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We measure the conductivity of neutral fermions in a cubic optical lattice. Using in situ fluorescence
microscopy, we observe the alternating current resultant from a single-frequency uniform force applied by
displacement of a weak harmonic trapping potential. In the linear response regime, a neutral-particle analog
of Ohm’s law gives the conductivity as the ratio of total current to force. For various lattice depths,
temperatures, interaction strengths, and fillings, we measure both real and imaginary conductivity, up to a
frequency sufficient to capture the transport dynamics within the lowest band. The spectral width of the real
conductivity reveals the current dissipation rate in the lattice, and the integrated spectral weight is related to
thermodynamic properties of the system through a sum rule. The global conductivity decreases with
increased band-averaged effective mass, which at high temperatures approaches a T-linear regime.
Relaxation of current is observed to require a finite lattice depth, which breaks Galilean invariance and
enables damping through collisions between fermions.
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The resistance of a metal is normally dominated by
phonons, impurities, and crystalline defects, with electron-
electron scattering playing a minor role. For ultrapure
samples, it has been found that this situation can be
reversed with collisional physics instead playing a major
role in electrical properties [1–4]. Optical lattices provide
ultracold atoms with a crystalline environment of compa-
rable purity, and also with an effectively infinite Debye
temperature [5]. These properties allow for the study of
transport in conditions inaccessible to typical materials: at
temperatures comparable to the Fermi energy, yet where
phonons are absent and the crystal remains intact [6].
Moreover, the strength of particle-particle scattering,
which is the sole remaining source of dissipation, can be
tuned using a Feshbach resonance or by adjusting the
lattice depth.
In this Letter, we study the conductivity of ultracold

fermions in an optical lattice subject to weak harmonic
confinement. Nonequilibrium transport of ultracold fer-
mions in periodic potentials has been investigated previ-
ously through step response [7–9], in a mesoscopic two-
terminal geometry [10–12], in the context of disorder-
induced localization [13,14], through quasimomentum
relaxation [15], by observing diffusion [16,17], and by
studying expansion dynamics [18–21]. Here we realize the
proposal of Wu, Taylor, and Zaremba [22], closely related
to the proposal of Tokuno and Giamarchi [23], to measure
conductivity σðωÞ directly through the ratio of the current
response JðωÞ to an alternating force FðωÞ. In this
proposal, the weak harmonic confinement of the system

results in a low-frequency resonance in σðωÞ near the
harmonic trap frequency. The spectral width and weight of
this resonance reveal the current dissipation rate and carrier
inertia, which are the key low-energy transport properties
of a metal.
Our sample is a balanced spin mixture of the two lowest

hyperfine states of fermionic 40K, trapped in a cubic lattice
with period aL ¼ 527 nm. Typically N ¼ 104 atoms are
loaded into the lattice at a depth V ¼ 2.5ER and scattering
length as ¼ 180a0 between the spin states, where ER ¼
ℏ2ðπ=aLÞ2=2m is the recoil energy, m is the mass of a 40K
atom, and a0 is a Bohr radius. At this depth, t ¼ h × 570 Hz
is the nearest-neighbor tunneling strength. Temperatures T
are measured independently for each dataset [24], and
typically range from 1.2t to 3.3t (here kB ¼ 1), or 0.3TF
to 0.9TF, where TF is the Fermi temperature.
A periodic displacement of one or both of the laser

beams forming a crossed dipole trap (XDT) [Fig. 1(a)]
creates the analog of the externally applied voltage in an
electronic conductivity measurement. The uniform force
Fβ is linear in the trap displacement dβ in direction β,
through an in-plane spring constant mω2

