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We measure the transport properties of two-dimensional ultracold Fermi gases during transverse
demagnetization in a magnetic field gradient. Using a phase-coherent spin-echo sequence, we are able
to distinguish bare spin diffusion from the Leggett-Rice effect, in which demagnetization is slowed by the
precession of a spin current around the local magnetization. When the two-dimensional scattering length is
tuned to be comparable to the inverse Fermi wave vector k−1F , we find that the bare transverse spin diffusivity
reaches a minimum of 1.7ð6Þℏ=m, where m is the bare particle mass. The rate of demagnetization is also
reflected in the growth rate of the s-wave contact, observed using time-resolved spectroscopy. The contact
rises to 0.28ð3Þk2F per particle, which quantifies how scaling symmetry is broken by near-resonant
interactions, unlike in unitary three-dimensional systems. Our observations support the conjecture that, in
systems with strong scattering, the local relaxation rate is bounded from above by kBT=ℏ.
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Conjectured quantum bounds on transport appear to be
respected and nearly saturated by quark-gluon plasmas
[1,2], unitary Fermi gases [3–11], and bad metals [12,13].
For many modalities of transport, these bounds can be
recast as an upper bound on the rate of local relaxation to
equilibrium 1=τr ≲ kBT=ℏ, where kB is the Boltzmann
constant and T is the temperature [14,15]. Systems that
saturate this “Planckian” bound do not have well-defined
quasiparticles promoting transport [1,12–15]. A canonical
example is the quantum critical regime, where one expects
diffusivity D ∼ ℏ=m, a ratio of shear viscosity to entropy
density η=s ∼ ℏ=kB, and a conductivity that is linear in T
[4,12,13]. These limiting behaviors can be understood by
combining τr with a propagation speed v ∼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kBT=m
p

, for
example, D ∼ v2τr. This argument applies to ultracold
three-dimensional (3D) Fermi gases, whose behavior in
the strongly interacting regime is controlled by the quantum
critical point at a divergent scattering length, zero temper-
ature, and zero density [4,16,17]. In such systems, one
observes D≳ 2ℏ=m [6–8] and η=s≳ 0.4ℏ=kB [3], com-
patible with conjectured quantum bounds.
However, in attractive two-dimensional (2D) Fermi

gases, scale invariance is broken by the finite bound-state
pair size, so the strongly interacting regime is no longer
controlled by a quantum critical point [16,18–23].
Strikingly, an extreme violation of the conjectured D≳
ℏ=m bound has been observed in the spin dynamics of an
ultracold 2D Fermi gas: an apparent diffusivity of 6.3ð8Þ ×
10−3ℏ=m near lnðkFa2DÞ ¼ 0 [24], where kF is the Fermi
momentum and a2D is the 2D s-wave scattering length. No

similarly dramatic effect of dimensionality is observed in
charge conductivity [12] or bulk viscosity [25], and such a
low spin diffusivity is unexplained by theory [11,19].
In this work, we recreate the conditions of Ref. [24] and

study the demagnetization dynamics of ultracold 2D Fermi
gases using both a coherent spin-echo sequence [8] and
time-resolved spectroscopy [7]. We find a modification of
the apparent diffusivity by the Leggett-Rice (LR) effect [26];
however, in disagreement with Ref. [24], we find that the
quantum bound for the spin diffusivity is satisfied in all
conditions accessible to our apparatus. Near lnðkFa2DÞ ¼ 0,
where the minimum diffusivity is observed, we quantify the
breaking of scale invariance by measuring the contact,
whose magnitude suggests that the gas is in a many-body
excited state during demagnetization.
Our experiments use the three lowest-energy internal

states, labeled j − zi, j þ zi, and jpri, of neutral 40K atoms.
Interactions between j − zi and j þ zi atoms are tuned by
the s-wave Feshbach resonance [27] at 202.1 G, while jpri
atoms remain weakly interacting with j � zi atoms, and any
atoms in identical spin states are noninteracting, since the
gas is ultracold. An ensemble of 2D systems is prepared by
loading a sympathetically cooled 3D cloud of j − zi atoms
into an optical lattice with a period of 380 nm along the x3
direction [28]. At the final lattice depth of V0 ¼ 50ER,
where ER=ℏ≃ 2π × 8.64 kHz, the 2D samples are isolated
from one another and in near-harmonic confinement with
ω3 ≃ 2π × 122 kHz. The transverse confinement with
ω1;2 ≃ 2π × 600 Hz is controlled by an optical dipole trap.
Immediately after loading, the 2D clouds are not rigorously
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in thermal equilibrium, but thermalization within each
plane occurs once demagnetization commences. The effec-
tive initial temperature ðT=TFÞi (assigned assuming isen-
tropic loading of the lattice [28]) can be varied between
0.20 and 1.20, where TF ≡ EF=kB and EFi ¼ ℏ2k2Fi=2m is
the Fermi energy of the central 2D system in its initial
polarized state. A static magnetic field gradient B0 along x1
is set to 20.3ð2Þ G=cm unless stated otherwise.
Transport of local magnetization M ¼ hMx;My;Mzi

