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Photonic-band-gap architectures for long-lifetime room-temperature polariton
condensation in GaAs quantum wells

Jian-Hua Jiang,1,2 Pranai Vasudev,1 and Sajeev John1,2,*

1Department of Physics, University of Toronto, Toronto, Canada, Ontario M5S 1A7
2College of Physics, Optoelectronics, and Energy and Collaborative Innovation Center of Suzhou Nano Science and Technology,

Soochow University, 1 Shizi Street, Suzhou 215006, China
(Received 6 June 2017; published 12 October 2017)

We describe AlGaAs photonic-crystal architectures that simultaneously realize strong exciton-photon coupling,
long polariton lifetime, and room-temperature polariton Bose-Einstein condensation (BEC). Strong light trapping,
induced by a 3D photonic band gap (PBG), leads to peak field intensity 20 times as large as that in an AlGaAs
Fabry-Pérot microcavity and exciton-photon coupling as large as 20 meV (i.e., vacuum Rabi splitting 40 meV).
The strong exciton-photon coupling, small polariton effective mass, and long polariton lifetime lead to possible
realizations of equilibrium room-temperature BEC. We also consider the influence of polarization degeneracy
and symmetry breaking in the ground state on the BEC-onset temperature and condensate fraction. Woodpile
and slanted-pore PBG structures that break X-Y symmetry facilitate larger condensate fractions at moderate
temperatures. The effects of electronic and photonic disorder are marginal, thanks to the 3D photonic band gap.
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I. INTRODUCTION

Bose-Einstein condensation [1] (BEC) is a remarkable state
of many-body quantum coherence. Besides the celebrated ob-
servation of BEC in liquid helium [2,3], superconductors [4,5],
and ultracold atomic gases [6,7], BEC has also been realized
in exciton-polariton systems in semiconductor microcavities
during the last decade [8–12]. Polaritons are quasiparticles
composed of photon and exciton and inherit their special
properties. Polaritonic BEC can be realized in much simpler
and lower-cost systems at much higher temperatures [13,14],
compared to the ultralow-temperature and ultrahigh-vacuum
required for atomic BEC. In addition, thanks to the “half-
photon” nature of polaritons [15], quasiparticle and statistical
properties of the condensate can be directly monitored through
polariton luminescence. This special property has been ex-
ploited, together with quantum optical methods, to measure
the spatially resolved phase coherence and to identify 2π

phase rotations of a quantized vortex [16,17]. The research
field of polariton BEC has been advanced through devel-
opments of materials and growth technologies, techniques
for manipulating and measuring polariton coherence, which
facilitate progress in fundamental physics and applications
[18–21]. Proposals of using polariton BEC as building blocks
for quantum simulation and computation have also been raised
[22]. Electrically pumped polariton lasing [23] and polariton
all-optical switches [24] and transistors [25] have been realized
in recent experiments.

Existing realizations of polariton BEC suffer from short
polariton lifetimes, ranging from approximately 1 ps to 100 ps
[13,19] in Fabry-Pérot (FP) microcavities. This short lifetime
prevents the polariton condensate from reaching a full thermal
equilibrium with the host lattice, though there are also claims
of fully thermalized condensates in these one-dimensional ge-
ometries [26]. Recently, there have been debates on the nature
of the observed polariton BEC, whether it is a quasiequilibrium
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(thermodynamic) state or a nonequilibrium (kinetically driven)
state [13,27]. In this work, we use quasiequilibrium to refer
to the fact that the polariton gas may thermalize with itself
(however, not with the host lattice) due to polariton-polariton
scattering and its energy distribution may be fitted by a Bose-
Einstein distribution with a higher effective temperature than
that of the lattice [28,29]. The origin of the short lifetime is due
to the coupling of excitons to leaky off-normal photonic modes.
In Fabry-Pérot microcavities, there is a one-dimensional
photonic stop gap and the k = 0 normal photonic mode can
be made to arbitrarily high quality (as high as 3×105 [26]).
However, for off-normal propagation, there is no photonic
band gap [30], since there is no periodic modulation in the
dielectric constant to coherently scatter light. This results in
weakly confined modes which can couple easily to vacuum
modes outside the cavity. In this work, we refer to these
off-normal propagating modes in Fabry-Pérot cavities as leaky
modes. Several works [10,12,19] claim that the polariton Bose
condensates in microcavities occur due to the strong coupling
between an excitonic mode and this high quality, k = 0
normal photonic mode. However, this would be forbidden in
two dimensions, as a Bose condensate with zero momentum
would be infinitely spatially extended, which is forbidden
by the Mermin-Wagner theorem. Therefore, in Fabry-Pérot
microcavities, the Bose-Einstein condensates resulting from
the coupling of an exciton to an off-normal, lower quality
k �= 0 leaky mode tend to have small lifetimes, on the order of a
few ps. For this reason, the problem of short polariton lifetime
cannot be overcome by various proposals involving higher
quality cavities [18,19,28,31–33]. Due the lack of a full three-
dimensional photonic band gap, this problem is intrinsic to
the Fabry-Pérot microcavities. There may exist other types of
phase transitions, such as the Berezinskii-Kosterlitz-Thouless
phase transition involving the appearance of topological de-
fects such as quantized vortices, that may occur for polaritons
in two-dimensional systems. Several works in the literature,
for example Refs. [16,17,21,34,35], associate polariton con-
densates with this transition. In our work, we use the word
condensate to refer exclusively to Bose-Einstein condensation.
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In this work we utilize a 3D photonic band gap (PBG)
to suppress polariton radiative decay [28,31,32,36]. The exis-
tence of a 3D PBG makes the structure robust against disorder
which is unavoidable in fabrication processes and eliminates
leaky modes, even in off-normal directions. Therefore, in a
3D PBG architecture, we can be assured that the exciton
couples only to a strongly confined, nonleaky photonic mode.
Experimentally, photonic-crystal (PhC) microcavities with a
quality factor over 106 and photonic lifetime of 2 ns have
been reported in Ref. [37]. If polariton spontaneous emission
is suppressed by the PBG [38], then polariton decay is limited
by nonradiative exciton recombination processes which are
usually much slower for semiconductors with medium or large
band gap at low and moderate carrier densities. Experimental
measurements reveal that the photoluminescence decay in
GaAs quantum wells (QW) at room temperature is about
250 ps [39]. This sets the lower bound of the polariton lifetime
in a 3D PBG material. Such a time scale is already sufficient
for the establishment of thermal equilibrium of polariton
gases at room temperature in GaAs QWs where energy
relaxation due to longitudinal-optical phonon scattering is very
efficient (scattering time ∼0.2 ps as deduced from exciton
homogeneous linewidth) [40].

In this work, we further develop our road map for
room-temperature thermal equilibrium polariton BEC in
photonic-crystal architectures. Previously, we suggested
room-temperature equilibrium polariton BEC is possible in
InGaAs/InP quantum wells embedded in slanted-pore pho-
tonic crystals composed of InP [29]. Compared to GaAs
quantum wells with an exciton binding energy of 10 meV,
the exciton binding energy in InGaAs QWs is only 7 meV.
This makes the formation of the exciton-polaritons at room
temperature in InGaAs more challenging (polariton formation
is needed to stabilize the exciton). Compared to the exciton
recombination energy of approximately 1966 meV in GaAs
QWs, the value for InGaAs QWs is only 944 meV. (Here,
InGaAs refers to In0.53Ga0.47As and the wells are 3 nm in width,
surrounded by 7 nm InP barriers. The band gap of InGaAs
depends on the Ga fraction and can range from 0.354 eV to
1.4 eV [29].) This increased exciton recombination energy in
GaAs induces larger light-matter coupling strengths. Finally,
the dielectric constant of the cladding PBG material differs
between the two systems. For AlGaAs (in the case of GaAs
QWs), ε = 9.54, while for InP (in the case of InGaAs QWs),
ε = 10.4. Overall, there is weaker exciton-photon coupling
and weaker light localization in the InGaAs system relative to
the GaAs system. This weaker light-matter coupling strength
results in more photonlike (than in GaAs-based systems)
polaritons, assuming a fixed exciton-photon detuning. In turn,
this allows for larger polariton densities to be considered, since
the polariton density is constrained only in that the effective
exciton density (in any one QW) cannot exceed the excitonic
saturation density. These larger available densities provide a
specific route to room-temperature BEC in the InGaAs-based
system. The strategy for achieving high-temperature BEC in
our GaAs-based system is somewhat different. The larger
exciton-photon coupling strength in GaAs leads to more
excitonlike polaritons. As a result of the larger photonic band
gap (∼100 meV in GaAs systems compared to ∼50 meV
in InGaAs systems), the alternative strategy for GaAs is

to consider larger detunings and produce more photonlike
polaritons that favor room-temperature BEC. Together, our
studies of InGaAs and GaAs suggest two methodologies
for realizing room-temperature BEC: either increasing the
polariton density or increasing the exciton-photon detuning.

In our GaAs quantum well system, we use AlGaAs-based
woodpile and slanted-pore PhC microcavities to enhance
polariton lifetime as well as to achieve strong exciton-photon
coupling up to about 20 meV [vacuum Rabi splitting (VRS) of
40 meV] which, together with an exciton-photon detuning of
40 meV, stabilizes polaritons and enables polariton BEC at and
above room temperature. Structures similar to the woodpile
photonic crystals proposed here have been fabricated in recent
experimental works [41,42] where a range of tunability of the
PhC cavity was demonstrated. The slanted-pore PhC can be
fabricated by techniques such as ion beam lithography or direct
laser writing [43–45]. In either case, a large 3D PBG allows
a range of detuning between the exciton and the confined
photonic bands that is important for engineering polariton
composition, dispersion depths, and BEC.

This paper is organized as follows: In Sec. II we describe
the structure of the confined photonic bands, excitons, and the
polaritons in a symmetric woodpile PBG cavity. In Sec. III,
we introduce a toy model polariton dispersion that emulates
the results of detailed band structure calculations. In this
toy model, we introduce X-Y symmetry breaking to lift
the polarization degeneracy in the 2D polariton system and
we delineate its effect on BEC and condensate fraction.
The transition temperature for polariton BEC is studied in
Sec. IV using realistic band structures for slanted-pore and
asymmetric-woodpile PBG cavities. We discuss the effect of
structural disorders in Sec. V and conclude in Sec. VI. Some of
the details of the calculations are presented in the appendices.
All results are based on combined calculations of the photonic
band structures via the plane wave expansion method [46,47]
and the electronic (excitonic) structure through the effective
mass approximation (following the methods in Refs. [48]
and [49]). The material parameters and the electronic band
structure coefficients are taken from standard semiconductor
handbooks [50,51] and compared with existing experimental
data (see Appendices A, B, and C).

