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JOSEPHSON MODEL

We compare our experimental results to the Josephson
model (JM) and its plasma frequency, ωp (Fig. 3). The
JM employed here is based on the nonlinear two-mode
ansatz used in [1],

Ψ(r, t) = ψRφR(r;NR(t)) + ψLφL(r;NL(t)) (S1)

where ψR,L =
√
NR,L(t) exp(iθR,L(t)) and φR,L = (φ+±

φ−)/
√

2 is a real function localized in the left (right)
well, with φ+ (φ−) being the ground (first antisymmet-
ric) state of the GPE along the splitting direction. The
linearized equation gives Z(t) = Z(0) cos(ωpt + ∆θ(0)),
where ∆θ = θR − θL and the plasma frequency

ω2
p =

1

h̄2
∆E

(
∆E +N

∂µloc
∂NL

)
, (S2)

where

µloc =

∫
dr

[
h̄2

2m
(∇φR,L)2 + U(r)φ2R,L + gNR,Lφ

4
R,L

]
,

(S3)
and ∆E = E− − E+ = 2(K +Nχ) with

E± =

∫
dr

[
h̄2

2m
(∇φ±)2 + U(r)φ2± +

1

2
gNφ4±

]
,(S4)

K = −
∫

dr

[
h̄2

2m
(∇φR)(∇φL) + φRU(r)φL

]
,(S5)

χ = −g
4

∫
drφ3RφL. (S6)

The plasma frequency ωp depends on the derivative
of the single-well chemical potential µloc, and therefore
takes into account the effect of transverse degrees of free-
dom on the effective nonlinearity determining the inter-
action energy. This provides an important correction to
the plasma frequency, typically around 20%. Here ∆E
is the energy splitting between the ground state and the
lowest antisymmetric state along the splitting direction.
In our experiments, for example, µloc/h̄ = 2π × 1.8 kHz
and ∆E/h̄ = 2π × 3.7 Hz at δ0 = 6.9 kHz.

HYDRODYNAMIC MODEL

To determine the behaviour of the condensate in a dou-
ble well in the hydrodynamic regime, we use the conti-

nuity equation and the equation of motion for the con-
densate in the hydrodynamic description, ignoring the
quantum pressure term:

∂ρ(r, t)

∂t
+∇ · [vs(r, t)ρ(r, t)] = 0 (S7)

m
∂vs(r, t)

∂t
+∇

[
U(r) + gρ(r, t) + 1

2mv2
s (r, t)

]
= 0

(S8)

where ρ(r, t) is the local density and vs is the superfluid
velocity. We assume harmonic motion of the population
balance between the wells such that

Z̈ = −ω2
HDZ (S9)

where ωHD is the hydrodynamic frequency that charac-
terizes the system.

The first time derivative of Z ≡ 2NR/N is

Ż =
2

N

∫
VR

ρ̇ d3r

= −
∫
VR

∇ · (ρvs) d3r = −
∫
S

n̂ · (ρvs) dS (S10)

where VR is the volume of the right well, S is the area
of the plane separating the two wells, and n̂ is the unit
normal vector for this plane.

The second derivative of Z is then

Z̈ = − 2

N

∫
S

n̂ · (ρ̇vs + ρv̇s) dS. (S11)

To evaluate the frequency, ωHD, we assume that the sys-
tem begins at rest, such that vs(t = 0) = 0. The time
derivative of vs is given by the hydrodynamic equation
of motion, Eq. (S8), and

Z̈
∣∣∣
t=0

=
2

mN

∫
S

ρ n̂ · ~∇ (U(r) + gρ) dS. (S12)

The geometry of this double well system is such that the
normal vector n̂ = x̂, and the only component of the gra-
dient which contributes is the x-component. Assuming
some initial imbalance, Z0, the frequency with which the
populations oscillate is given by

ω2
HD = −Z̈

Z
=− 2

mNZ0

∫ ∫
S

ρ
∂

∂x
(U(r) + gρ) dy dz.

(S13)
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We calculate this initial density profile in the trap,
tilted by a linear bias Gx, using the Thomas-Fermi ap-
proach:

ρTF(r) = (µ− (U(r) +Gx)) /g, (S14)

The gradient term in the integrand of Eq. (S13) is then
simply −G.

The characteristic frequency is thus

ω2
HD ≈

2G

mNZ0

∫ ∫
S

ρTF dy dz, (S15)

which indicates that the frequency can be found by sim-
ply evaluating the density at the surface between the
two wells and integrating over the region by which the
two halves are connected. From this expression, we see
that the ω2

HD decreases as the area connecting the wells
decreases, and falls to zero when the barrier surpasses
the chemical potential and the Thomas-Fermi density is
strictly zero on the plane S.