XDT, where
ωXDT ¼ 2π × 32ð1Þ Hz. The amplitude of the periodic
force is increased linearly over 150 ms, and then held
constant for 50 ms. After a further variable time td, up to
two drive periods, the dynamics are frozen by increasing V
to 60ER in 0.1 ms, and the drive is turned off. The in situ
density distribution of the cloud is recorded at V ¼ 103ER
via fluorescence in a quantum gas microscope [25–33]
apparatus described previously [34].
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From images of the central four planes [see Figs. 1(b),1(c)],
we determine projections of a site-granulated center-of-mass
position operator R̂α¼x;y ¼ N−1P

i;srα;in̂i;s, where n̂i;s is the
number operator for an atom of spin s on lattice site i located
at rα;i. hR̂αðtÞi is fit toAα cos½ωtd − ϕα� [see Fig. 1(d)],where
ω is the drive frequency (typically 2π × 10–200 Hz) and Aα

andϕα are fit parameters. The steady-state bulk current is then
hĴαðωÞi ¼ NdhR̂αðωÞi=dt. As shown in Fig. 1(e), remaining
in the linear-response regime restricts hR̂αi to the micron
scale, emphasizing the need for high-resolution measure-
ment. In complex notation, the global conductivity σαβðωÞ
can be determined through the equivalent of Ohm’s law [22],

hĴαðωÞi ¼
X
β

σαβðωÞFβðωÞ: ð1Þ

In terms of fit variables and drive strength, σαβðωÞ ¼
−iNωAαðωÞ exp½iϕαðωÞ�=FβðωÞ. We write the conductivity
in dimensionless form σ=σ0, where σ0 ≡ Na2L=ℏ sets the
scale of the Mott-Ioffe-Regel limit [35].
Figure 2(a) shows an example of on-diagonal conduc-

tivity, σxx. We observe both a peak in Re σxx and a zero
crossing in Im σxx at finite frequency, in contrast to the dc
peak expected in a conventional metal with Drude-like
response. This can be understood as a capacitive effect of
the harmonic trap, which shifts the peak response to its
oscillation frequency, renormalized by the effective mass of
particles in the lattice [9].

Figure 2(b) shows that in the same conditions, σxy − σyx
is a smaller and noisy signal. When integrated using a sum
rule for off-diagonal conductivity [36], we find a cyclotron
frequency of 2π × ð0� 2Þ Hz. This is expected, since no
gauge field is applied here, however the method could be
used to explore the finite-frequency anomalous conduc-
tivity of systems with broken time-reversal symmetry
[37–40]. In the remainder of this Letter, we report only
on-diagonal response.
In a pure harmonic trap, Re σxx is a measurement-time-

limited peak at the bare trap frequency [41] [see Fig. 2(c)],
but the addition of a lattice broadens the response by
enabling current dissipation [Figs. 2(d)–2(f)]. The Kubo
relation [42,43] gives σðωÞ as the Fourier transform of the
retarded current-current correlation function, and thus a
finite current lifetime τ broadens the ac conductivity spectra
by τ−1. The damping of the current is seen through the
diminished quality of the resonance, similar to cavity-
perturbation techniques employed in microwave spectros-
copy of conductors [44,45]. In the absence of phonons,
defects, and impurities, collisions between the fermions are
responsible for dissipation of current. However, low-energy
collisions in the parabolic sector of the dispersion relation
ϵðkÞ do not contribute, since velocity and quasimomenta
are proportional, as in free space [22,41,46–48]. The full
band structure breaks Galilean invariance at higher quasi-
momenta, and enables collisional current dissipation [49].
The broadening of the global response includes not