II. POLARITONS IN AlGaAs PHOTONIC
CRYSTAL MICROCAVITIES

A. Cavity photons

The structure of our proposed (symmetric) woodpile mi-
crocavity is illustrated in Fig. 1(a). The slab in the middle
breaks the lattice translation symmetry along the growth
direction, whereas in the perpendicular plane such symmetry
still remains. For this woodpile structure, the width and height
of the x- and y-oriented rods are 0.25a and 0.3a, respectively,
where a is the in-plane lattice period. The woodpile crystals
sandwiching the central slab are made of Al0.8Ga0.2As with the
refractive index taken as 3.1. The thickness of the central slab
is 0.07a. The lattice period a is tuned to engineer the photonic
spectrum which is proportional to 1/a. The thickness of the
central slab is chosen to (i) accommodate a multiple-quantum
well (MQW) system with two to three individual QWs and
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FIG. 1. AlGaAs PhC microcavity. Schematic of the woodpile. A central slab containing GaAs/AlGaAs QWs is sandwiched in the PhC.
(b) Photonic band structure in the 2D Brillouin zone for the structure depicted in (a). The gray (shaded) regions represent the bulk photonic
bands. The red (solid) curve in the band gap denotes the lowest confined photonic band. It is placed close to the QW exciton emission line and
contributes significantly to the lower polariton branch (the blue [solid] curve below the lowest confined photonic band). Other confined photonic
bands (represented by the green [dashed] curves) contribute much less to the formation of the lower polariton branch. The enlarged figures
with focus on the band gap region are shown in Fig. 2. In obtaining these curves, the exciton-photon detuning at the X point is � �Q(x) = 20 meV
for a lattice constant of a = 267 nm. The light-matter coupling strength, taken at the X point, between an exciton (not shown) and the lowest
guided photonic mode is h̄� �Q(x) = 20 meV, for three 2 nm GaAs QWs with 4 nm AlGaAs barriers in the central slab.

(ii) maintain a remaining band gap (gap-to-midgap ratio) of
�5% between the lowest 2D guided band and the lower 3D
band edge and prevent the radiative decay of the excitons. The
QWs are made of GaAs, while the barriers between QWs are
made of AlAs. The dielectric constant of the MQWs is taken
approximately as the average value of the dielectric constants
of GaAs and AlAs. The central slab with MQWs is where
the photonic fields are confined. The strong light trapping
induced by the 3D PBG enables strong coupling between
the QW excitons and photons. The structure in Fig. 1(a) is
optimized for strong exciton-photon coupling, as revealed by
the distribution of the photonic field (see Appendix D). Related
structures have been fabricated by Ogawa et al. [41,42]. The
photonic-band-structure calculation for the structure shown in
Fig. 1(a) via the plane wave expansion method yields a PBG to
central frequency ratio of 12%, with several confined photonic
bands in the gap [see Fig. 1(b)]; for details, see Appendix A.
When the exciton recombination energy is close to the lowest
confined photonic band, this band dominates the properties of
the lower polariton branch [31–33]. There are two degenerate
minima in the energy spectrum, located at �Q(x) = (π

a
,0) and

�Q(y) = (0, π
a

), respectively. Around those energy minima the
dispersion is approximately parabolic as

h̄ω�q = h̄ω
(ν)
0 + h̄2

(
qx − Q(ν)

x

)2

2m
(ν)
x

+ h̄2
(
qy − Q(ν)

y

)2

2m
(ν)
y

, (1)

with ν = x,y. The symmetric-woodpile structure possesses
a D2d symmetry with two mirror planes, the y-z and x-z
planes [52], if there are an equal number of layers of rods
above and below the slab [cf. Fig. 1(a)]. This symmetry
ensures a C4v symmetry for the dispersion of the lowest 2D
confined photonic band in the 2D �q space (i.e., the qx-qy

plane), which dictates m(x)
x = m

(y)
y , m

(y)
x = m(x)

y , ω
(x)
0 = ω

(y)
0 .

If a = 300 nm, the effective masses are m(x)
x = 7.1×10−6m0

and m(x)
y = 1.4×10−5m0 at the �Q(x) point in the woodpile

structure, with m0 being the bare electron mass in vacuum.

The density of states mass is mdos =
√
m(x)

x m(x)
y =1.0×10−5m0 when

a = 300 nm. Since Maxwell’s equations are scale invariant,
the above dispersion is invariant under the continuous scaling
transformation a → a/s, ω → sω, and q → sq, which reveals
that ω0, m(ν)

x , and m(ν)
y are proportional to 1/a.

The electric field of a single cavity-confined photon in the
i th band with wave vector �q is (in SI units)

�Ei,�q(�r) =
√

h̄ωi,�q
2ε0S

�ui,�q(�r)ei �q· �ρ. (2)

Here ε0 is the vacuum permittivity, S is the area of the structure
in the x-y plane. �r = ( �ρ,z) with �ρ = (x,y) being the coordinate
vector in the x-y plane. ωi,�q is the frequency of the photon. In
PhC microcavities the photonic polarization vector �ui,�q(�r) is a
lattice periodic function in the x-y plane and localized around
the slab in the z direction. It can be decomposed into a Fourier
series as

�ui,�q(�r) =
∑

n

�ui,�q, �Gn
(z)ei �Gn· �ρ, (3)

where �Gn = 2π
a

(n1,n2) is the 2D reciprocal lattice vector with
n1 and n2 being integers. The field is normalized such that

S−1
∫

d �ρdzε(�r)|�ui,�q(�r)|2 = 1 (4)

with ε(�r) the coordinate-dependent relative dielectric function.
Both ωi,�q and �ui,�q(�r) are calculated via the plane wave
expansion method [46].
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B. QW excitons

We consider excitons in [001]-grown GaAs/AlAs MQWs.
The thickness of the AlAs barrier layers is taken to be large
enough to suppress the tunneling between QWs. Typically the
width of the GaAs QW is around 5 nm and the thickness
of the AlAs barrier is 3 or 4 nm. In this way excitons in
each QW can be regarded as independent and then coupled
to the 2D photonic bands collectively. For narrow QWs we
adopt the approximation to include only the lowest electron
and hole subbands since other subbands have much higher
energy. The subbands are calculated using the standard method
in Ref. [48] with band parameters taken from the semicon-
ductor handbooks [50,51]. We apply the parabolic dispersion
approximation for the electron and hole subbands with the
higher order in �k terms neglected (they have been shown to
be unimportant in Ref. [53]). The spectra of the conduction
band electron and valence band hole are then expressed
as Ee,�k = h̄2k2

2me
and Eh,�k = h̄2k2

2mh
, respectively. In [001]-grown

GaAs QWs the lowest-hole subband is the heavy-hole subband
with spin ± 3

2 [49]. The valence band mixing in the Luttinger
Hamiltonian [54] induces considerable modification of the
heavy-hole effective mass in the QW plane mh [49] which has
been taken into account in this work using perturbation theory
[49] (Appendix B). The exciton Hamiltonian is constructed by
taking into account the electron-hole Coulomb interaction in
the subband basis,

Hex = − h̄2∂2
�ρe

2me

− h̄2∂2
�ρh

2mh

+ VQW ( �ρe − �ρh)

+Eg + E1e + E1h, (5)

where Eg,E1e, and E1h are the band gap of GaAs, the
quantization energy of the first electron subband, and that
of the first hole subband, respectively. The effective Coulomb
potential is

VQW ( �ρe − �ρh) = −
∫

dzedzhe
2|ξc(ze)|2|ξv(zh)|2

4πε0ε
√

( �ρe − �ρh)2 + (ze − zh)2
, (6)

where ξc and ξv are the wave functions of the electron and
hole subbands, respectively. The exciton Hamiltonian can be
separated into the center-of-mass and the relative motion parts.
The former describes the free motion of the exciton whereas
the latter resembles the 2D hydrogen atom system. The exciton
energy and wave function are calculated by diagonalizing the
above Hamiltonian numerically. The energy of the pth s-orbit
exciton state is written as

Eps(�q) = Eps + h̄2q2

2mX

, (7)

where Eps is the energy of the excitonic state at �q = 0 and
mX = me + mh is the exciton effective mass. The calculated
1s exciton recombination energy, 1.613 eV, for QWs of width
7 nm and barrier width 3 nm, agrees fairly well with the
experimental data of 1.6116 eV in Ref. [8].

C. Exciton-photon interactions

Excitons in the MQWs interact with the 2D photonic bands
via electric dipole interactions. The Hamiltonian describing
such interaction is constructed by exploiting momentum

conservation in the x-y plane. Due to the lattice translation
symmetry of the PhC, two wave vectors with a difference
of a reciprocal lattice vector �Gn are equivalent. A model
Hamiltonian based on those features was established in
Refs. [31,32] for the single-QW case. Here, we extend the
theory to the MQW case (Appendix C). The final form of the
Hamiltonian is

H = HX + HP + Hint, (8a)

HX =
∑

l,α,p,n,�q
Eps(�q + �Gn)β†

l,α,p,�q+ �Gn

βl,α,p,�q+ �Gn
, (8b)

HP =
∑
i,�q

h̄ωi,�qa
†
i,�qai,�q, (8c)

Hint =
∑

l,α,p,n,i,�q
ih̄�l,α,p,n,i,�qβ

†
l,α,p,�q+ �Gn

ai,�q + H.c. (8d)

Here HX and HP are the Hamiltonian of the exciton and
photon, respectively. β

†
l,α,p,�q+ �Gn

creates an exciton in the lth

QW in the pth s orbit with center-of-mass wave vector �q + �Gn

of polarization α. a
†
i,�q creates a photon in the ith 2D photonic

band with Bloch wave vector �q. We assume that all the QWs
are of the same width and hence the same Eps (we will
discuss the fluctuation of Eps later). The index l labels the
lth QW. α = L,T stands for the longitudinal or transverse
exciton of which the polarization (in the QW plane) is along
or perpendicular to its wave vector [55]. The energy difference
between the longitudinal and transverse excitons in GaAs QWs
is caused by two factors: the short-range interaction due to
interband Coulomb interaction and the long-range interaction
due to the coupling with photons [56,57]. The latter, which is
the central focus of this work, is described by Hint, whereas the
former is negligible for GaAs QW excitons [56,57]. We thus
ignore the dependence of polarization on the exciton energy, as
expressed in Eq. (8b). The exciton-photon coupling �l,α,p,n,i,�q
is given by (see Appendix C for details)

�l,α,p,n,i,�q = |φp(0)|d√
ωi,�q√

2h̄ε0

×
[
S−1

uc

∫
uc

d �ρe−i �Gn· �ρuα,i,�q( �ρ,zl)

]
. (9)

|φp(0)| is the amplitude of the pth s-orbital excitonic wave
function when the distance between electron and hole is zero.
In Appendix F we show that the contribution to the lower po-
lariton branch mainly comes from the 1s exciton states, while
other s orbits can be ignored. Hereafter we replace the index p

with 1s (or omit it if possible). d is the interband dipole matrix
element in GaAs. zl is the coordinate of the center of the lth QW
in the z direction. Suc = a2 is the area of the unit cell of the PhC
in the x-y plane. uα,i,�q = �eα · �ui,�q where �ui,�q is the periodic
Bloch wave function of the ith photonic band with Bloch wave
vector �q [see Eq. (2)] and �eα is the polarization direction of
the α exciton. For longitudinal (α = L) excitons �eα is along
�q, while for the transverse (α = T ) exciton it is perpendicular
to both �q and the z direction. The integration in Eq. (9) is
performed within a unit cell (uc) of the PhC in the x-y plane.

