 + 3(S · r)(r · S)/r2. (9)
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The third term vanishes since r · L = 0 and the second and fourth terms also
combine to give zero, which can be shown by writing out these terms in x, y, z
components. This leaves N · J = L2, such that within the fine structure man-
ifold, this term remains constant, and we may write an expression for Ahfs in
Eq. (4),

Ahfs =
(

2µ0µBµI

4~πI

) 〈
1
r3

〉
L(L+ 1)
J(J + 1)

; L 6= 0. (10)

For L = 0, Eq. (10) vanishes, but we are left with the first term from Eq.
(4). Since J = S, we can write the Hamiltonian in a form like Eq. (4) and find
an expression for A(J)

Ahfs =
(

2µ0µBµI

4~πI

) (
8π
3

)
|ψ(0)|2; L = 0. (11)

The parameter Ahfs is generally determined experimentally to greater preci-
sion than these approximations allow, and as such, the experimental parameters
will be used in the calculations which follow.

3.1.2 External effects

In addition to the effects within the atom, the nuclear and electronic spins
can also interact with external magnetic fields, which is commonly known as the
Zeeman effect. The term in the Hamiltonian arising from the external magnetic
field looks like

HB,ext =
1
~

(µJ ·B + µI ·B) (12)

where the terms µJ = gJµBJ and µI = gJµBI define the g-factors. By invoking
the projection theorem, expressions for the gJ factors can be obtained:

gJ = gL
J(J + 1)− S(S + 1) + L(L+ 1)

2J(J + 1)
+ gS

J(J + 1) + S(S + 1)− L(L+ 1)
2J(J + 1)

(13)
where gL and gS are experimentally determined values (the Landé g-factors) for
the magnetic dipole moments of the electron spin and electron orbital, quoted
in Table 2, along with the measured values of gJ , where available.

Expressions for the strong and the weak field limits of HB are common in
quantum mechanics or atomic physics textbooks (see, e.g. [13]). In the weak
field, the |F,mF 〉 states are the eigenstates of the system and the total spin of
the system must be taken into account, and the external field Hamiltonian can
be written

HB,extweak =
µB

~
gF F ·B. (14)

where

gF = gJ
F (F + 1)− I(I + 1) + J(J + 1)

2F (F + 1)
+ gI

F (F + 1) + I(I + 1)− J(J + 1)
2F (F + 1)

.

(15)
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Similarly, an expression for the high field value of the magnetic field has
eigenstates |J,mJ , I,mI〉, where the effects on the orbital electron are far greater
than those on the nucleus and the coupling is not important, the Hamiltonian
becomes

HB,extstrong =
µB

~
(gJJ + gII) ·B. (16)

Here, I will be considering all magnetic fields and will use the |J,mJ , I,mI〉
states to calculate the energy of the hyperfine interactions. Taking into account
all effects due to the nuclear spin, we find a Hamiltonian

HB = AhfsI · J +
µB

~
(gJJ + gII) ·B (17)

3.2 The electric quadrupole moment

In solving for the energy levels of a many-electron atom, one begins by us-
ing the approximation that the electrostatic interaction of the nucleus and the
electron is that between two point charges. This amounts to considering only
the monopole moment of the complete multipole expansion of the interaction.
Results of such calculations will suffice to yield the fine structure of the atom.
To go beyond this, the finite size of the nucleus must be accounted for, and can
be done by considering an electric Hamiltonian of the form [14]

HE =
1

4πε0

∫
τe

∫
τn

ρeρndτedτn
|re − rn|

(18)

where ρe(n) represents the charge distribution of the electron (nucleus) and dτ
the volume elements for each. By assuming that re > rn, we find that an
expansion in terms of spherical harmonics can be made, and

HE =
1

4πε0

∑
k

∫
τe

∫
τn

ρeρn

re

(
rn
re

)k

Pk(θen)dτedτn, (19)

where θen is the angle subtended by re and rn and

Pk(cosθen) =
4π

2k + 1

∑
q=−k

k(−1)qY
(−q)
k (θn, φn)Y (q)

k (θe, φe) (20)

where the Y (q)
k are the spherical harmonics.