occurs through a spin current Jj that can be decomposed

into a longitudinal component (J∥j∥M) and a transverse
component (J⊥j ⊥M), where bold letters indicate vectors in
Bloch space and the subscript j ∈ f1; 2; 3g denotes spatial
direction. Our measurements follow a standard spin-echo
protocol [29] that initiates a purely transverse current. In the
hydrodynamic regime, J⊥j is the sum of a dissipative term
−D⊥

eff∇jM and a reactive term −γM ×D⊥
eff∇jM, where

D⊥
eff ¼ D⊥

0 =ð1þ γ2M2Þ is the effective transverse diffusiv-
ity and D⊥

0 is the bare diffusivity [26]. The parameter γ
quantifies the precession of the spin current about the local
magnetization, which slows demagnetization—a phenome-
non known as the Leggett-Rice effect.
Dynamics are initiated by a resonant radio-frequency (rf)

pulse with area θ, which creates a superposition of j − zi
and j þ zi and thus a magnetization Mz ¼ − cosðθÞ and
Mxy ≡Mx þ iMy ¼ i sinðθÞ. The field gradient causes a
twisting of the xy magnetization into a spiral texture. The
gradient in the direction of M drives a transverse spin
current J⊥1 , which tends to relax Mxy → 0, while Mz is
conserved. These dynamics are described by [26]

∂tMxy ¼ −iαx1Mxy þD⊥
effð1þ iγMzÞ∇2

1Mxy; ð1Þ

where α ¼ B0Δμ=ℏ and Δμ is the difference in the
magnetic moment between j þ zi and j − zi. The solutions
of Eq. (1) depend on a dimensionless time RMth, where th is
the total hold time between the initialization pulse and final
readout pulse and RM ≡ ðD⊥

0 α
2Þ1=3 [28]. In our typical

conditions, R−1
M is on the order of 1 ms.

We measure the vector magnetization using a spin-echo
sequence as shown in Fig. 1(a). A π pulse at time th=2
reverses allMxy phases, so that evolution in the presence of
B0 causes an untwisting of the spiral magnetization texture.
The final π=2 pulse is applied with a variable phase lag
relative to the initialization pulse. The contrast in the final
populations in j � zi is used to determine the direction
ϕ ¼ arg ðMxy=iÞ and the magnitude jMxyj of the transverse
magnetization.
Figures 1(b) and 1(c) show an example of jMxyðthÞj and

ϕðthÞ, for an initial pulse angle θ ¼ 0.25π. The solution of
Eq. (1) for γ ≠ 0 gives ϕ ¼ γMz ln jMxy=Mxyð0Þj for all th,
and thus γ is found by linear regression on data such as
Fig. 1(c). Then, RM (and from it D⊥

0 ) is determined by a

nonlinear fit to jMxyðthÞj data, again using an analytic
solution of Eq. (1). Mxyð0Þ and B0 are independently
calibrated [28].
For the data shown in Fig. 1, at lnðkFia2DÞ ¼ 0.13ð3Þ

and ðT=TFÞi ¼ 0.36ð4Þ, we find D⊥
0 ¼ 2.3ð3Þℏ=m and

γ ¼ 0.6ð1Þ. These best-fit transport coefficients are under-
stood as an average both over the ensemble of 2D systems
and over the dynamical changes in the cloud, discussed
below. For strong interactions when the mean free path
∼1 μm is much smaller than the Thomas-Fermi length and
the typical minimal spin-helix pitch ∼5 μm, we expect
that the trap-averaged transport coefficients are close to
the homogeneous values. In this regime, the dynamics are
essentially local [30].
We search for conditions that minimize D⊥

0 by repeating
this characterization of MxyðthÞ at various interaction
strengths and initial temperatures. Figure 2(a) shows that
D⊥