043827-4



PHOTONIC-BAND-GAP ARCHITECTURES FOR LONG- . . . PHYSICAL REVIEW A 96, 043827 (2017)

Γ X M Y Γ
Wave Vector in First Brillouin Zone

1.8

1.9

2.0

2.1

2.2

2.3

2.4

E
ne

rg
y

(e
V
)

(b)

Γ X M Y Γ
Wave Vector in First Brillouin Zone

1.8

1.9

2.0

2.1

2.2

2.3

2.4
E
ne

rg
y

(e
V
)

(a)

FIG. 2. Dispersion of the confined photonic bands (red [solid] and green [dashed] curves), the exciton (black [dashed] curve), and the lower
and upper polariton branches (blue solid curves below the exciton band and above the lowest confined photonic band, respectively). The bulk
photonic bands are indicated by the gray (shaded) regions. The detuning between the exciton and the lowest confined photonic band (red solid
curve) is (a) � �Q(x) = 20 meV and (b) � �Q(x) = −15 meV. The case (a) of positive detuning is more favorable to high-temperature polariton
BEC. The exciton recombination energy is E1s = 1.966 eV. The collective exciton-photon coupling is h̄� �Q(x) = 20 meV. Those two parameters
correspond to the situation with QW width 2 nm and barrier layer width 4 nm. The detuning can be achieved by setting the in-plane lattice
constant of the PhC as a = 267 nm for (a) and a = 263 nm for (b). The lower polariton is more photonlike in (a) compared to (b).

D. Polaritons

In the above formulation, �q is defined in the first Brillouin
zone, i.e., qx,qy ∈ [−π

a
, π

a
). Since the effective mass of the

exciton is about four orders of magnitude larger than that
of the cavity photon, the excitonic density of states is much
larger than the photonic ones. Hence the higher photonic bands
are rarely populated (see Appendix F). What is crucial for
polariton BEC is the dispersion of the lower polariton branch.
For positive detuning, the lower polariton dispersion inherits
the photonic dispersion only in the small wave vector range
when the photonic energy is lower than the excitonic energy
[see Figs. 1(b) and 2]. Beyond that range, the lower polariton
branch becomes excitonlike. We focus on small positive
detuning � �Q(x) ≡ E1s − h̄ω

(x)
0 where only the dispersion close

to the energy minima of the lowest 2D photonic band is relevant
(see Fig. 2). Here, we have employed the sign convention
for the exciton-photon detuning which is opposite of that
traditionally found in the literature. In this situation, we
approximate the dispersion of the photonic band entirely by
Eq. (1) and omit the index i. The lower polariton branch
dispersion ELP is obtained by diagonalizing the Hamiltonian
Eq. (8a) under these approximations. Direct calculation yields
(see Appendix C)

∑
l,α,n

h̄2|�l,α,n,�q |2
(ELP − h̄ω�q)[ELP − E1s(�q + �Gn)]

= 1. (10)

Since the magnitudes of the relevant �Gn are too small
to induce a considerable difference in exciton energy one
can use the approximation E1s(�q + �Gn) 	 E1s(�q) (i.e., the
photonic wavelength is much larger than the thermal de Broglie
wavelength of exciton). The solution to Eq. (10) then gives the

simple form of

ELP (�q) = E1s(�q) + h̄ω�q
2

−
[(

E1s(�q) − h̄ω�q
2

)2

+ h̄2�2
�q

] 1
2

,

(11)

where h̄��q = h̄
√∑

l,α,n |�l,α,n,�q |2 is referred to as the col-
lective exciton-photon coupling. We further approximate ��q
as its value at �Q(x) or �Q(y) since only the coupling around
those photonic energy minima is relevant. According to the
D2d symmetry of the symmetric-woodpile structure, � �Q(x) =
� �Q(y) ≡ �. The effective Hamiltonian for polaritons can then
be simplified to [31,32]

H = H0 + HI , (12a)

H0 =
∑

�q
[E1s(�q)b†�qb�q + h̄ω�qa

†
�qa�q], (12b)

HI =
∑

�q
ih̄�(b†�qa�q − a

†
�qb�q), (12c)

with the help of the collective excitonic operator [28]

b�q ≡
∑
l,α,n

�l,α,n,�q
��q

βl,α,n,�q . (13)

The above operator is a linear combination of exciton operators
with largest coupling to the photon. Other orthogonal combi-
nations interact only weakly with the lowest 2D photonic band.

The spectra of the confined 2D photonic bands and the
polaritons are illustrated in Fig. 2. Specifically we plot for both
positive [Fig. 2(a)] and negative [Fig. 2(b)] detuning � �Q(x)

cases. It is seen that away from the X point [i.e., �Q(x) = (π
a
,0),

one of the energy minima] the lower polariton dispersion
is almost flat because the excitonic effective mass is much
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larger than the photonic one. The lower polariton branch
at positive detuning has a deeper dispersion and smaller
effective mass which leads to higher temperature polariton
BEC compared with the negative detuning case [13,28].
Accordingly, we focus on positive detuning in the following
discussions. To ensure the approximation on the photonic
dispersion, Eq. (1), the exciton recombination energy must
be close to the photonic band edge. In this system it requires
� �Q(x) � 40 meV to avoid nonparabolic photonic dispersion
(see Appendix F for details). In addition, there are physical
trade-offs for choosing � �Q(x) : For large positive detuning, the
lower polariton dispersion depth becomes very large and the
effective mass of the lower polariton becomes very small, but
the lower polariton becomes more photonlike. This implies
that the phonon-polariton and polariton-polariton interactions
become much weaker. This implies a much longer time for
polaritons to relax down to the ground states, to thermalize,
and to reach equilibrium polariton BEC.

III. POLARITON BEC TOY MODEL FOR TWO
DISPERSION MINIMA

As depicted in Fig. 1, in the symmetric-woodpile system,
there are two degenerate lower polariton ground states. In other
asymmetric architectures, such as the slanted-pore system
(see Sec. V B), this degeneracy is lifted due to symmetry
breaking. In the previous subsection, we derived the polariton
dispersion and an effective Hamiltonian for an exciton coupled
to the guided photonic band. In the photonic dispersion of
the guided band there are two local minima, one at �Q(x)

and another at �Q(y). In the symmetric-woodpile structure,
these two minima are degenerate in energy while in the
slanted-pore system, or an asymmetric-woodpile system (i.e.,
one where wx �= wy and hx �= hy) (see Sec. V B), the two
minima may be nondegenerate. In this section, we construct
a toy model for a polariton with two nondegenerate minima.
In a real system, exciton-exciton interactions would provide
coupling between the two minima and break the ground-state
degeneracy. In our noninteracting toy model, polaritons may
distribute themselves between the two degenerate (single-
particle) minima, halving the density relevant to BEC and
substantially decreasing the critical temperature. We find,
instead, that due to the very large and proximal excitonic
density of states, the double minimum causes only a small
reduction in the critical temperature for realistic parameters.
Our toy model reveals that a substantial difference in BEC
onset temperature would occur only for unphysical parameter
values in our system. On the other hand, the occupation of
excitonlike states decreases exponentially as the temperature is
lowered below the onset of BEC. As a result, a high condensate
fraction (∼50%) is more readily achieved with a small amount
of symmetry breaking.

A. Toy model

To construct a polariton dispersion with two minima, we
begin by treating the photonic dispersion around each minima
at �Q(x) or �Q(y) as separate bands with a dispersion similar to
Eq. (1). This approximation is justified because for regions
of q space where the photonic energy exceeds the excitonic
energy, the polariton dispersion is very excitonlike. Therefore,
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FIG. 3. The polariton dispersion with two minima given by
the toy model in Eq. (15). We take a = 250 nm as the in-plane
lattice constant. The (density of states) photonic effective mass
at �Q(x) = (0.5,0) 2π

a
and �Q(y) = (0,0.5) 2π

a
are m

(x)
ph = m

(y)
ph = 5 ×

10−6m0 and mexc = 0.176m0. The exciton-photon coupling strengths
are h̄� �Q(x) = h̄� �Q(y) = 15 meV. The detunings are � �Q(x) = 30 meV
and � �Q(y) = 20 meV.

it is only the regions of q space where the photonic dispersion
is below that of the exciton that are of importance for polariton
dynamics. We then consider each band to be coupled to the
exciton, yielding each a polariton band centered around either
�Q(x) or �Q(y). The polariton band centered around �Q (dropping

the ν superscript) can be written as

L �Q(�q; � �Q,� �Q) = 1

2

{
P (�q − �Q; � �Q) + X(�q)

−
√

[X(�q) − P (�q − �Q; � �Q)]2 + 4h̄2�2
�Q
}
,

(14a)

P (�q; �) = h̄2

2mph
q2 − �, (14b)

X(�q) = h̄2

2mexc
q2, (14c)

where � �Q ≡ [X(�q) − P (�q − �Q)]�q= �Q is the exciton-photon

detuning for the photonic band centered at �Q and � �Q is

the light-matter coupling strength evaluated at �Q. The toy
polariton dispersion with two minima is

L(�q) = L �Q(x) (�q; � �Q(x) ,� �Q(x) ) + L �Q(y) (�q; � �Q(y) ,� �Q(y) ). (15)

Through the parameters � �Q(ν) , we can adjust the splitting
between the two photonic minima and model the polaritonic
minima that occur both in the slanted-pore and woodpile
systems. We depict a typical polariton dispersion with two
minima in Fig. 3.