The equation (S13), upon substituting ρTF with the
Gross-Pitaevskii ground state density, is also valid when
we include a quantum pressure term in Eq. (S8). How-
ever, even with the quantum pressure, this model is not in
exact agreement with the Gross-Pitaevskii equation, due
to the non-harmonic component in the oscillation. At
high barriers, though anharmonicity is small, Eq. (S13)
is less accurate than the JM.

We have checked that the frequencies predicted by
Eq. (S15) are consistent with the dynamical simulations
of Eqs. (S7), (S8), done using a test particle method [5].

GROSS-PITAEVSKII EQUATION

We solve numerically the time-dependent equation

ih̄∂tΨ(r) = − h̄2

2m
∇2Ψ(r) +

(
U(r) + g|Ψ(r)|2

)
Ψ(r)

(S16)
where Ψ(r) is the complex condensate order parameter,
U(r) is the double-well external trapping potential, and
g = 4πh̄2as/m with as the 87Rb s-wave scattering length.
While all calculations were done using Eq. (S26), an in-
tuitive understanding of the potential emerges from the
separable approximate form:

Usep ' 1
2mω

2
yy

2 + 1
2mω

2
zz

2 + α2x
2 + α4x

4 , (S17)

where α2 < 0. The trap exhibits an axial anisotropy, with
elongation along the y-direction such that ωz ∼ 4ωy.

DECAY OF POPULATION IMBALANCE

In comparing the time series measured in the exper-
iment with those found from GPE calculations, we see
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FIG. S1: Comparison of experimental and GPE time series for
δ = −0.1 kHz (GPE)) and δ = −0.1 ± 0.5 kHz (experiment).
Experimental points are shown as black dots, and the fit to
experimental data is shown as a black dashed line. The GPE
results are shown as a solid blue line.

similar multiple-frequency behaviour. One striking dif-
ference is the presence of “decay” in the experimental
data – the fall off of the amplitude of the populations os-
cillations with time. The characteristic time scale of the
decay, τ , is approximately equal to two oscillation periods
over all values of Vb/µ. We model this as an exponen-
tially decaying envelope in our analysis, and include it in
our fitting equation (Eq. (S27)).

In the GPE results, no such decay is observed. Figure
S1 shows a comparison between one experimental run
and a GPE calculation for very similar parameters (δ =
−0.1 kHz). Indeed, GPE calculations to 64 ms show no
sign of damping. Besides the possibility of the damping
arising from technical sources, it may be due to thermal
or other stochastic effects not included in the T = 0 mean
field calculation.

ROLE OF TRAP ANISOTROPY

We studied the role of the trap anisotropy (i.e., ωz 6=
ωy) by observing the transformation of the m = 0 and
m = 2 modes as the trap is deformed from axially sym-
metric to strongly axially anisotropic, in presence of a
purely anharmonic potential along x, using the simpli-
fied potential, Eq. (S17). The dipole perturbation excites
both modes as soon as the axial symmetry is broken,
and the spectrum shows a second frequency growing in
strength as the axial anisotropy is increased. The values
of the mode frequencies as a function of ωz/ωy are shown
in Fig. S2. Close to axial symmetry, the lower frequency
depends only slightly on the transverse confinement, indi-
cating that the m = 0 mode is a dominant component of
the Bogoliubov excitation. Motion is primarily along the
splitting direction without oscillations in the transverse
directions.
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FIG. S2: Mode frequencies for m = 0 (open) and m = 2
(closed) as a function of trap anisotropy. Grey arrow indicates
the anisotropy used in this experiment. These calculations use
the approximate potential Eq. (S17). These are calculated
with fixed ωz and decreasing ωy

Sufficiently far from axial symmetry, both frequencies
start to decrease with increasing anisotropy and show a
similar behavior. In particular, the experimental trap-
ping conditions correspond to the point ωz ≈ 4ωy, as
indicated in Fig. S2, where the two modes begin to show
a similar dependence on transverse confinement. This
strongly suggests that for such high axial anisotropy, each
Bogoliubov mode is mainly a combination of the two orig-
inal m = 0 and m = 2 modes at axial symmetry.

FULL DESCRIPTION OF RWA POTENTIAL

The double-well potential is created through a coupling
between static and rf magnetic fields. In the dressed state
picture, these combine to form the effective potential [2]

URWA(r) = m′F

√
[h̄ωrf − gFµBBS(r)]

2
+

[
gFµBBrf,⊥(r)

2

]2
(S18)

wherem′F is the adiabatic magnetic quantum number, gF
is the Landé g-factor, µB is the Bohr magneton, BS(r) is
the static magnetic field, described by an Ioffe-Pritchard
potential, and Brf,⊥(r) = |BS(r)×Brf(r)|/|BS(r)| is the
component of the oscillating magnetic field locally per-
pendicular to the static field at each point, r.