This form of the expression is useful, for we may separate the dependence
on nuclear and electronic coordinates such that

H
(k)
E = Q(k)·(∇Ee)(k) =

q∑
q=−k

(−1)qQ(q)(∇Ee)(k)
q (21)

where

Q(k)
q =

(
4π

2k + 1

)1/2 ∫
τn

ρnr
k
nY

(−q)
k (θn, φn)dτn (22)
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and

(∇Ee)(k)
q =

1
4πε0

(
4π

2k + 1

)1/2 ∫
τe

ρer
−(k+1)
e Y q

k (θe, φe)dτe. (23)

The first (k = 0) term in this expansion yields the monopole moment, which
is exactly that which was taken into account to realise the fine structure. The
second term, the dipole moment, vanishes due to parity considerations. The
electric nuclear Hamiltonian must remain invariant under inversion of the spatial
coordinates, which means that expectation values of moments with odd powers
of rk vanish. As such, it is the quadrupole moment in which we are interested
as a first correction to the fine structure.

Retaining only the quadrupole term, (k = 2), Eqs. (22) and (23) can be
written in tensor form [15]

Qij =
∫

τn

ρn(rn)
(

3
xnixnj + xnjxni

2
− δijr

2
n

)
dτn (24)

(∇Ee)ij =
1

4πε0

∫
τe

ρn(re)
r2e

(
3
xeixej + xejxei

2
− δijr

2
e

)
.dτe (25)

These tensors, it should be noted, are symmetric, and have zero trace. Fur-
ther, since these tensors are constructed from elements (i.e. position operators)
whose commutation properties with I are all the same, it has been shown that
the matrix elements 〈I,mI |Qif |I ′,m′

I〉 all have the same dependence on the
magnetic quantum number mI [15]. This dependence can be gathered into a
single constant, and we can write the nuclear quadrupole tensor

Qij = C

[
3
IiIj + IjIi

2
− δijI2

]
(26)

where, if we define a scalar quantity, Q = 2
e 〈II|Q33|II〉, we can find C through

Q =
2
e

∫
τn

ρn[3z2
n − r2n]dτn

=
2
e
C〈II|3I2

z − I2|II〉

=
2
e
C(3I2 − I(I + 1) =

2
e
CI(2I − 1) (27)

and obtain an expression

Qij =
eQ

2I(2I − 1)

[
3
IiIj + IjIi

2
− δijI2

]
. (28)

A similar procedure for the electric quadrupole tensor yields matrix elements
diagonal in J to give

(∇Ee)ij =
−eqJ

J(2J − 1)

[
3
JiJj + JjJi

2
− δijJ2

]
. (29)
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ground (2S1/2) D1 (2P1/2) D2 (2P3/2)
Ahfs (MHz) -285.731(16) [16] -34.49(11) [17] -7.48(6) [17]
Bhfs (MHz) n/a n/a -3.23(50) [17]

Isotope shift, ∆ν (MHz) 125.58(26) [17] n/a n/a
(relative to 39K)

gJ 2.00229421(24) [18] 0.665885† 1.334102228†

gI 0.000176490(34) [18]
gS 2.0023193043737(75) [19]
gL 0.99998627(25)* (from [19]

Table 2: Electronic and magnetic parameters for 40K. All values are determined
experimentally unless otherwise noted. † Calculated using gS , gL with Eq. (13);
* Calculated using gL = 1−me/mnuc.

where

qJ =
1
e

∫
τe

ρe,J
3z2

e − r2e
r5e

dτe (30)

which gives a total electric quadrupole Hamiltonian HQ = Qij(∇Ee)ij .
Inspection of Eqs. (28) and (29) shows that since terms like 3/2(JiJj+JjJi) =

3Jz, the terms in square brackets vanish if I = 1/2 or J = 1/2. This is relevant
to the structure of the alkalis in that the ground state and D1 hyperfine state
energy shifts will have no contribution from the electric quadrupole term.