To compute the critical temperature with this toy dispersion,
we consider the polaritons to be trapped in a 2D box
of side length D. This trapping induces a discretization
of the polariton spectrum in increments of π/D in both
the qx and qy directions. The wave function for polaritons
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FIG. 4. A schematic diagram showing the regions of �q space
considered in the computation of the critical temperature in Eq. (16).
The regions extending from the minima at �Q(X) = (π/a,0) and
�Q(Y ) = (0,π/a) are labeled κX and κY , respectively. The shaded

union set κX ∪ κY represents the range of momenta allowed by the
two-dimensional box trap.

trapped near the dispersion minimum at �Q(ν) is ψ �Q(ν) ∼
eiQ

(ν)
x xeiQ

(ν)
y y sin (qn1x) sin (qn2y) where qn1 = n1π

D
, qn2 = n2π

D

for positive integers n1 and n2. Taking the total polariton
density to be ρpol, the number of polaritons in the system
is N = ρpolD

2. We estimate the “transition” (crossover)
temperature by the condition that there are f N particles in
the ground state (or in each of the ground states, in the case
of a degeneracy) with 0 � f � 1. There are several criteria
to specify the crossover temperature, such as that by Ketterle
and van Druten [58] (f = 0) or that by Penrose and Onsager
[3] (f = 0.1). In this work, we focus on the Penrose-Onsager
criterion. To compute the critical temperature Tc, we use the
following equation:

N = N
(x)
0 + N

(y)
0 +

∑
�q∈κx∪κy

[
exp

(
L(�q) − μ

kBTc

)
− 1

]−1

, (16)

where

N
(ν)
0 =

[
exp

(
L( �Q(ν) + �q0) − μ

kBTc

)
− 1

]−1

.

In Eq. (16), �q0 = (π/D,π/D) and κν = {�q = �Q(ν) +
(nx,ny) π

D
: 1 < nx,ny � M} represents the discrete regions

of �q space that are permitted by the box trap around each
minimum, depicted in Fig. 4. M is the integer such that M π

D
=

qcut corresponding to the high-momentum cutoff, arising from
the finite size of both the box trap and the exciton. Momenta
greater than qcut probe the internal structure of the exciton and
are not physically relevant (see Appendix E). N

(ν)
0 represents

the number of particles in the lowest allowed energy state
in each polariton valley. The sum within the intersection set
κX ∩ κY is performed to ensure that polariton states are not
double counted.

B. Two degenerate polariton minima

We first investigate how the critical temperature T (2)
c for a

polariton with two dispersion minima differs from the critical
temperature T (1)

c with only a single dispersion minimum. We
choose realistic parameters (exciton mass, photonic mass,
exciton-photon coupling, etc.). For a polariton with a single
dispersion minimum, the critical temperature is computed
using Eq. (16), setting N

(y)
0 to zero, and replacing the sum

over κX ∪ κY with a simple sum over κX. We depict our results
in Fig. 5. These results indicate that for either the Ketterle–van
Druten or Penrose-Onsager criterion, the reduction in critical
temperature, T (1)

c − T (2)
c , due to the second minimum is on the

order of 5 K. The difference in critical temperature increases
for larger condensate fractions f . The surprisingly small
reduction in Tc for small f is due to the large excitonic density
of states above the polariton dispersion minimum. For room-
temperature onset of BEC, there is non-negligible occupation
of the excitonic states. This occupation limits the influence of
a secondary polariton dispersion minimum on the BEC critical
temperature. At lower temperatures, the excitonic occupation
drops and the presence of a nearly degenerate minimum
strongly influences the occupation of the ground state.

To elucidate this effect, we consider (artificially) reducing
the excitonic mass which, in turn, reduces the excitonic density
of states. By reducing the excitonic mass such that mexc →
mph, the polariton bands approach perfect parabolas, for which
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FIG. 5. Critical temperatures T (1)
c and T (2)

c for polariton disper-
sions with a single minimum (blue [solid] curve) and two degenerate
minima (red [dashed] curve), respectively, as a function of condensate
fraction f . The box trap side length is D = 10 μm; the total
polariton density is ρpol = (5aB )−2 = 494 μm−2 with an exciton Bohr
radius of aB = 9 nm. The detuning is � �Q(x) = � �Q(y) = 30 meV, the
exciton-photon coupling is h̄� �Q(x) = h̄� �Q(y) = 15 meV, the (density

of states) photonic effective mass is m
(x)
ph = m

(y)
ph = 5×10−6m0, and

the exciton mass is mexc = 0.176m0. The in-plane photonic-crystal
lattice constant is assumed as a = 250 nm, and the high-momentum
cutoff is qcut = 2π/aB . The vertical (dashed) lines at f = 0 and
f = 0.1 represent the condensate fractions of the Ketterle–van
Druten and Penrose-Onsager criteria. At f = 0.5, T (2)

c → 0 since
all noninteracting polaritons have condensed equally into the two
degenerate ground states.
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FIG. 6. (a) Critical temperature for a polariton dispersion with a single dispersion minimum (blue [solid] curve) and two dispersion minima
(red [dashed] curve) as a function of exciton mass mexc, in units of the bare electron mass in vacuum m0. All other parameters are the same as
in Fig. 5. (b) Critical temperature for a polariton dispersion with a single dispersion minimum (blue [solid] curve) and two dispersion minima
(red [dashed] curve) as a function of exciton-photon detuning � ≡ � �Q(x) = � �Q(y) . All other parameters are the same as those in Fig. 5.

we expect that T (2)
c → 1

2T (1)
c . This behavior is confirmed in

Fig. 6(a). Another way to artificially displace the large exciton
density of states is to increase the exciton-photon detuning so
much that the polariton over the entire q range (up to the q cut-
off) is very photonlike. Here, we likewise expect T (2)

c → 1
2T (1)

c ,
since both the polariton bands are almost completely parabolic.
Figure 6(b) shows that this occurs only for extremely large
and unphysical detunings of about 5×104 meV. For realistic
physical values of the exciton mass, exciton-photon detuning,
and coupling strengths, the critical temperature for f = 0.1
is modified only by about 5 K, due to the large and proximal
density of excitonlike states. For larger choices of the con-
densate fraction, f , the temperature must be lowered and the
occupation of the excitonlike states is less prominent. In this
case, the difference between T (2)

c and T (1)
c is more pronounced.

In our toy model, we consider only noninteracting excitons.
In reality, exciton-exciton interactions lead to scattering of
polaritons between the two dispersion minima at �Q(x) and
�Q(y) and a lifting of the degeneracy of the polariton ground

state. For example, the true (nondegenerate) ground state
may consist of a coherent many-body state composed of a
linear combination of the �Q(x) and �Q(y) single-polariton states.
More exotic (fragmented) quantum many-body states may also
occur depending on the detailed nature of the exciton-exciton
interactions [59].

C. Symmetry breaking of the photonic-crystal cavity modes

We now investigate the efficacy of symmetry breaking to lift
the polariton dispersion degeneracy and improve T (2)

c . To gain
physical understanding, we start with a limiting case of un-
physical large detunings of � = � �Q(x) = � �Q(y) = 5×104 meV.
This creates essentially parabolic polariton dispersions for
all relevant wave vectors and at f = 0.1, T (2)

c = 1
2T (1)

c . It
is instructive to consider how T (2)

c changes with asymmetry
S ≡ � �Q(x) − � �Q(y) for � �Q(x) fixed at 50 eV. In this unphysical
scenario, kBT (1)

c ≈ 7×103 meV. A simple calculation confirms
that for an asymmetry of S = � �Q(x) − � �Q(y) ≈ 7 eV, T (2)

c →

T (1)
c . As expected, in the absence of excitonlike states, the de-

generacy of the two minima must be lifted by about kBT (1)
c be-

fore the second shallower minimum no longer influences T (2)
c .

The situation is quite different for realistic, physical
parameters with a large, proximal, excitonic density of states.
We plot the critical temperature for a polariton dispersion with
two minima, with � �Q(x) = 30 meV and 0 � S � 1 meV, as
a function of photonic asymmetry S. Figure 7 reveals an
initial rapid increase of T (2)

c with asymmetry that saturates
to about 5 K at an asymmetry of S ∼ 0.3 meV. The large
proximal excitonic density of states limits any further influence
of asymmetry on T (2)

c for a condensate fraction of f = 0.1.
We now consider the case of larger condensate fractions

f . This involves lower temperatures where the excitonlike
states in the polariton dispersion are much less populated.
This regime is important for the exploration of novel quantum
many-body states that may arise when exciton-exciton interac-
tions are considered. We define �Tc = Tc(S = Ssat) − Tc(S =
0) where Ssat is the photonic asymmetry at which Tc no longer
increases significantly. Figure 8 reveals that asymmetry is most
influential at large condensate fractions f . The largest �Tc

occurs for f = 0.5, where all (noninteracting) polaritons are
assumed to have condensed in the doubly degenerate case.
This is similar to the behavior of T (1)

c − T (2)
c seen in Fig. 5.

In Fig. 8(b), we note an initial rapid increase in Ssat with
condensate fraction. This is because for small condensate
fractions, a small amount of asymmetry will not dramatically
alter the occupation of the ground and first few excited states,
since there are so few particles in these states to begin with. Ssat

increases rapidly again as the condensate fraction approaches
unity. In this case, the critical temperature approaches zero.

IV. STRONG-COUPLING AND HIGH-TEMPERATURE
POLARITON BEC

A. Strong exciton-photon coupling

The exciton-photon coupling can be controlled by the width
of the QW. In Fig. 9(a) we plot such dependence (for details
of the calculation see Appendices B and C). It is seen that
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FIG. 7. Critical temperature for a polariton dispersion with two
minima (red [dashed] curve) as a function of the splitting S ≡ � �Q(x) −
� �Q(y) between the two photonic minima. The upper x axis indicates the

splitting between the two polariton minima, i.e., L( �Q(y)) − L( �Q(x)).
The detuning � �Q(x) = 30 meV, and � �Q(y) = � �Q(x) − S. All other
parameters are the same as in Fig. 5. The condensate fraction is
taken as f = 0.1. The critical temperature for a polariton with a single
dispersion minimum at �Q(x) is shown for comparison (in [solid] blue).

the exciton-photon coupling is enhanced by reducing the QW
width. This is mainly for the following reasons. First, for
smaller QW widths, more QWs can be placed in the central
slab to enhance exciton-photon coupling. Second as the exciton
recombination energy E1s is larger for small QW width, the
photon energy h̄ω�q is also larger if the detuning is fixed.
According to Eq. (9) the coupling is stronger when h̄ω�q is
larger. The calculated exciton-photon coupling increases from
12 meV to 20 meV when the QW width reduces from 8 nm to
2 nm. Most of the material parameters used in the calculation
are given in the caption of Fig. 9. The effective mass of
the electron is me = 0.065m0. The hole effective mass is
calculated from the Luttinger Hamiltonian [54] numerically

for different QW widths (see Appendix B). The amplitude of
the exciton wave function |φ1(0)| and the exciton Bohr radius
aB are also calculated for different QW widths. From our
calculation, aB is found to be 	9 nm, and |φ1(0)| 	 a−1

B

√
2/π

is about 0.9×108 m−1 (see Fig. 16 in Appendix B).
In Table I we summarize the main properties of the

PhC microcavity in comparison with the FP microcavity. To
compare with the experimental results in Ref. [8] which are
obtained at low temperature (4 K), the material parameters
(such as GaAs and AlAs band gaps) here are taken as for T = 4
K. For the same reason the QW width is taken as 7 nm and the
barrier layer width is 3 nm. The lowest 2D photonic band edge
is set to be in resonance with the exciton recombination energy
which is 1.61 eV. In contrast, for all the other calculations in
this work, we use the room-temperature material parameters.
The material parameters for both 4 K and room temperature
are listed in Appendix B. We calculate the photonic field
distribution in the FP cavity using the finite difference time
domain method [60] from which the exciton-photon coupling
is obtained.