The static magnetic trap arises a result of the com-
bination of current flowing through the ‘Z’-wire on the
chip, an external bias field, and an external Ioffe field. In
combination, these create an Ioffe-Pritchard style trap,
a static magnetic field BS = Bxx̂ + Byŷ + Bz ẑ, whose

components are described by

Bx(x, z) = B′x− B′′

2
xy, (S19)

By(x, y, z) = BS(0) +
B′′

2

(
y2 − 1

2 (x2 + z2)
)
, (S20)

and (S21)

Bz(y, z) = −B′z − B′′

2
yz. (S22)

In the limit of a small cloud, the static potential is well-
approximated by a harmonic trap, characterized by ra-
dial and axial trapping frequencies ωx,z and ωy. In terms
of these measurable values, the static trap-bottom term,
the gradient term, and the curvature term are given by

BS(0) =
2h̄ωTB

m′FgFµB
(S23)

B′ =

√
mBS(0)

m′FgFµB

(
ω2
x,z +

ω2
y

2

)
(S24)

B′′ =
mω2

y

m′FgFµB
, (S25)

respectively, where we define ωTB = µBgFBS(0)/h̄ as the
“trap bottom” frequency.

Typical values for the parameters in Eqs. (S25) and
(S26) are: (ωx,z, ωy) = 2π × (1310, 10) Hz, ωTB = 2π ×
787 kHz, Brf,⊥ = 240 mG, ωy,0 = 2π× 95 Hz, and in the
|F = 2,m′F = 2〉 state of 87Rb we use, m′FgF = 1.

CORRECTIONS TO THE ROTATING-WAVE
APPROXIMATION

To calculate our trapping potential, Eq. (S26) as-
sumes the rotating-wave approximation (RWA), but as
discussed in [3], the RWA fails for large Rabi frequen-
cies. We study the effect of the beyond-RWA effects for
our trap and find that we can account for the difference
between the approximate and full potentials by simply
shifting the detuning by a fixed amount.

We calculate the full potential in a two-dimensional
plane at y = 0 for our trap at a particular detuning, δ0,
as described in [3]. This 2D contour is fit to

URWA = m′Fsgn(gF)h̄
√

(δ(r)− δshift)2 + Ω2, (S26)

at y = 0, which is just Eq. (S26) without the compression
term, where δshift is the only fit parameter and describes
a shift of the detuning. We compare the shape of the full
potential to the RWA potential with the shift and find
that they are very similar. The shift is calculated for
all detunings used in this work and is roughly uniform
for the range explored (Fig. S3). We apply a shift δ0 →
δ0 + 2π× 1.9 kHz to each of the detunings used with the
RWA in this work.



4

−10 0 10
−2.00 

−1.90 

−1.80 

δ
sh

if
t/2
π

 (
k
H

z
)

δ
0
/2π (kHz)

−2 0 2
0

1

2

3

4

x (µm)

P
o
te

n
ti

a
l:

 U
/h

 (
k
H

z
)

(a) (b) 

x (µm)

z
 (
µ

m
)

 

 

−2 0 2

−2

0

2 −100

−50

0

50

FIG. S3: Comparisons between RWA and full potential cal-
culations. (a) Potential energy curve through y = z = 0 with
δ0/2π = 0, calculated using full potential (blue dots), RWA
approximation (red solid line), and RWA approximation with
fitted shift of δshift/2π = −1.85 kHz (black dashed line). In-
set: difference between full potential and RWA potential (in
Hz) with shift over entire 2D plane at y = 0 used for fit. Color
bar indicates in Hz the difference of potentials. (b) Fitted de-
tuning shift as a function of detuning, i.e., the number one
should subtract from the detuning in the RWA expression to
get the best estimate of the potential.

The shift we find is of the opposite sign to that found
in Ref. [3]. Compared to the potential used in that work,
our Rabi frequency is much smaller and our detuning
much closer to zero, and we have confirmed that the shift
changes sign for larger Ω and large negative detunings.

SYSTEMATIC TRAP-BOTTOM SHIFTS

As noted in the main text, we shift the data by a fixed
detuning for display in Fig. 3. Despite the discrepancy
between the calculated and measured values of the de-
tuning, the data matches the GPE in terms of the shape
of the curves and the slope of the population oscillation
frequency as a function of Vb/µ. For this reason, we
are satisfied that the shift we are applying is acting to
account for an unknown systematic uncertainty in the
determination of the trap bottom value BS(0).