only irreversible decoherence due to collisions, but also
dephasing due to the nonparabolic dispersion relation.
To deconvolve these two effects, we developed an effective
model based on linear response theory using the exact
eigenmode structure of the single-band confined-lattice
Hamiltonian [50–52], ĤCL ¼ Ĥ0 þ ĤP. In this model, a
tight-binding (TB) kinetic energy Ĥ0 ¼ −t
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FIG. 1. Measurement. (a) Atoms in a 3D optical lattice are
driven by periodic displacement of one or both trapping beams
(XDT). (b),(c) In situ images are taken after various drive times td
and the center of mass is extracted. (d) The displacement of the
center of mass is fit to a single-frequency response (solid line)
typically across two periods in trap displacement (dashed line).
Data is for a 40 Hz drive and V ¼ 2ER lattice. (e) The response
amplitude Ax is shown versus drive dx in typical conditions and at
several ω. The linear response limit is found for Ax ≲ 1 μm, as
seen by comparison to the lines fit at low Ax.
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FIG. 2. Conductivity spectra. (a) Real and imaginary on-
diagonal conductivity, and (b) difference in real off-diagonal
conductivities, versus drive frequency. Here, V ¼ 2.5ER, with
background as. Lines show fits to Eq. (2). (c) For V ¼ 0, a
Fourier-limited response is observed, with mSxx=N ¼ 1.01ð8Þ
and Γ ¼ 18ð1Þ s−1. (d),(e),(f) For increasing V, the response
broadens and spectral weight (shaded) decreases. By V ¼ 4ER,
mSxx=N ¼ 0.37ð2Þ, and Γ ¼ 370ð140Þ s−1. The upwards shift in
frequency is due to increased confinement from the lattice beams.
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where ĉi;s is the annihilation operator and hi; ji are adjacent
sites, is combined with parabolic confinement ĤP ¼
ðm=2ÞPα;i;sω

2
0αr

2
α;in̂i;s, with trap frequency ω0α in the α

direction. For noninteracting atoms, linear response theory
predicts that the global conductivity at ω is given by

σðCLÞxx ðω;ΓÞ ¼ Nω

iℏ

X
p0≠p

ðfp − fp0 Þjhp0jR̂xjpij2
ω − ωpp0 þ iΓ=2

; ð2Þ

where fp is the occupation of the eigenstate jpi of ĤCL,
and ℏωpp0 is the energetic splitting between states. The
broadening Γ represents the adiabatic ramp rate of the
perturbation, but here is extended to also model weakly
dissipative effects such as interaction-induced collisional
damping [53–55]. Conductivity spectra are fit to Eq. (2)
with variable Γ, Maxwell-Boltzmann fpðTÞ, and a small
(≤ 2.5 Hz) trap frequency shift. Examples are shown
in Fig. 2.
Figure 3 shows the best-fit Γ found for 21 different

σxxðωÞ spectra with N, as, or V varied, or a quantity of heat
energy Q added before lattice loading to change T. The
lowest Γ are clustered near some nonzero minimum, which
is comparable to the ΓPol ¼ 36ð4Þ s−1 found for a spin-
polarized ensemble (dashed horizontal line) at V ¼ 2.5ER.
Contributors to ΓPol could include finite measurement time,

nonquadratic terms in the confinement, and imperfections
in the optical lattice. An independent study of the Fourier
limit, with only the XDT beams [24], gives Γ ≥ 18ð3Þ s−1
for the time sequence used here. A study of the effects of
controlled disorder on σðωÞ is beyond the scope of this
work, but would be an interesting complement to
Refs. [13,14,18,56–59].
For Γ ≫ ΓPol, Fig. 3(a) shows a roughly linear trend

versus the product n↑U2=t, where n↑ is the density-
averaged filling, and U and t are calculated parameters
for the Fermi-Hubbard Hamiltonian ĤFH ¼ Ĥ0 þ ĤU, with
on-site interaction ĤU ¼ U

P
in̂i↑n̂i↓. We interpret Γ in this

limit as a measure of the current dissipation rate τ−1.
The linear scaling may be understood in terms of a
Boltzmann-like n↑U2 proportionality to density and scat-
tering cross section, which is reasonable for the low
densities and moderate interaction strengths explored here
[15,19,43]. These observed trends are compared to a three-
dimensional kinetic calculation of collisional current
dissipation in a uniform lattice [24,43], which in the
low-n↑, U ≪ t limit, gives