Table I shows that the exciton-photon coupling in the
PhC cavity is much stronger than that in the FP cavity, with
an added advantage that fewer QWs are required to obtain
strong coupling. To understand this we plot the photonic field
intensity distribution along the growth direction in Fig. 9(c).
Specifically, the field intensities are for the photon with �q = 0
in the FP cavity or for the photon with �q = �Q(x) in the woodpile
PhC cavity. The field intensity distribution is asymmetric for
the PhC cavity as it does not have the mirror symmetry with
respect to the slab. Remarkably, in the central slab region,
the average photonic field intensity in the PhC cavity is about
8 times as large as that in the FP cavity. The nonuniformity
of PhC microcavity in the x-y plane promotes a nonuniform
electric field, with a peak field intensity up to 20 times as large
as that in the FP cavity as revealed in Ref. [28]. This significant
enhancement is because the PhC cavity focuses the photonic
field much more strongly than the FP cavity due to the PBG
and the larger dielectric contrast in the PhC microcavity. The
collective exciton-photon coupling can be further enhanced
by using a slanted-pore crystal with a larger PBG [61] (to be
discussed in Sec. V).
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FIG. 8. (a) Saturation change in critical temperature �Tc and (b) saturation asymmetry Ssat as a function of condensate fraction f . In (a)
�Tc = Tc(S = Ssat) − Tc(S = 0) where Ssat is depicted in (b). All other parameters are the same as in Fig. 5.
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FIG. 9. (a) Collective exciton-photon coupling h̄� �Q(x) as a function of the QW width for AlGaAs symmetric-woodpile system. The coupling

is evaluated at �Q(x). The width of the AlAs barrier layers here is fixed at 4 nm. The interband dipole matrix element is d = 1.1 × 10−28 C m.
The inset indicates how E1s evolves with the QW width. (b) The in-plane PhC lattice constant a as a function of QW width. The lattice constant
varies so as to maintain a fixed detuning of � �Q(x) = 40 meV. (c) Photonic field intensity along the growth direction (in arbitrary units) of the

confined photonic band S−1
∫

d �ρ| �E( �ρ,z)|2 in the PhC (red [solid]) and FP (green [dash-dotted]) cavities. The values are taken for band-edge
photons. Specifically for the FP cavity, �q = 0, and for the woodpile PhC cavity, �q = �Q(x). The photonic band edge energy is 1.61 eV for both
types of cavity. The in-plane lattice constant for the PhC is a = 321 nm. Note that the photon field intensity for the PhC cavity has been
multiplied by a factor of 0.2 to plot on the same graph.

B. High-temperature polariton BEC

The BEC transition temperature depends strongly on the
polariton density (which is determined by the excitation
intensity). We consider the situation where excitons are excited
at higher energy states in the beginning and then allowed to
relax to the polaritonic ground state. The excitonic fraction,
Pl , of the lower polariton in the lth QW is proportional to the
coupling between the photon and the exciton in the lth QW

(see Appendix C 2):

Pl = h̄2�2
l

(ELP − E1s)2

[
1 +

∑
l

h̄2�2
l

(ELP − E1s)2

]−1

(17)

with �l ≡
√∑

α,n |�l,α,n, �Q(x) |2. For polariton areal density n,
the exciton density in the lth QW is nPl . nPl must be smaller

TABLE I. Comparing the properties of the FP and the PhC microcavities when the lowest confined photonic bands in the two cavities are
in resonance with the GaAs QW exciton (i.e., � = 0) at T = 4 K. The QW width is 7 nm, while the barrier layer width is 3 nm. The exciton
energy is 1.61 eV, according to Ref. [8]. N is the number of QWs.

Collective coupling h̄� Coupling per QW h̄�√
N

Photon lifetime

FP cavity: 7.45 meV (12 QWs) [8] 2.15 meV ∼10 ps
Woodpile PhC cavity: 13.3 meV (2 QWs) 9.4 meV �1 ns [37,42]
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than the exciton saturation density to avoid unbinding of
excitons due to many-body (screening and phase-space filling)
effects [62]. For a single GaAs QW the exciton saturation
density is (5aB)−2 where aB is the Bohr radius. In MQWs,
an areal polariton density n � nm ≡ (5aB)−2/max(Pl) is
required, where max(Pl) is the maximal value of Pl among all
QWs. If the QW width is 2 nm, the collective coupling strength
(for three QWs in the central slab) is h̄� �Q(x) = 20.2 meV
for a woodpile system with a 0.07a central slab, assuming a
detuning � �Q(x) = 40 meV (with an in-plane lattice constant of
a = 270 nm). This yields nm = 1.0 × 104 μm−2 in both the
woodpile and slanted-pore architectures. In our calculation we
take polariton densities less than nm/4 = (10aB)−2/max(Pl).

Following Ref. [28] we define the dispersion depth of the
lower polariton branch as the energy difference between the
polariton dispersion minima and the exciton band edge. With
detuning � �Q(ν) , the polariton dispersion depth is given by

V �Q(ν) ≡ E1s − ELP( �Q(ν)) = � �Q(ν)

2
+

√(
� �Q(ν)

2

)2

+ h̄2�2
�Q(ν) ,

(18a)

V = max{V �Q(x) ,V �Q(y)}. (18b)

Physically, V characterizes the energy range of the polariton
dispersion with small effective mass. It has been shown in
Ref. [28] that the BEC transition temperature Tc is limited
by V because for temperatures above V/kB quasiparticles
are mainly populated on excitonlike states. BEC, in this
situation, requires a density much higher than nm. Positive
detuning � �Q(x) > 0 enables larger dispersion depths and
higher Tc. However, for large detuning, low-energy polaritons
are more photonlike. The resulting weak polariton-phonon
and polariton-polariton interaction strengths lead to small
scattering rates and the polariton gas requires a longer time to
achieve thermodynamic equilibrium. Since we consider only
small positive detunings less than 40 meV in this work, the
maximum excitonic fraction in any single QW of the polariton,
max Pl , is considerable (ranging from 4% to 17%), thanks to
the strong exciton-photon coupling in the PhC microcavity.

We calculate the transition temperature Tc for two polariton
densities with various QW width and a fixed detuning � �Q(x) =
40 meV in Fig. 10. Tc is decreased with increasing QW
width because the collective exciton-photon coupling h̄� �Q(x)

is reduced [see Fig. 9(a)]. The increase in Tc at a quantum well
width of 3 nm can be explained as follows. For both well widths
of 2 nm and 3 nm, there are three quantum wells in the central
slab. The coupling strength is slightly smaller for the 3 nm case,
due to the decreased exciton recombination energy. This results
in more photonlike polaritons and allows for a larger polariton
density which causes higher critical temperatures. However,
for a well width of 4 nm, the system can accommodate only
two quantum wells, which causes a decrease in light-matter
coupling strength. Moreover, since the excitonic component
is distributed over fewer quantum wells, the polaritons are
more excitonlike, which results in lower critical temperatures.
The results plotted in Fig. 10 demonstrate the possibility of
high-temperature (Tc � 300 K) polariton BEC well below the
exciton saturation density.
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FIG. 10. QW width dependence of the polariton BEC transition
temperature Tc for polariton densities (10aB )−2/max(Pl) [the curve
with circles, corresponding to polariton density of n = (2.2aB )−2 =
2.6×103μm−2 for 2 nm MQWs] and (20aB )−2/max(Pl) [the curve
with triangles, corresponding to n = (4.3aB )−2 = 0.64×103 μm−2

for 2 nm MQWs] in the symmetric woodpile system. The cavity
is taken to be a square quantum box of length D = 10 μm. The
detuning is � �Q(x) = 40 meV for all QW widths. The exciton-photon
coupling strength and exciton recombination energies are given in
Fig. 9(a), while the PhC lattice constant is given in Fig. 9(b). In this
figure, ρexc ≡ n max(Pl), representing the maximal exciton density in
a single QW.

V. ROAD MAP TO ROOM-TEMPERATURE
POLARITON BEC

A. Trapping size, detuning, and density dependencies

We now study how the transition temperature Tc varies
with box trap side length D, exciton-photon detuning � �Q(x) ,
exciton-photon coupling, and the polariton density in the
symmetric-woodpile structure. We begin our analysis with
the polariton density (10aB)−2/max(Pl). From Fig. 11(a),
the dependence of Tc on D is qualitatively different from
that of atomic (or excitonic) BEC [58]. First, the transition
temperature depends weakly on the trapping size (almost
logarithmically). For large D, Tc remains almost unchanged
up to a macroscopic scale D = 1 cm. Second, the dependence
on trapping size is nonmonotonic: at D 	 3 μm the transition
temperature reaches its maximum. For smaller D, when the
quantization energy of the polariton due to the trap (i.e.,
the energy difference between the first excited state and the
ground state) is comparable with or larger than the polariton
dispersion depth V , the BEC crosses over from polaritonlike
to excitonlike and the BEC transition temperature is thus
reduced.

From Fig. 11(a) Tc is enhanced by positive detuning.
Figure 11(b) shows that Tc increases with both the detuning
� �Q(x) and the exciton-photon coupling h̄� �Q(x) , which is
consistent with the enhanced dispersion depth, V , of the
lower polariton. Clearly, high temperature polariton BEC is
accessible over a range of realistic parameters. The highest
transition temperature reported in this work is 325 K, for a
moderate exciton density not exceeding (10aB )−2 in any one
QW. The density dependence of polariton BEC is plotted in
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FIG. 11. (a) Tc (represented by the color scale) as functions of the detuning � �Q(x) and the trapping size D in a symmetric-woodpile system.
Once again, we remind the reader that the sign convention for the detuning is opposite of that traditionally found in the literature. The QW
width is 2 nm, while the barrier layer width is 4 nm. The exciton-photon coupling is h̄� �Q(x) = 20 meV for three QWs in the central slab. The
PhC lattice constant is 264 � a � 270 nm. The exciton recombination energy is 1.966 eV. The polariton density is (10aB )−2/max(Pl). (b) Tc

(color scale) as functions of the exciton-photon coupling h̄� �Q(x) and the detuning � �Q(x) for D = 10 μm. The QW width is still 2 nm, while
the barrier layer width is increased to vary the exciton-photon coupling strength (by reducing the number of QWs from three to one). Other
parameters are the same as in (a).