By combining terms through the use of commutation relations and perform-
ing some algebra [15], this gives

HQ =
e2qJQ

2I(2I − 1)J(2J − 1)

[
3(I · J)2 +

3
2
(I · J)− I2J2

]
. (31)

The coefficient Bhfs≡e2qJQ is generally used, and this has been measured for
most elements, including 40K (see Table 2).

4 Calculating the hyperfine splitting for all mag-
netic fields

Taking into account both the effects of the nuclear spin and the electric
quadrupole moment (the latter only for the D2 line), the hyperfine Hamilto-
nian can be written,

Hhfs = AhfsI · J +Bhfs

3(I · J)2 + 3
2I · J− I2 · J2

2I(2I − 1)J(J − 1)
+
µB

~
(gJmJ + gImI)B (32)

where all terms have been defined in §3. Experimental values for Ahfs, Bhfs, and
the g-factors are given in Table 2.
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The hyperfine splitting can be easily calculated in either the low magnetic
field or the high magnetic field situations. In the first, the magnetic field de-
pendent effects are treated as a perturbation and the good quantum numbers
are given by |F,mF 〉. In the latter, the electric quadrupole term is treated per-
turbatively, and the states |J,mJ , I,mI〉 define the good eigenstates. However,
neither approach gives a complete description of the magnetic field dependence
of the hyperfine splitting. To determine the energies at all values of the magnetic
field, Eq. (32) must be numerically diagonalised.

To perform such a calculation, it is necessary to choose a set of states under
which to write the original Hamiltonian. The |J,mJ , I,mI〉 states are a good
choice, as expressions for the matrix elements necessary for the calculation can
be found. In particular, if we can determine the matrix elements with respect
to the nuclear spin term of the Hamiltonian by considering the operator

I · J = IzJz +
1
2
(I+J− + I−J+) (33)

using
〈I,mI ± 1|I±|I,mI〉 =

√
(I ∓mI)(I ±mI + 1 (34)

and writing down the non-zero matrix elements for the operator (33) (See Ap-
pendix A).

Similarly, for the electric quadrupole term, it is useful to consider the oper-
ator

f = 3(I · J)2 +
3
2
I · J− I2 · J2 (35)

and determine the matrix elements with respect to it. These are also found in
Appendix A.

Finally, the term involving the magnetic field is diagonal in the |J,mJ , I,mI〉
basis, which makes the calculation of the relevant matrix elements relatively
simple.

The actual calculation of the energies can be performed numerically, and
was done using MATLAB. For each of the three manifolds considered, a vector
containing each of the possible states was created, i.e. for the 2S1/2 (ground)
state, there are 18 substates defined all possible combinations of mJ and mI

where − 1
2 ≤ mJ ≤ 1

2 and −4 ≤ mI ≤ 4. The Hamiltonian matrix is constructed
by calculating each element individually. For example, if the state vector is
defined as (using an |mJ ,mI〉 notation)

ΨmJ ,mI
=


|1/2, 4〉
|1/2, 3〉
|1/2, 2〉

...


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3/2

2
P

P
1/2

2

S
2

1/2

D1: 770.1093 nm

D2: 767.7021 nm 

F’ =5/2 (54.5 MHz)

F’= 7/2 (30.6 MHz)

F’ = 9/2 (−2.3 MHz)

F = 11/2 (−45.7 MHz)

F’ = 7/2 (86.2 MHz)

F’ = 9/2 (−69.0 MHz)

F = 7/2 (588.7 MHz)

F = 9/2 (−697.1 MHz)

125.6 MHz

Figure 1: Level diagram for 40K; calculated at zero magnetic field. All values
derived from constants in Table 2.

then we may define an 18 × 18 Hamiltonian matrix as

Hhfs =


〈1/2, 4|Hhfs|1/2, 4〉 〈1/2, 4|Hhfs|1/2, 3〉 〈1/2, 4|Hhfs|1/2, 2〉 · · ·
〈1/2, 3|Hhfs|1/2, 4〉 〈1/2, 3|Hhfs|1/2, 3〉 〈1/2, 3|Hhfs|1/2, 2〉 · · ·
〈1/2, 2|Hhfs|1/2, 4〉 〈1/2, 2|Hhfs|1/2, 3〉 〈1/2, 2|Hhfs|1/2, 2〉 · · ·

...
...