0 is smallest when −0.5≲ lnðkFia2DÞ≲þ0.5, i.e., where
a2D is comparable tok−1F . This condition canbeunderstood by
considering the 2D scattering amplitude in vacuum: fðkÞ ¼
2π=½− lnðka2DÞ þ iπ=2� [23,31–33], which gives a maximal
(unitary) cross section 4=k at ka2D ¼ 1. Even though our
Fermi gas has a distribution of relativemomentak, the average
cross section at a low temperature can be estimated by the
replacement of k with kF, due to the logarithmic dependence
of f on the energy of the collision. In other words, corrections
to the unitary scattering cross section are only logarithmic
[18–22,34], which explains the qualitative similarity of
Fig. 2(a) to prior 3D measurements [8].
The lines in Fig. 2(a) show a kinetic theory both with and

without medium scattering (solid and dashed lines, respec-
tively) calculated in the jMj → 1 limit [11,30]. The model
also accounts for inhomogeneities in the following way.

(a)

(b) (c)

FIG. 1. Magnetization dynamics. (a) The time sequence used to
measure the magnetization dynamics is a simple spin-echo
sequence which allows us to measure (b) the amplitude and
phase (inset) of the ensemble-averaged transverse magnetization.
Populations are measured with absorption imaging after a Stern-
Gerlach separation [28]. Data are shown for θ ¼ 0.25π, which
prepares Mz ¼ −0.71. (c) γ is found from the slope of ϕðthÞ
versus Mz ln jMxy=Mxyð0Þj.
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First, the collision integral is solved to compute the
transverse spin diffusion time and LR parameter for a 2D
homogeneous system with the same spin density and
temperature as the trap center [11,35]. Next, these param-
eters are used to solve the Boltzmann equation for the
position-dependent spin density in the full trapping potential
for each 2D gas in the ensemble [30]. Finally, the average
magnetization dynamics is analyzed using Eq. (1). This
procedure predicts a minimal D⊥

0 slightly shifted from the
observed minimum, but its results agree well with the
increase of D⊥

0 in the weakly interacting regime. This
gives us confidence that inhomogeneity effects are well
understood.
The lowest observed diffusivity is D⊥

0 ¼ 1.7ð6Þℏ=m, at
ðT=TFÞi ¼ 0.19ð3Þ and lnðkFia2DÞ ¼ −0.1ð2Þ. The effect
of the temperature is shown in Fig. 2(b) and by data sets in
Fig. 2(a) taken at two temperatures. In all cases, our data
support the conjectured bound D⊥

0 ≳ ℏ=m.
Assuming that magnetization perturbations propagate at

vT ∼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kBT=m
p

, one can estimate the local relaxation time
τr withD⊥

0 =v
2
T . Figure 2(c) compares this time to the bound

ℏ=kBT. Another estimate of the relaxation time would use
the Fermi velocity vF, as τr ∼ 2D⊥

0 =v
2
F, which is the correct

scaling for the mean free time in imbalanced Fermi liquids
at a low temperature [26,28,35]. This yields τr ∼ 20 μs at
the minimum observed diffusivity, again on the order of
ℏ=kBT. In sum, a 2D Fermi gas with a2DkF ∼ 1 seems to
saturate, but not violate, the Planckian bound τ−1r ≲ kBT=ℏ
at the lowest temperatures probed here.
Figures 3(b) and 3(c) summarize measurements of γ

across a wide range of interaction strengths and temper-
atures. There are two implications of these data. First,
system-wide demagnetization is slowed by the spin
current precession. At short th, the solution to Eq. (1) is

jMxyj=jMxyð0Þj ¼ exp ð−D⊥
effα

2t3h=12Þ, with an apparent
diffusivity D⊥

eff, which is ¼ D⊥
0 =ð1þ γ2Þ for a fully polar-

ized cloud. This functional form was used in Ref. [24]
to determine a minimum “D⊥

s ” of 6.3ð8Þ × 10−3ℏ=m.
In similar conditions, we instead find D⊥

eff ¼ 7ð3Þ×
10−1ℏ=m. In both works, diffusivity is observed to be
minimal near lnðkFia2DÞ ¼ 0 and to double between
lnðkFia2DÞ ≈ 0 and lnðkFia2DÞ ≈ 1. However, we cannot
explain the 100-fold difference in scale.
The second implication of γ is to reveal the sign of