Fig. 12. As seen in Ref. [28], the dependence of Tc on D

is significant for lower polariton densities. In this regime,
both temperature and density are low. Polaritons are thus
mainly populated in the states close to the dispersion minima
where the effects of excitonlike states are negligible. In this
regime, the dependence of Tc on trapping size resembles that
of atomic BEC [33]. However, in the high polariton density
regime, Tc varies very weakly with D and is mainly limited
by the dispersion depth V [28]. Figures 12(b) and 12(c) reveal
that high transition temperature is attainable at strong exciton-
photon coupling, large detuning, and high polariton density.

B. Symmetry-breaking architectures

We now examine the possibility of room-temperature BEC
using slanted-pore crystals or asymmetric-woodpile crystals
in which the X-Y polarization degeneracy is broken. These

structures provide a physical realization of the asymmetric
polariton dispersions discussed in Sec. III. The structures
are composed of AlGaAs (ε = 9.54), surrounding a central
slab containing two or three AlGaAs/GaAs QWs. The critical
temperature in both of these asymmetric architectures follows
the same trends in coupling strength, trapping size, detuning,
and density as shown in the previous subsection.

We depict the slanted-pore structure in Fig. 13(a) and its
band structure in Fig. 13(b). The slanted-pore system has the
advantage of a larger photonic band gap to central frequency
ratio than the symmetric-woodpile structure (15.5% compared
to 12.0%) as well as a larger remaining gap between the lowest
guided band and the lower three-dimensional band edge (6%
compared to 2%). This allows for stronger light localization
to the central slab, resulting in larger light-matter coupling
strengths to enhance the BEC critical temperature. The broken
X-Y symmetry lifts the degeneracy of the two photonic minima
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FIG. 12. (a) Polariton BEC transition temperature Tc (represented by the color scale) as a function of the trapping size D and the
polariton density. The widths of the GaAs QW and the AlAs barrier layer are 2 nm and 4 nm, respectively. The exciton-photon coupling is
h̄� �Q(x) = 20 meV for three QWs in the central slab, while the detuning is � �Q(x) = 40 meV. The PhC lattice constant is 270 nm. The exciton
recombination energy is 1.966 eV. (b) Tc (color scale) as a function of the detuning � �Q(x) and the polariton density. D = 10 μm. The other
parameters are the same as in (a). (c) Tc (color scale) as a function of the exciton-photon coupling h̄� �Q(x) and the polariton density. The detuning
is � = 40 meV, while the trapping size is D = 10 μm. The QW width is still 2 nm, while the barrier layer width is increased to modify the
exciton-photon coupling strength by reducing the number of QWs. The other parameters are the same as in (a).
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FIG. 13. (a) Schematic of the slanted-pore photonic-crystal cavity. A central slab containing GaAs/AlGaAs QWs is sandwiched in
the PhC. (b) Photonic band structure in the 2D Brillouin zone for the slanted pore and (c) asymmetric woodpile with (hx,hy,wx,wy) =
(0.27a,0.25a,0.32a,0.28a). The thicknesses of the central slab layers are 0.08a and 0.07a in the slanted-pore and asymmetric-woodpile cases,
respectively. In (c), the photonic minimum at �Q(x) is slightly lower by 10.1 meV than that at �Q(y). The gray (shaded) regions represent the
bulk photonic bands. The red (solid) curve in the band gap denotes the lowest confined photonic band. It is placed close to the QW exciton
emission line (black [dashed] line) and contributes significantly to the lower polariton branch (blue [solid] curve below the exciton emission
line). Other confined photonic bands are represented by the green (dashed) curves. In the slanted-pore system, a lattice constant of a = 241 nm
is required to obtain exciton-photon detuning � �Q(y) = 40 meV. In the asymmetric-woodpile system, a lattice constant of a = 269 nm is needed
to obtain exciton-photon detuning � �Q(x) = 40 meV. The light-matter coupling strength is h̄� �Q(y) = 19.8 meV and h̄� �Q(x) = 13.0 meV in the
slanted-pore and woodpile systems, respectively, for three 2 nm GaAs QWs with 4 nm AlGaAs barriers in the central slab.

at �Q(x) and �Q(y), providing a small advantage in Tc and a large
advantage in condensate fraction f below Tc.

The asymmetric-woodpile is similar to the symmetric-
woodpile crystal, except that the heights and widths of the
x- and y-oriented logs (hx,hy,wx,wy) are not equal. Since
we consider the case in which wx and wy as well as hx

and hy differ by only about 20 nm, the structure visually
appears nearly identical to the one in Fig. 1(a). We present
the band structure for the asymmetric-woodpile system below
in Fig. 13(c) for a structure in which (hx,hy,wx,wy) =
(0.28a,0.28a,0.25a,0.27a) where a = 275 nm. As in the
slanted-pore crystal, this broken symmetry lifts the degeneracy
of the two photonic minima and results in larger critical
temperatures. The asymmetric structure has one slight disad-
vantage of a smaller 3D photonic band gap than its symmetric
counterpart (10.6% compared to 12.0%) as well as a smaller
remaining band gap (1.7% compared to 2.0%). This makes the
polaritons more susceptible to radiative decay in the presence
of structural disorder (see Sec. VI).

In Fig. 14, we plot the dependence of the light-matter
coupling strength, the lattice constant (for detuning fixed

at � �Q(ν) = 40 meV), and the critical temperature on the
quantum well width. In Fig. 14(a), we remark that the coupling
strengths of the slanted-pore system are smaller than that in the
symmetric-woodpile system. Though the slanted-pore system
has a larger band gap, it requires a thicker central slab than in
either of the woodpile systems (0.08a compared to 0.07a) to
accommodate three QWs. This is due to the fact that for a given
exciton-photon detuning � �Q(ν) , the lattice constant is smaller in
the slanted-pore system than in either of the woodpile systems,
as shown in Fig. 14 for the case of � �Q(ν) = 40 meV. As a result
of the thicker central slab, there is a larger confinement volume
in the slanted-pore system and a slightly weaker field intensity
(see Appendix D). We attribute the slightly weaker coupling
strength in the asymmetric woodpile system to reduced PBG
and light localization relative to the symmetric woodpile
(see Appendix D). Figure 14(c) reveals that both the
asymmetric-woodpile and the slanted-pore systems out-
perform the symmetric woodpile in terms of critical tem-
perature. We attribute this slight improvement to (i) sym-
metry breaking and (ii) slightly weaker coupling strengths,
which yields slightly more photonlike polaritons that in turn
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FIG. 14. (a) Collective exciton-photon coupling h̄� �Q(ν) as a function of the QW width for AlGaAs slanted-pore and asymmetric and

symmetric woodpile PhC cavities. The coupling is evaluated at �Q(x) and �Q(y) for the woodpile-based and slanted-pore systems, respectively.
The central slab is 0.07a and 0.08a thick in the woodpile and slanted-pore cases, and each contain three QWs. The width of the AlAs barrier
layers here is fixed at 4 nm. The interband dipole matrix element is d = 1.1×10−28 C m. (b) The in-plane PhC lattice constant a as a function
of QW width for the PhC microcavities. The lattice constant varies so as to maintain a fixed detuning of � �Q(ν) = 40 meV. (c) QW width
dependence of the polariton BEC transition temperature Tc for polariton density (10aB )−2/max(Pl) in the asymmetric and symmetric woodpile,
as well as the slanted-pore architectures. The cavity is taken to be a square quantum box of length D = 10 μm. The detuning is � �Q(ν) =
40 meV for all QW widths. The exciton-photon coupling strength is given in (a), while the PhC lattice constant is given in (b).

facilitates larger polariton densities. Figure 15 depicts the
detuning and exciton density dependence of the critical tem-
peratures for all three structures. As expected, with increasing
detuning and density, the critical temperature increases in all
three architectures. A roughly 15 K improvement in the BEC
critical temperature [at � �Q(ν) = 40 meV and exciton density
ρexc = (10aB)−2] is seen for the asymmetric structures rela-
tive to the symmetric one, considering the Penrose-Onsager
criterion. This increase in Tc due to asymmetry is larger than
that predicted by the toy model in Sec. III, since the densities
considered here are higher. In Fig. 8, the maximum polariton
density is (5aB)−2, while in Fig. 15, polariton densities are up
to (2.2aB )−2 [at an exciton density of (10aB )−2].

VI. DISORDER EFFECTS ON MICROCAVITY
POLARITONS

In this section we discuss the effects of disorder on micro-
cavity polaritons. In PhC microcavities disorder can arise from

several sources: (i) the geometric imperfections of the PhC
microcavity that mainly affect the photonic spectrum, (ii) the
electronic disorder due to impurities, local potentials, strains,
QW width, spatial nonuniformity, interfaces, etc., that give rise
to inhomogeneous broadening of the excitonic recombination
energy, (iii) dynamic disorder due to, e.g., exciton-phonon and
exciton-exciton scattering that homogeneously broadens the
excitonic levels.

The effect of geometric imperfections of the PhC cavity can
be studied via numerical calculations. A rough way to estimate
how much geometric fluctuation is tolerable is to calculate the
spectrum of the lowest 2D photonic band for various spatial
resolutions. We find that the calculation converges at a spatial
resolution of about 6 nm (with relative error smaller than 2%).
That is, geometric imperfections below 6 nm have negligible
effect on the photonic spectrum and optical field distribution.
We further notice that the geometric imperfections around
the slab layer are most deleterious. In contrast, geometric
imperfections in the cladding layers are more tolerable (can be
up to 20 nm).
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FIG. 15. (a) Critical temperature as a function of exciton-photon detuning � �Q(ν) , where ν = x for both the symmetric and asymmetric
woodpile structures and ν = y for the slanted-pore structure. The polariton density is (10aB )−2/ max(Pl). (b) Critical temperature as a function
of the exciton density per QW. The detuning is � �Q(ν) = 40 meV. In both (a) and (b), there are three 2 nm QWs in the central slab, with
the coupling strength given by Fig. 14(a). The box trap side length is D = 10 μm; the exciton recombination energy and Bohr radius are
EX = 1.966 eV and aB = 9 nm. The results for Tc are shown for condensate fractions f = 0.1 (solid lines) and f = 0.5 (dashed lines). In the
case of the symmetric woodpile, the critical temperature is identically zero for a condensate fraction of f = 0.5.