...
. . .

 .
This matrix is then calculated for a value of magnetic field, B, and nu-

merically diagonalised. The energy eigenvalues are stored, and this process is
repeated for 10 000 small increments in magnetic field. By plotting the energy
eigenvalues for all magnetic field values, we find that the low field eigenstates
gradually merge into the high-field eigenstates. A schematic of the zero-field
structure is shown in Fig. (1). The results of the full calculations, shown in
Figs. (2), (3), and (4) for the ground (2S1/2), D1 (2P1/2), and D2 (2P3/2) levels,
demonstrate the gradual transformation from |F,mF 〉 states to the |mJ ,mI〉
states.

Another useful piece of information to emerge from these calculations is the
set of eigenvectors valid for each magnetic field. MATLAB returns the eigen-
vector for each calculation, giving the coefficients of each element of (4) at each
magnetic field value. These numerical values tell us how the |mJ ,mI〉 substates
mix to form the real eigenstates. These values can be used to determine the
overall transition rates at each value of the magnetic field (See §6).
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Figure 2: Hyperfine energy shift for the ground state (2S1/2) of 40K as a function
of magnetic field. The highlighted curve is used in the calculation in §.

5 Transition Matrix Elements

To manipulate and probe atoms in experiments, electromagnetic fields are
used to couple energy levels to one another. In particular, levels with different
J values are generally separated by energies corresponding to optical frequencies,
allowing for the addressing of atoms with laser light.

When considering the interaction of atoms and electromagnetic fields, the
electric dipole term is the largest perturbation to the atomic energy levels [20].
This operator, defined by

HE1 = −er ·E(0, t) = d ·E(0, t) (36)

where E(0, t) is the time-dependent electric field at the origin, r is the posi-
tion operator at the origin, and d is called the dipole operator, can be treated
using time-dependent perturbation theory. Assuming that all transitions will
be made with near-resonant light, the rotating wave approximation (RWA) is
justified, and the radiative lifetime, and experimentally measurable quantity,
can be expressed in terms of the dipole matrix elements, (see, for example, Ref.
[21])

Aif =
1

τlife
=
ω2

0 |〈i|d|f〉|2

3πε0~c3
, (37)
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Figure 3: Hyperfine energy shift for the D1 manifold (2P1/2) of 40K as a function
of magnetic field

where τlife is the radiative lifetime, ω0 is the angular frequency of the electro-
magnetic field, i and f stand for the initial and final states, respectively, and
A12 is the rate of decay between these states.

Expressing the position operator as a first-rank spherical tensor allows the
application of the Wigner-Eckart theorem,

r =
1∑

q=−1

T (1)
q eq (38)

where the T (1)
q are the first-rank spherical tensors, and the eq are the unit direc-

tion vectors for each T
(1)
q . Each of these direction vectors represents a specific

polarisation of the light field: e±1 represent circularly polarised light (σ∓), while
e0 is linearly polarised light (π-light, oriented parallel to the quantisation direc-
tion) and they form a complete basis for the polarisation. The Wigner-Eckart
theorem is expressed as

〈i|d|f〉 = e
∑

q

〈i||T (1)||f〉
(

Pi

−mi

1
q

Pf

mf

)
eq, (39)

where we have introduced the reduced matrix element which is independent
of m, q and a generalised angular momentum, P , which will be either J or F
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Figure 4: Hyperfine energy shift for the D2 manifold (2P3/2) of 40K as a function
of magnetic field. The highlighted curve is used in the calculation in §.

in that which is to follow. The term in brackets is the 3-j symbol and is a
measure of the relative strength of transitions between initial and final states.
The transition rate is then

Aif =
ω3

0

3πε0~c3
|〈i||T (1)||f〉|2

{∑
q

(
Pi

−mi

1
q

Pf

mf

)2
}

(40)

where we have used the orthoganality of the eq to give diagonal elements in q.
In general, we do not resolve the lifetime between states but instead consider

a total decay from one excited level to the ground level. We may sum over all
possible states within each level to obtain the result, and find that, using the
normalisation condition for the 3-j symbols, the term under summation over q
is simply 1/(2Pf + 1) [8].