the interaction between the spin current and the local
magnetization [26,36,37]. When γ < 0, as we observe
for lnðkFia2DÞ≲ −1.5 [see Fig. 3(b)], interactions are
repulsive, whereas when γ > 0, as we observe for
lnðkFia2DÞ≳ −1.5, interactions are attractive. Associated
with the sign change of γ is the onset of a pairing instability,
since both are related to the sign change of the real part of
the low-energy scattering T matrix [8,11,38]. We find
indirect evidence for this from atom loss [see Fig. 3(a)],
since Feshbach dimers are a precursor to the formation of
deeply bound molecules [39], which are lost from the trap.
In 3D, this loss rate is higher on the repulsive side of
unitarity, but in 2D, we observe the strongest loss on the
attractive side, at lnðkFia2DÞ ∼ 1 [40]. We discuss this
further below.
One consequence of demagnetization is a cloud-wide

redistribution of energy. For a 2D harmonically trapped
Fermi gas, the virial relation is [41]

V ¼ 1

2
Eþ ℏ2

8πm
C2D; ð2Þ

where V is the total potential energy, E is the total energy,
and C2D is the (extensive) 2D contact [41,42]. Even though

(a) (b)
(c)

FIG. 2. Transverse spin diffusivity. (a) D⊥
0 versus interaction

strength lnðkFia2DÞ with ðT=TFÞi ¼ 0.31ð2Þ (black circles) and
ðT=TFÞi ¼ 0.21ð3Þ (open squares). Each data point corresponds
to a complete data set as shown in Fig. 1. The lines are predictions
for T=TF ¼ 0.3 by a kinetic theory, as described in the text.
(b) D⊥

0 versus the initial reduced temperature ðT=TFÞi at
lnðkFia2DÞ ¼ −0.1ð2Þ. (c) Local relaxation rate τr estimated as
D⊥

0 =v
2
T . Shaded regions show D⊥

0 < ℏ=m in (a),(b) and τr <
ℏ=kBT in (c). Data are consistent with the conjectured quantum
bound, which would exclude the shaded areas on all plots.

(a)

(b)

(c)

FIG. 3. Change in the sign of the interaction. (a) The fraction of
atoms remaining at th ¼ 3.5 ms. (b) γ vs the interaction strength,
with ðT=TFÞi ¼ 0.31ð2Þ (black circles) and ðT=TFÞi ¼ 0.21ð3Þ
(open squares). (c) γ versus the initial reduced temperature
ðT=TFÞi, at lnðkFia2DÞ ¼ −0.1ð2Þ. The change in the sign of
γ, at lnðkFia2DÞ ≈ −1, is associated with the onset of a pairing
instability.
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the trap explicitly breaks scale invariance, an SO(2,1)
dynamical symmetry survives at the mean-field level
[43] but is broken by a quantum anomaly whose expect-
ation value is C2D [21]. E is conserved in this isolated
system; however, C2D increases from zero for the non-
interacting initial state to a finite positive value for the final
state. This implies that V must also increase, which in
turn dictates an increase in the rms cloud size: V=N ¼
1
2
mðω2

1hx21i þ ω2
2hx22iÞ.

Using rf spectroscopy, we measure C2D throughout the
demagnetization dynamics. The protocol is as described
in Ref. [7] and depicted in Fig. 4(a). The dynamics are
initiated with a θ ¼ π=2 pulse, and the sample is probed
with a spectroscopic pulse that couples the states j þ zi and
jpri after a hold time th. The transfer rate of population to
state jpri is measured as a function of the detuning ωrf from
the bare spin-flip resonance and is known to scale with
C2Dω−2

rf in the limit ωrf ≫ EF [34,44–46]. We compensate
for final-state interactions between the jpri atoms and
j � zi atoms in our analysis [28,34,47].
At ln ðkFfa2DÞ ¼ 0.00ð5Þ, we find that the contact rises

from zero to C2D=N ¼ 0.28ð3Þk2Ff, where kFf2 ¼ kFi2=2
after complete depolarization. Using Eq. (2), one finds
V − E=2 ¼ 0.022ð2ÞEFf per particle. In contrast, for a 3D
gas at unitarity, the contribution of the contact to the virial is
zero: V − E=2 is proportional to C3D=a3D and goes to zero
when a−13D → 0.
A final thermodynamic transformation accompanying

demagnetization is a temperature rise due to the combina-
tion of increased spin entropy and decreased occupation of