The effect of electronic disorder for the single QW case
has been studied in Ref. [32] where the small polariton
effective mass makes them highly mobile and the disorder
potential is averaged over a large spatial scale. Consequently,
disorder within a QW has little effect, analogously to motional
narrowing [32]. In addition to the disorders within one
QW, there also exists inhomogeneous broadening of the
exciton recombination energy among different QWs. Such
inhomogeneous broadening arises from variations in the width
of each QW, which changes the exciton recombination energy
(cf. Fig. 9). This can be described by adding a fluctuating
part to the exciton energy within each QW, i.e., E

(l)
1s (�q) =

E1s(�q) + δEl with δEl describing the random fluctuation.
Here δEl is modeled as a Gaussian random variable with
the variance (δE1s)2. δE1s is referred to as “inhomogeneous
broadening.” Reference [63] suggests that the inhomogeneous
broadening in GaAs-based QWs may be less than 1 meV due
to precise fabrication technologies. Previous work [28,29,36]
has shown that the light-matter coupling strength h̄� �Q(ν) , the
dispersion depth V , and the critical temperature Tc are robust
to inhomogeneous broadening of δE1s � 10 meV in systems
with multiple QWs.

The effect of dynamic disorder, such as the polariton-
phonon and polariton-polariton scatterings, differs from that of
static disorder. Dynamic disorder causes both level broadening
and finite lifetime of a polariton state. The latter is crucial for
the establishment of thermal equilibrium of the condensate. For
GaAs QWs at room temperature the homogeneous broadening
is mainly caused by optical phonon scattering, which gives rise
to a linewidth of 8 meV [64]. This linewidth gives a phonon
scattering time of 0.08 ps. Accordingly, the thermalization
time for polaritons is on the order of 1 ps for the ranges of the
exciton-photon coupling and detuning studied in this work.
The effect of dynamic disorder on polariton dispersion depth
can be modeled by adding an imaginary part, i�, to the exciton

energy, which gives

V �Q(ν) = � �Q(ν)

2
+ Re

√(
� �Q(ν) − i�

2

)2

+ h̄2�2
�Q(ν) , (19a)

V = max{V �Q(x) ,V �Q(y)}. (19b)

In general, exciton-phonon interaction reduces the dispersion
depth V . However, for � �Q(x) = 40 meV, h̄� �Q(x) = 20 meV, and
� = 8 meV, the lower polariton dispersion depth is reduced
by only 0.2 meV. This is equivalent to a reduction of detuning
by 0.2 meV and has negligible effects on the transition
temperature according to Fig. 12(b).

We finally discuss the effect of nonradiative recombination
mechanisms on polariton BEC. It is found that the Auger
recombination lifetime for the highest density of carriers
studied in this work is about 10−3 s according to the calculation
in Ref. [65], which is negligible. Another mechanism is the
Shockley-Read-Hall mechanism [66] of which the decay rate
is proportional to the density of defects. This mechanism can
be reduced in high-quality samples which can be fabricated
with advanced growth technology of photonic-crystal cavities
[37,41,42]. Finally the photon lifetime is determined by the
quality of the cavity which can be improved by increasing the
thickness of the cladding PhCs. In the literature, quality factors
as high as 106 and photon lifetimes as long as nanoseconds
have been achieved in PhC microcavities [37].

VII. CONCLUSIONS AND DISCUSSION

In summary, we have identified a window of opportunity
to achieve above-room-temperature polariton BEC in
GaAs quantum wells using AlGaAs photonic-band-gap
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microcavities. We compared symmetric-woodpile,
asymmetric-woodpile, and slanted-pore architectures
sandwiching a central slab containing three GaAs/AlAs
quantum wells for effective regimes of exciton-photon
detuning and polariton density. The full three-dimensional
photonic band gap of our structures allows for strong light
localization resulting in strong exciton-photon coupling
within the central slab. The photonic band gap also inhibits the
radiative decay of trapped exciton-polaritons through strongly
coupled, off-normal, leaky modes and allows for them to
fully thermalize with each other and the host lattice. The
coupling strength of the exciton to leaky off-normal modes in
a 1D Fabry-Pérot cavity depends sensitively on the Fourier
components of the exciton wave function within the trapping
region. In contrast, the 3D PBG completely eliminates leaky
modes and the polariton lifetime is limited only by exciton
nonradiative recombination.

The most sensitive factors enabling high-temperature BEC
are the polariton dispersion depth and the polariton density.
The former is enhanced by strong exciton-photon coupling
and large, positive, exciton-photon detuning. Our calculations
suggest that a detuning of 40 meV or more provides the
necessary window of opportunity, where the dispersion depth
exceeds room temperature and the exciton fraction of the rel-
evant polaritons is sufficiently small to allow a high polariton
density. At the same time, the exciton fraction is sufficiently
high to allow rapid thermalization of the polariton gas. In our
calculations, we found room-temperature BEC while keeping
the exciton density below (10aB )−2 per quantum well. Even
higher onset temperatures for BEC are likely feasible by slight
further increases in detuning and polariton density, without the
deleterious effects of excitonic Auger recombination [65].

We introduced a toy model to explain the effect of
valley degeneracy in the polaritonic spectrum on BEC critical
temperature and condensate fraction. The proximal excitonic
density of states was shown to define the critical temperature
more than the valley degeneracy. Breaking of X-Y symmetry
to lift the valley degeneracy provided a boost of 15 K,
at most, in the BEC onset temperature as defined by the
Penrose-Onsager criterion. On the other hand, the condensate
fraction at lower temperatures is considerably enhanced by
symmetry breaking. High condensate fractions at or slightly
below room temperature may be very important in exploring
novel quantum many-body states and fragmented condensates
[59] in the presence of moderate exciton-exciton interactions.

Considerable challenges still exist in realizing large-scale
3D photonic-band-gap materials with a large PBG in the
visible spectrum. In the present optical microcavity, only four
unit cells of photonic crystal above and below the central slab
containing three quantum wells is required. Such photonic
crystals can initially be defined in polymer templates and then
transferred to high-index semiconductors [43]. More recently,
it has been shown [67] that III-V semiconductors can be
epitaxially grown through a suitable template structure to
achieve a 3D photonic band gap material with high electronic
quality. Such a technique could be used to realize the 3D
PBG claddings of AlGaAs considered in this paper. Another
suitable material for our PBG microcavity is GaP, which is
nonabsorbing in the energy range of our quantum well exciton-
polariton and has a dielectric constant of 11.11 [68]. The

TABLE II. Material parameters for the calculation of QW exciton
states. All the parameters are taken from Ref. [51]. The conduction
band effective mass of AlAs is determined by fitting the excitonic
absorption energy in Ref. [8]. The static dielectric constant is taken
from Ref. [50]. The dielectric constant at optical frequency is taken
from Ref. [69]. The parameters γ1,γ2, and γ3 describe the effective
mass anisotropy for the J = 3

2 holes in GaAs.

me/m0 γ1 γ2 γ3 ε (static) ε (optical)

GaAs 0.065 6.98 2.06 2.93 12.8 12.5
AlAs 0.06 3.76 0.82 1.42 8.8

ingredients required for the fabrication of our desired 3D PBG
microcavity are available. It is hoped that the important out-
comes of long-lived, equilibrium Bose condensates and other
mesoscopic quantum superposition states at room temperature
will strongly motivate the needed fabrication efforts [70–79].
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APPENDIX A: CALCULATION OF THE CONFINED
PHOTONIC BANDS

The dispersion and field distribution of the confined
photonic bands are calculated via the plane wave expansion
method [46]. The dielectric constants at optical frequency of
GaAs and AlAs are listed in Table II. The woodpile rods
constituting the 3D PBG cladding are made up of Al0.8Ga0.2As
with dielectric constant given by the linear interpolation
between that of GaAs and AlAs, i.e., ε(Al0.8Ga0.2As) =
0.8ε(AlAs) + 0.2ε(GaAs) = 9.54. For the central slab, the
dielectric constant is simply taken as the average 0.5ε(AlAs) +
0.5ε(GaAs) = 10.7. The resolution of the calculation is tested
to have relative error of about 5% or less. The imaginary part of
the dielectric function of Al0.8Ga0.2As is negligible for photon
energy below 2.3 eV.

APPENDIX B: EXCITONIC STATES

The lowest energy excitonic state in the QWs is the heavy-
hole exciton at 1s state. This is so because the first heavy-hole
subband has much lower energy than the light-hole one. By
separating the relative motion and center-of-mass degrees of
freedom, the wave function can be written as

|�α,�k〉 =
∑

�q
η�q,�kζα,σ,σ ′c

†
�k/2+�q,σ

d
†
�k/2−�q,σ ′ |0〉, (B1a)

η�q,�k = 1√
S

∫
d �ρehφ1( �ρeh)e−i[�q+ mh−me

mh+me

�k
2 ]· �ρeh . (B1b)

S is the area of the system. φ1( �ρeh) is the wave function of
the QW 1s hydrogenic state with �ρeh = �ρe − �ρh. The above
wave function gives an exciton state with center-of-mass
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momentum of h̄�k. The center-of-mass coordinate is �R =
(me �ρe + mh �ρh)/(me + mh) and the center-of-mass wave func-
tion is ei�k· �R . c†σ (d†

σ ) creates an electron (heavy-hole) with spin
σ . ζα gives the internal spin structure of the electron and heavy-
hole determined by the polarization α = L,T (longitudinal or
transverse polarization). Specifically [49]

ζL =
(

0 1√
2
eiθ�k

−1√
2
e−iθ�k 0

)
,

ζT =
(

0 i√
2
eiθ�k

i√
2
e−iθ�k 0

)
, (B2)

where θ�k = Arg(kx + iky). The spectrum of the exciton is

Eps(�k) = Eps + h̄2k2

2(me + mh)
, (B3)

where Eps is the energy of stationary exciton (�k = 0) at the
pth s-orbital state.

The single-particle electronic states for the conduction and
valence bands are

〈�r|c†�q,σ
|0〉 = 1√

S
ei �q· �ρu�c( �ρ,z)ξc(z)χσ , (B4)

〈�r|d†
�q,σ

|0〉 = 1√
S

ei �q· �ρu�v( �ρ,z)ξv(z)χσ , (B5)

respectively. u�c and u�v are the Bloch wave function for
the electronic conduction and valence bands at the � point,
respectively. ξc (ξv) is the wave function of the lowest subband
in the conduction (valence) band. χσ denotes the spin state of
the electron or hole.