With this in hand, we can express the reduced matrix element in terms of
Atot

if and the transition probability for each transition between states can be
written using Eq. (39)

〈i|d|f〉 =

[
3πε0~c3(2Pf + 1)Atot

if

ω3
0

]1/2 ∑
q

(
P1

−mi

1
q

Pf

mf

)
eq. (41)
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D1 (2P1/2) D2 (2P3/2) Ref.
τ tot
life (ns) 26.79(7) 26.45(7) [22]

〈J ||d||J ′〉 (C·m) 3.478(5)× 10−29 4.917(7)× 10−29 -

Table 3: Lifetimes of D1 and D2 levels and associated reduced matrix elements
for 40K.

We can give the term under the square root the designation 〈i||d||f〉, a reduced
matrix element for the dipole operator which, as it should be, is independent
of q. Values for the radiative lifetime (that is, the time an atoms remains in
the excited state before it decays back to the ground state) for the D1 and D2
excited states (defined by P → J) have been measured and are given in Table
3, along with the associated 〈J ||d||J ′〉.

5.1 High-field transition matrix elements

In strong magnetic fields, the states defined by quantum numbers |J,mJ , I,mI〉
are good, as was seen in earlier discussion. The selection rules are ∆J = 0,±1,
∆L = ±1, ∆mJ = 0,±1 and ∆mI = 0 [23]. We can see this by rewriting Eq.
(39)

〈J,mJ , I,mI |d|J ′,m′
J , I,m

′
I〉 = (−1)J′−1+mJ 〈J ||d||J ′〉

(
J

−mJ

1
q

J ′

m′
J

)
〈I,mI |I ′,m′

I〉,

(42)
where the final matrix element dictates the selection rule mI = m′

I (as the
nuclear part is unaffected by the dipole field) and the 3-j coefficients give the
mJ selection rule. In general, we are interested in the relative probabilities for
transitions between states, since all other factors remain the same for transitions
within a given manifold. As such, it suffices to calculate the 3-j symbols and to
compare them.

5.2 Low-field transition matrix elements

In weak magnetic fields, the states defined by quantum numbers |F,mF 〉 are
good. Rewriting Eq. (39) in this case yields

〈F,mF |d|F ′,m′
F 〉 = (−1)F ′−1+mF 〈F ||d||F ′〉

(
F

−mF

1
q

F ′

m′
F

)
. (43)

The selection rules in the low-field regime are ∆F = 0,±1, ∆L = ±1, ∆MF =
0,±1, and F = 0 → F ′ = 0 transitions are not allowed [23]. Unlike the high-
field case, we do not have direct access to the reduced matrix element from
experimental measurements. To connect it to the values presented in Table 3,
we must make use of the 6-j symbols [24]. Considering a system of two parts,
which, when combined, create a total angular momentum, we can connect either
of the reduced matrix elements for the two parts with that for the complete
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system. In particular, we consider a total angular momentum F and the two
subsystems with angular momenta I and J. Since F = I + J, we can write,
using the Wigner-Eckart theorem in the J and F systems and the completeness
relationships for the 3-j symbols,

〈F ′||d||F 〉 = (−1)Jmax+I+Fmin+1
√

(2F + 1)(2F ′ + 1)
{
J ′

F

J

F ′
1
I

}
〈J ′||d||J〉

(44)
where the term in the curly brackets is the 6-j symbol, and the min,max
subscripts stand for the minimum or maximum values for F or J among the
primed and unprimed variables.