After taking into account all known systematic shifts,
which include the beyond-RWA effect described above
and calibrations in measuring the trap bottom BS(0),
we fit the experimental data to the GPE simulation data
using a single-parameter least-squares fit, where the fit-
ting parameter acts to slide the data along the detuning
axis. We find that a shift of 2π×(5.1±0.1) kHz accounts
for the difference between the experiment and the GPE.
This shift is in the opposite direction to the beyond-RWA
corrections. Possible sources of this discrepancy include
systematic errors in determining the static trap bottom
BS(0), or imperfections in the polarization of BRF due
to the proximity of the fields to the chip and its copper
support.

ATOM NUMBER

To calibrate the atom number, we use standard absorp-
tion imaging to measure the thermal fraction of clouds
above and below the condensate temperature. We deter-
mine the total atom number by measuring the total ab-
sorption of the cloud, and the thermal number by fitting
the wings to a Bose-Einstein distribution and integrating
under the entire curve to extract thermal atom number.
The temperature of each condensate is determined by
fitting the wings to a Gaussian.

To find TC , the condensation temperature, we plot
the condensate fraction as a function of temperature.
We determine the temperature at which the conden-
sate fraction is first non-zero, and find the number of
atoms to which this corresponds. Using the relation-
ship between condensation temperature and atom num-
ber, including finite size and interaction effects [4], we
can determine the condensation temperature to ±9%
(TC = 640 ± 40 nK). Propagating this error through to
atom number, we arrive at a calibration factor Nactual =
Nmeasured×(1.3±0.3), which accounts for the systematic
uncertainty in our atom number, N = 6600± 1700.

The number, N = 8000 was chosen for the calculations
because this is the number within the systematic uncer-
tainty for which the best agreement is found for mode
amplitudes (Fig. 4). The same N = 8000 is used in the
Josephson model and hydrodynamic approximations.

DATA ANALYSIS

To analyze the time series data, as in Fig. 2(a), we use
a Fourier transform (FT). To prepare the data, we elim-
inate the offset from Z = 0 components by subtracting
from each point the mean, where the mean might be non-
zero due to a small equilibrium imbalance in the system.
We smooth the transformed data by padding the time
series with zeros to a total of 1024 points.

When extracting the peak locations from the FT, we
eliminate the points below the frequency given by 1/ttot,
where ttot is the longest hold time. We then find the two
peaks with the maximum height and use these are our
data points in Fig. 3. We plot the amplitudes-squared
of the FTs in the color-map in Fig. 3 behind the data.
The data are linearly interpolated numerically between
the values of Vb/µ (δ0) at which the data were measured.

The uncertainty in the frequency measurement is found
by simulating data with the same level of noise as the
original time series. The quantity of noise is determined
by fitting the time series to a 2-frequency decaying expo-
nential function

Z(t) = e−t/τ [a1 sin(2πν1(t− t01)) + a2 sin(2πν2(t− t02))] ,
(S27)
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where τ is a time constant for decay, a1(2) is the ampli-
tude of the first (second) frequency component, and ν1(2)
is the first (second) frequency component, and t01(02)
is the constant accounting for the phase shift of the
first (second) component. The standard deviation of the
residuals from this fit gives the noise level. We simulate
data 100 times with the same parameters as those given
by the fit, with the same total time and density of points,
but with different randomized instances of Gaussian noise
whose standard deviation is the same as that measured.
Taking the frequency measurements from each of these
trials, we determine the smallest range inside of which
68% of the measurements lie. This confidence interval is
used as the uncertainty in the frequency measurement.

The noise floor in the FT is established in a similar
fashion. Using the result for the noise level from the
time series, we simulate pure Gaussian noise and take
the FT of this. The noise floor we show is the mean plus
one standard deviation of the maximum peak amplitudes
found in 100 such simulations.

The amplitudes used in determining the ratio R1,
shown in Fig. 4, are given by the values determined by
the fit (Eq. (S27)). The uncertainties in these values are
determined in a similar way to those in the frequencies;

we use the noise level in the residuals of the fit, simulate
and fit 100 sets of data with similar parameters, and use
the 68% confidence interval of these results to represent
our uncertainty.

One significant difference between the calculated and
measured quantities is that the calculated amplitudes dis-
play no decay. The measured values, which come from
the fits to the Eq. (S27), rely upon the fitting routine
to extrapolate backwards in time to deterimine the t = 0
amplitudes. The uncertainty associated with this process
results in the scatter in the measurements, and may be a
cause of some of the discrepancy between the calculated
and measured values.
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