τ−1 ≈ n↑
U2

ℏt
CðT=tÞ; ð3Þ

where CðT=tÞ varies between 0.11 and 0.36 in the range
1.2t≲ T ≲ 3.3t considered for these data. The calculated
τ−1 (shaded region in Fig. 3) compares well with the
measured Γ once Γ > ΓPol.
Contained within CðT=tÞ is the effectiveness of scatter-

ing in dissipating current, for which the role of the lattice is
essential: some collisions can exchange momentum with
the light field, enabling mass current to be damped. The T
dependence of CðT=tÞ is quite different from the

ffiffiffiffi
T

p
scaling of the collision rate in a free gas. A vanishing
T2e−Δuk=T Fermi-liquid signature is expected at low T and
ω, where Δuk is the umklapp gap [47], whereas saturation
of the rate of current dissipation will occur in the high-
temperature limit [6]. An inflection point exists between
these limits [24], leading to an approximately linear
dependence of τ−1 on T=t in the range explored here.
Plotted in Fig. 3(b) is the same data as in Fig. 3(a) but with
dimensionless axes that reflect this temperature scaling.
The scaled ℏΓ=T data agree well with calculations of
ℏτ−1=T, further supporting the conclusion that we can
determine transport time from our conductivity spectra.
Note that since ℏΓ=T < 1 for all measurements in
Fig. 3(b), it is reasonable to classify our system as a
conventional metal, in which only a single damping time is
expected [60].
A second quantity deduced from the conductivity spectra

is the frequency integral of Re σ, or “f sum.” The exact sum
rule is [22,24]

(a)(b)

FIG. 3. Transport time. (a) The best-fit broadening Γ found
from σxxðωÞ spectra in a variety of conditions. Varying initial N
from 5 × 103 to 50 × 103 creates variable density-weighted
filling per spin state n↑, which is measured in situ, and ranges
from 0.09(1) to 0.19(2). Varying scattering length as from
−240 a0 to 470 a0 results in U=t that ranges from −0.9 to 1.8.
Depositing additional heat energy Q with a nonadiabatic lattice
pulse before loading results in a range of T=t from 1.5 to 3.0. The
spectra in Figs. 2(d)–2(f) correspond to the circled points in the
variable-V series. The red band shows the current damping rate
τ−1 calculated with a kinetic theory over the range of measured
temperatures and densities; ΓPol (dashed) is measured for a
noninteracting gas. (b) The same data and theory plotted with
axes nondimensionalized to account for temperature scaling of
the current dissipation rate. Some data for smallest Γ is omitted
for clarity.
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S∞αβ ≡ 2

π

Z
∞

0

dωRe σαβðωÞ ¼
N
iℏ

h½R̂α; Ĵβ�i; ð4Þ

where the angle brackets denote a thermal average. For any
system described by Ĥ ¼ P

N
i¼1 p̂

2
i =2mþ Vðr̂1;…; r̂NÞ,

one can show S∞αβ ¼ ðN=mÞδα;β, independent of temper-
ature, interaction strength, or trapping environment. We
find that this sum rule is satisfied without the lattice, as
shown in Fig. 2(c), where Sxx ¼ 1.01ð8Þ N=m.
Figure 4 shows the spectral weight found by integration

of the best-fit σðCLÞxx , across a wide range of conditions. We
see that within the sampled frequency band, the spectral
weight is generically less than N=m, with the remaining
spectral weight transferred to interband transitions [9,61]
that need not be associated with low-frequency transport.
An effective low-energy Hamiltonian Ĥeff can capture this
response: here, the partial f sum is Sxx ¼ h½R̂α; Ĵ

sb
β �i, with a

purely single-band current Ĵsbβ ¼ ½Ĥeff ; R̂β�, and its corre-
sponding conductivity. The intraband response has an
increased carrier inertia: Sxx ¼ N=mband, where mband ¼
h1=m�

xxðkÞi−1 is the band mass [62]. Alternately, N=mband
determines the current impulse response to a force applied
quickly compared to τ−1, but slowly compared to the
inverse band gap [63,64].
The red band in Fig. 4(a) shows the calculated f sum

with the Fermi-Hubbard Hamiltonian, using a Maxwell-
Boltzmann thermal average of single-particle states. Across
a wide range of conditions, the data agree well with the
predictions of this uniform-lattice theory with no free
parameters. In the TB limit of an isotropic lattice, the f

sum is additionally a measure of kinetic energy through
STBxx ¼ −a2LhĤ0i=3ℏ2, and one finds