To determine the overall transition matrix element for the |F,mF 〉 states,
we substitute Eq. (44) into Eq. (43) and by collecting all coefficients (including
3-j and 6-j symbols into one, can obtain an expression

〈F,mF ||d||F ′,m′
F 〉 = CF (F,mF , J, q)〈J ′||d||J〉 (45)

where the coefficients, depending on total angular momentum, F , hyperfine
substate, mF , total orbital angular momentum, J , and the polarisation of the
excitation, q. These coefficients were calculated with the help of Mathematica
and are tabulated in Tables 4 through 7.
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Table 4: Coefficients CF (F,mF , J, q) for hyperfine dipole matrix elements for
EM transitions to the D1 (2P1/2) manifold for |F =7 /2,mF 〉 → |F ′,m′

F 〉, where
m′

F = mF + 1 for σ+, m′
F = mF for π, and m′

F = mF − 1 for σ−.
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Table 6: Coefficients CF (F,mF , J, q) for hyperfine dipole matrix elements for
EM transitions to the D2 (2P3/2) manifold for |F =7 /2,mF 〉 → |F ′,m′

F 〉, where
m′

F = mF + 1 for σ+, m′
F = mF for π, and m′

F = mF − 1 for σ−.
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6 A few practicalities

The above calculations are more than just an academic exercise. The values
found are useful in the design and implementation of experiments involving 40K.
In the following, I describe two examples of how this information will be of use
in the laboratory.

Many fermion experiments are working towards the realisation of superflu-
idity in a dilute atomic gas [25]. To do this, the scattering length between
particles (and the corresponding interaction potential) must be made large such
that the transition temperature to the superfluid state is high enough to be
experimentally observable [26].In general, this is accomplished through a Fes-
hbach resonance [27] - the magnetic field is tuned to a value where a bound
state for the molecular dimer is of the same energy as the free particles. This
resonance creates the strong interaction between particles. As such, working in
strong magnetic fields is necessary.

It may be interesting to consider the transition matrix elements between
states in the intermediate field, where neither the |F,mF 〉 nor the |J,mJ , I,mI〉
are good eigenstates. By using the results of the numerical diagonalisation,
we can write down the state at a given magnetic field as linear combination of
|J,mJ , I,mI〉 states. To give an example, let us consider the transition from the
ground state connected to |F = 9/2,mF = 5/2〉 and |mJ = −1/2,mI = 3〉 and to
the D2 excited state connected to |F = 5/2,mF = 5/2〉 and |mJ = 3/2,mI = 1〉
at a magnetic field of 85 gauss. Note that this transition is forbidden in the zero-
field limit (∆mF = 2) and in the high field limit (∆mI 6= 0). In the |mJ ,mI〉
basis, the eigenstates for the ground and excited states are, respectively:

|ψground〉 = −0.5473| − 1/2, 3〉+ 0.8370|1/2, 2〉 (46)

|ψD2〉 = −0.0003| − 3/2, 4〉+ 0.0127| − 1/2, 3〉 − 0.1690|1/2, 2〉+ 0.9855|3/2, 1〉.
(47)

To determine the appropriate transition matrix element, we consider

〈ψground|d|ψD2〉 = −0.0070〈−1/2, 3|d|−1/2, 3〉 − 0.1415〈1/2, 2|d|1/2, 2〉

= 〈1/2||d||3/2〉
[
0.0070

(
1/2

1/2

1
q

3/2

−1/2

)
−0.1415

(
1/2

−1/2

1
q

3/2

1/2

) ]
= −0.055〈1/2||d||3/2〉 ifq = 0 (48)

where terms that are disallowed by the selection rule ∆mI = 0 have been
omitted. We see that, for π light (q = 0) there is some probability for the
transition in the presence of a magnetic field, even though it is forbidden in
both high and low fields. It is important to consider which transitions are
possible at each field if accurate imaging is to be performed, as one could imagine
exciting unexpected transitions, realising more absorption than accounted for,
and miscalculating such things as atom numbers. The apparent selection rule
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Figure 5: Difference in resonance condition for two hyperfine transitions. This
difference in energy, ∆E, is defined as the energy for the σ+ transition from
the |F = 9/2,mF = 7/2〉 less the |F = 9/2,mF = 9/2〉 states. (Note that the
validity of these eigenstates begins to fail at higher magnetic fields)

that remains firm is that mF −m′
F = ±1 or 0, though we may now violate the

rules for F and mI .
In addition, the application of a magnetic field makes the energies of different

hyperfine states dependent on the magnetic field. To realise the superfluid
regime, non-identical particles must interact. This non-identicality is generally
realised by using two spin states of the same atom in 40K, the |F = 9/2,mF =
9/2〉 and |F = 9/2,mF = 7/2〉 [28]. Looking at Figs. (2), (4), we see that the
energy of the transition from ground to excited state is dependent on magnetic
field. If we wish to image only one spin state, we could choose a magnetic field
at which the resonance condition is significantly different (i.e. greater than a
linewidth) from the other.