the Fermi sea [48]. For an initial temperature of 0.3ð1ÞTFi
and a π=2 pulse, we observe Tf ¼ 0.7ð2ÞTFf near
ln ðkFfa2DÞ ¼ 0. Because of the released attractive
interaction energy, this temperature rise is larger than the
Tf=TFf − Ti=TFi ≈ 0.25 one would expect from the
demagnetization of an ideal gas. However, the temperature
rise is 3 times smaller than the Tf=TFf − Ti=TFi ≈ 2.2 that
is predicted by matching the initial energy and number to
the equilibrium 2D equation of state [49–51].
One interpretation of these observations is that few or no

dimers are formed during demagnetization. This is cer-
tainly true when a2D < k−1F , where the system is not a
dimerized superfluid as it would be in the ground state. But
even when a2D ∼ k−1F , measurements of T and C2D suggest
that the system remains in the upper energetic branch. The
value of C2D=Nk2F we observe is roughly 20 times smaller
than the contact strength in an equilibrium mixture at
ln ðkFa2DÞ ¼ 0 [46,49]. The equilibrium contact is pri-
marily due to a mean-field dimer contribution C0 ≈ 4Nk2F.
Without dimers, the contact in the upper branch would be
due to short-range correlations of unbound atoms, and in
fact the value we observe is comparable to C2D − C0 in the
lower branch [52]. Unlike in 3D, the dimer binding energy
in 2D is greater than EF at the Feshbach resonance, so that
an attractive upper branch is energetically well defined.
Figures 4(b) and 4(c) show the typical dynamics we

observe when measuring C2DðthÞ. Because of Pauli exclu-
sion, we can use such data to infer magnetization dynamics:
Pairs of fermions must have a singlet wave function to
interact through an s-wave contact interaction. The singlet
fraction can be no larger than 1 − jMj and would be
ð1 − jMj2Þ=4 for uncorrelated spins [7,53,54]. For the
π=2 initialization pulse performed here, jMj ¼ jMxyj, since
Mz ¼ 0. A direct comparison between M and C2D at
B0 ¼ 20 G=cm (see [28]) shows a correlation that lies
between these two limits: C2D=N is proportional to
1 − jMxyðthÞj1.4ð2Þ. This form with γ ¼ 0.71 is used to fit
C2D data for a variety of gradients [see Figs. 4(b) and 4(c)]
and extract RM.
Across the experimentally accessible gradients B0,

Fig. 4(d) shows a range of RM from 4.4ð2Þ × 102 to
2.9ð2Þ × 103 s−1. Throughout, RM scales with α2=3 (see
the dashed line) and can be explained by a single diffusivity
D⊥

0 ¼ 1.1ð1Þℏ=m. This verifies that the microscopic D⊥
0 is

independent of B0 across the accessible range and, thus,
independent of the pitch of the spin helix. The comparable
magnitude of D⊥

0 determined by two measurement
techniques is also a reassuring check on the fidelity of
the spin-echo sequence used inM measurements, since the
measurement of C2D does not rely upon the successful
rephasing of the spins at the echo time.
In summary, we observe quantum-limited spin transport

in 2D Fermi gases when a2D is tuned to be comparable to
k−1F . We find that the conjectured lower bound D⊥

0 ≳ ℏ=m

(a)

(b)

(c)

(d)

FIG. 4. Contact dynamics at lnðkFia2DÞ ¼ 0.35ð5Þ and
ðT=TFÞi ¼ 0.31ð2Þ. (a) C2D is measured after a hold time th
by a pulse detuned by ωrf from the j þ zi-to-jpri transition.
(b) Contact growth for B0 ¼ 25 G=cm. (c) Contact growth for
B0 ¼ 2 G=cm. (d) The best-fit RM ¼ ðD⊥

0 α
2Þ−1=3 determined

from contact growth (black points) versus B0. The shaded region
corresponds to RM withD⊥

0 < ℏ=m. The open point indicates RM

fromM dynamics at 20 G=cm. The dashed line shows the best-fit
diffusivity D⊥

0 ¼ 1.1ð1Þℏ=m.
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is respected for all interaction strengths, temperatures, and
applied field gradients accessible to our apparatus. This
supports the generality of the bound τ−1r ≲ kBT=ℏ beyond
quantum critical systems, since the finite C2D observed in
this system signifies a broken scaling symmetry near
unitarity.
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