STBxx ¼ N
m�

0

I1ð2t=TÞ
I0ð2t=TÞ

; ð5Þ

where InðzÞ is a modified Bessel function, andm�
0 is the TB

effective mass at k ¼ 0 [24]. This result is shown as a
purple line in Fig. 4(a), capturing the salient trend in Sxx.
For the highest-temperature data, m�

0Sxx=N approaches
t=T [dashed black line in Fig. 4(a)], which is a regime
previously discussed for single-band Hubbard models in
the context of T-linear dc resistivity [6,65–67]. The 1=T
regime of spectral weight is accessible with atoms in an
optical lattice because even at T ≫ t, we do not leave the
Hubbard regime, nor are phonons introduced or the crystal
structure affected. This is to be distinguished from the T-
linear resistivity that occurs at lower temperature in both
incoherent and conventional metals, and which is often
attributed to the temperature dependence of τ−1 [15,60,68–
72]. Eventually, Sxx will vanish for large T=t: both flat and
uniformly filled bands are inert to transport.
Figure 4(b) shows that Sxx is relatively unaffected by as,

despite the strong variation of τ−1 with as seen in Fig. 3.
This illustrates a basic property of optical conductivity:
scattering cannot “destroy” conductivity, but may only
move it from one part of the Re σðωÞ spectrum to
another [43].
Discussion.—The joint significance of Sxx and τ is that

their product gives an upper bound on the low-frequency
conductivity. For example, in the weak-trap limit ω0 → 0 of
Eq. (2), with fixed Γ ¼ τ−1, the peak conductivity would be
Sxxτ. The same product is also found in Drude response
σD ¼ Sxx=ð−iωþ τ−1Þ at ω ¼ 0 [73]. Associating conduc-
tivity with the product of a dynamical factor and a
thermodynamic quantity is also found in the Nernst-
Einstein form of conductivity, as the product of diffusivity
and compressibility [6,16,17,74].
More generally, the significance of Sxx and Γ is that they

determine the leading orders of conductivity for large ω,

σðωÞ → iSxx
ω

þ ΓSxx
ω2

þO

�
1

ω3

�
; ð6Þ

up to a cutoff [6,75]. The first term can be shown on general
grounds using Kramers-Kronig relations. The second term
is model specific, but is found in a Drude response, in our
phenomenological quantum model, and in kinetic theory.
Furthermore, the coefficients of these leading terms can be
found from a spatial average of local responses, at least in
kinetic theory [24]. This means that the f sum and current
damping rate for a trapped system can be obtained by
integrating spatially the response of a uniform system. One
expects such a “local density” picture to become valid in
the high-frequency limit since the amplitude of the driven

(a) (b)

FIG. 4. Spectral weight of data sets with various N, as, Q, and
V, as described in the caption of Fig. 3. (a) The partial f sum
Sxx=N, scaled by the TB effective mass m�

0, is shown versus
measured T=t. Data are compared to three treatments of the
uniform-lattice HM: a single band populated using MB statistics
(red band), STBxx (purple solid line), and the asymptotic
m�

0Sxx=N ¼ t=T (black dashed line). The width of the red
band is due to the variation of Sxx with V, for fixed T=t. The
red line is for V ¼ 2.5ER. (b) Measured Sxx robustly agrees
with the noninteracting single-band calculation, even up to
as ∼ 1.2 × 103 a0.
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motion is vanishingly small, and over one oscillation cycle,
atoms in each region of the cloud do not explore the full
system. Experimental evidence for this correspondence is
given in Figs. 3 and 4 by the excellent agreement between
uniform-lattice calculations and the Sxx and τ measured
with atoms in a lattice with weak confinement.
In sum, our work demonstrates how ac conductivity of

trapped atoms can be determined, and how the spectra we
observe can be understood in terms of transport time and band
mass. In particular, we show that dissipation in the regimewe
explore is due to the combination of interactions between
fermions and the breaking of Galilean invariance by the
lattice. Direct extensions of this work could include meas-
uring the conductivity spectra of strongly correlated insula-
tors, non-Fermi-liquid metals, and resonant superfluids.
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