In these experiments, data is generally collected via absorption imaging.
The principle of this technique is that light resonant to a transition between
hyperfine states is absorbed by the atoms. The amount of light absorbed is
recorded, and from this, one can determine such things as temperature and
momentum distributions. Assuming we image with σ+ light, which as seen
in Table 7 has a high transition probability, then we can plot the energy of
the transition as a function of magnetic field by simply subtracting the two
appropriate curves in Figs. (2), (4). Figure 5 shows this result. We find here
that a magnetic field of ≈ 80 gauss is required to separate the energy levels by
a linewidth (1/taulife = 2π 5.9 MHz). This separation allows the distinction
between different states to be done on the basis of the frequency of light.
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7 Conclusion

Despite its small natural abundance, 40K has risen to special status due to its
being one of the two stable fermionic isotopes among the alkalis. Experiments
using ultra-cold, quantum degenerate fermions have been used to demonstrate
a number of fundamental physical phenomena, including superfluidity, and have
the promise of delivering insight into unknown physical problems [29]. Precise
control over the internal states of the atoms in these experiments is necessary
for the realisation of these experiments. A good knowledge of the hyperfine
structure of the two strongest transitions, the D1 and D2 lines, allows for this
manipulation.

This report outlined the origin of the hyperfine splitting, looking at effects
from both the nuclear spin and the quadrupole moment. The hyperfine splitting
has been calculated in all regimes of magnetic field. A derivation of the transi-
tion matrix elements between states under the influence of optical radiation has
been given, and the results of these for all transitions between ground and D1
and D2 excited states have been tabulated. Finally, two applications of these
results are given as apply to experiments currently being performed.

Appendix A: Useful matrix elements

Some of the useful matrix elements for calculating the appropriate matrix ele-
ments of the Hamiltonian (32) can be determined using Eq. (33) and are stated
as follows:

〈J,mJ , I,mI |I · J|J,mJ , I,mI〉 = mJmI

〈J,mJ , I,mI |I · J|J,mJ + 1, I,mI − 1〉 =
1
2

√
(J +mJ)(J −mJ + 1)

×
√

(I −mI)(I +mI + 1)

〈J,mJ , I,mI |I · J|J,mJ − 1, I,mI + 1〉 =
1
2

√
(J −mJ)(J +mJ + 1)

×
√

(I +mI)(I −mI + 1)
(49)

Similarly, for the electric quadrupole term, expressions for the matrix ele-
ments of the operator (35) can be determined and are found in Appendix C of
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Ref. [14]:

〈mJ ,mI |f |mJ ,mI〉 =
1
2

[
3
2
m2

I − I(I + 1)
] [

3m2
J − J(J + 1)

]
〈mJ ,mI |f |mJ − 1,mI + 1〉 =

3
4
(2mJ − 1)(2mI + 1)

× [(J +mJ)(J −mJ + 1)(I −mI)(I +mI + 1)]
1
2

〈mJ ,mI |f |mJ + 1,mI − 1〉 =
3
4
(2mJ + 1)(2mI − 1)

× [(J −mJ)(J +mJ + 1)(I +mI)(I −mI + 1)]
1
2

〈mJ ,mI |f |mJ − 2,mI + 2〉 =
3
4
[
(J +mJ)(J +mJ + 1)(J −mJ + 1)(J −mJ + 2)

×(I −mI)(I −mI − 1)(I +mI + 1)(I +mI + 2)
] 1

2

〈mJ ,mI |f |mJ + 2,mI − 2〉 =
3
4
[
(J −mJ)(J −mJ − 1)(J +mJ + 1)(J +mJ + 2)

×(I +mI)(I +mI − 1)(I −mI + 1)(I −mI + 2)
] 1

2

(50)
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