To study the system we calculate the QW excitonic states
from effective mass approximation using realistic parameters.
First the the electron and hole subband states in the QW are
calculated with the position-dependent effective mass model
[48]

Hsub = P̂z

1

2m(z)
P̂z + V (z), (B6)

with P̂z = −ih̄∂z. The treatment in this part will follow the
standard method in Ref. [48]. The electron effective mass in
the GaAs QW and AlAs barrier layer as well as the Luttinger
parameters [49,54] for the valence bands are taken from
Ref. [51] and listed in Table II where m0 is the bare electron
mass in vacuum. The ratio of conduction band edge offset to
the whole band gap difference at the � point between GaAs
and AlAs is taken as 66% [51]. The band gap of GaAs at
room temperature is 1.424 eV whereas at very low (e.g., 4 K)
temperature it is 1.519 eV [50,51]. Therefore the conduction
(valence) band offset of the QW is 1 eV (0.52 eV) at room
temperature [50,51]. For 4 K the conduction band offset is
1.04 eV, while the valence band offset is 0.54 eV.

For heavy holes in [001] QWs the effective mass along the
z direction is given by [49,80]

mhhz

m0
= 1

γ1 − 2γ2
, (B7)

whereas for light holes it is

mlhz

m0
= 1

γ1 + 2γ2
. (B8)

The effective mass relevant for the motion in the QW plane is
obtained via the following average:

1

me

= pQW

me(GaAs)
+ 1 − pQW

me(AlAs)
, (B9)

1

mh

= pQW

mhh‖(GaAs)
+ 1 − pQW

mhh‖(AlAs)
+ 1

m′
h

(B10)

with pQW = ∫
dz|ξc/v(z)|2|

z∈QW being the probability of elec-
tron (or hole) in the GaAs QW region. Here m′

h is the correction
due to inter-subband heavy-hole–light-hole mixing and

mhh‖
m0

= 1

γ1 + γ2
. (B11)

The contribution from the mixing of heavy and light holes
comes from the off-diagonal term in the Luttinger Hamiltonian
[49,54], ±√

3 h̄
m0

γ3(kx ± iky)P̂z [49]. Second-order perturba-
tion theory yields an energy correction which is proportional
to |�k|2 and thus contributes to the heavy-hole effective mass.
This contribution is written as [49]

1

m′
h

= −3

8

∑
n

|〈hh,1|P̂zγ3(z) + γ3(z)P̂z|lh,n〉|2
m2

0(Elh,n − Ehh,1)
, (B12)

where |hh,1〉 is the first heavy-hole subband and |lh,n〉 is the
nth light-hole subband with their energy being Ehh,1 and Elh,n,
respectively. For narrow QWs the main contribution of this
correction comes from the mixing between the first heavy-hole
subband and the second light-hole subband. Other valence
band mixing terms in the Luttinger Hamiltonian [54] induce
nonparabolic effect in the heavy-hole subband. Broido and
Sham have shown that such corrections affect the properties
of the heavy-hole exciton marginally [53]. We hence ignore
those corrections in this work.

For narrow QWs of which the subband splitting is much
larger than the Coulomb interaction, the exciton Hamiltonian
can be reduced to the single subband form

Hex = − h̄2∂2
�ρe

2me

− h̄2∂2
�ρh

2mh

+ VQW( �ρe − �ρh), (B13)

where the Coulomb potential in the lowest subband is

VQW( �ρe − �ρh) = −
∫

dzedzhe
2|ξc(ze)|2|ξv(zh)|2

4πε0ε
√

( �ρe − �ρh)2 + (ze − zh)2
.

Since the electrons/holes mainly stay in the GaAs QW region,
we ignore the difference between the static dielectric constant
of GaAs and that of AlAs for simplicity. The excitonic
states and spectra are calculated numerically by exactly
diagonalization of the above Hamiltonian. The most efficient
method is to use the 2D excitonic states as basis states. The
width of the AlAs barrier layer between GaAs QWs is set to
be sufficiently large so that tunneling of electrons and holes
between QWs is negligible. Specifically the tunneling-induced
subband energy shift is less than 1 meV and the wave function
penetration is less than 1%. With the parameters in Table II, we
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FIG. 16. (a) QW width dependencies of the QW exciton wave function at zero electron-hole distance |φ1(0)| and the exciton binding energy
Eb. Inset: hole effective mass mh/m0

h with m0
h = m0/(γ1 + γ2) (γ1 and γ2 here are the Luttinger parameters [54] of GaAs). (b) The subband

edges as functions of the QW width. “HH1” and “HH2” denote the first and second heavy-hole subbands, while “LH1” and “LH2” stand for
the first and second light-hole subbands. The chained curve represents a l−2

QW (lQW denoting the QW width) dependence. The dotted line marks
the barrier height for holes of the GaAs/AlAs QW. (c) The exciton recombination energy E1s and Bohr radius aB as functions of QW width.
The width of AlAs barrier between QWs is taken as 4 nm.

are able to reproduce the exciton absorption energy in Ref. [8].
We note there are two types of excitons, longitudinal and
transverse. The spectra of the two are generally not degenerate
due to (i) the long-range exchange splitting due to the coupling
with photon and (ii) the short-range exchange splitting due to
interband Coulomb interaction. Mechanism (i) is in fact the
polaritonic effect we consider in this work, whereas (ii) is
negligible for [001]-grown GaAs QWs. We thus use the same
dispersion for both types of excitons.

The excitonic wave function at zero electron-hole relative
distance |φ1(0)| can be obtained directly via the ground
state wave function from exact diagonalization. As the ground-
state wave function φ1( �ρeh) is no longer exactly exponential
we define the exciton Bohr radius as

aB ≡
[

2π

∫
d �ρeh|φ1( �ρeh)|4

]− 1
2

. (B14)

Inserting the 2D excitonic wave function into the above
definition yields the standard result

aB = 1

2
a0

εm0

mred
, (B15)

where the hydrogen Bohr radius a0 = 0.53 Å, ε is the static
dielectric constant, and the reduced mass mred = memh

me+mh
.

Figure 16(a) shows the exciton wave function at zero
electron-hole relative distance |φ1(0)| and the exciton binding
energy Eb as a function of QW width. The exciton binding
energy is defined as the energy difference between the
semiconductor band gap and the exciton ground-state energy
E1s . It is noticed that |φ1(0)| has a nonmonotonic dependence
although Eb is still monotonic. This is due to a nonmonotonic
dependence of the effective mass of the lowest heavy-hole
subband mh as shown in the inset. The latter originates from
the correction m′

h. It has a peak when the wave function of the
second light-hole subband starts to spread considerably outside
the QW into the barrier. From Fig. 16(b) it is seen that the
QW width lQW dependence of the second light-hole subband
edge deviates significantly from the l−2

QW around lQW = 4 nm
and saturates at the barrier height for the valence band in the
GaAs/AlAs QW, 0.52 eV [50,51], as indicated by the dotted

line in the figure. This signals that the wave function of the
second light-hole subband becomes largely unconfined to the
QW. As the second light-hole subband becomes gradually
deconfined its mixing with the first heavy-hole subband is
considerably reduced. Since m′

h is negative, this results in a
reduction of mh. Consequently the Bohr radius increases [see
Fig. 16(c)] and |φ1(0)| decreases. For completeness we also
plot the exciton recombination energy E1s and the exciton
Bohr radius aB as functions of the QW width in Fig. 16(c).

To determine the interband dipole matrix element, we
calculate the exciton-photon coupling in the FP microcavity
and compare it with the experimental measurements in
Ref. [8]. The confined photonic mode in the FP microcavity is
calculated via the finite difference time domain method. The
energy and field distribution of the confined photonic band is
then utilized to obtain the exciton-photon coupling and fitted
to the measured VRS in Ref. [8]. The only fitting parameter
is the interband dipole matrix element d, or equivalently the
energy Ecv through

d = eh̄
√

Ecv

Eg

√
2m0

. (B16)

Here Ecv = 2P 2
cv/m0 is related to the momentum matrix

element between the conduction and valence bands Pcv. The
fitted value is Ecv = 24 eV which is slightly smaller than
the widely accepted value of 25.5–29 eV [51]. From the fitted
value of Ecv the interband dipole matrix element is determined
as d = 1.1×10−28 C m which is used throughout this work.

APPENDIX C: EXCITON-PHOTON COUPLING

1. Exciton-photon coupling: Single quantum well

The Hamiltonian of exciton-photon coupling is written as

H = e�r · �E(�r), (C1)

where e > 0 is the elementary charge and the electric field of
the quantized photon is

�E(�r) = i
∑

�q

√
h̄ω�q
2ε0S

�u�q( �ρ,z)ei �q· �ρa�q + H.c. (C2)
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The exciton-photon coupling in the rotating wave approxima-
tion is then written as

Hint =
∑
α,�k,�q

ih̄�α,�k,�qβ
†
α,�ka�q + H.c., (C3)

h̄�α,�k,�q =
√

h̄ω�q
2ε0S

〈�α,�k|�u�q( �ρ,z)ei �q· �ρ · e�r|0〉 (C4)

=
√

h̄ω�q
2ε0S

�̃α,�k,�q, (C5)

where β† and a† are the creation operators of exciton and
photon, respectively. Inserting the exciton wave function
|�α,�k〉 from Eq. (B1b) we find

�̃α,�k,�q =
∑

�k′

η�k′,�kdα

∫
hα,�k,�q( �ρ,z)d �ρdz, (C6)

with dα being the magnitude of the dipole of the α-polarized
exciton. Here

hα,�k,�q( �ρ,z) = S−1ξ ∗
c (z)ei(�q−�k)· �ρuα,�q( �ρ,z)ξv(z), (C7)

where uα,�q = �eα · �u�q with �eα being the polarization direction
of the α exciton. For the transverse exciton, �eT = �ez × �q/q,
while for the longitudinal exciton, �eL = �q/q. We then find∫

d �ρdzhα,�k,�q( �ρ,z) 	
∫

d �ρS−1ei(�q−�k)· �ρuα,�q( �ρ,z0)gcv, (C8)

where we have used the approximation∫
ξ ∗
c (z)ξv(z)uα,�q( �ρ,z)dz 	 uα,�q( �ρ,z0)gcv (C9)

with z0 being the coordinate of the center of the QW along the
z direction and

gcv =
∫

dzξ ∗
c (z)ξv(z). (C10)

The above approximation is justified when the electromagnetic
field varies negligibly over the spatial extent of the QW in the z

direction. |gcv| is very close to unity for the parameters chosen
in this work. Hence

�̃α,�k,�q 	
∑
�k′n

η�k′,�kδ�k,�q+ �Gn
dαuα,�q, �Gn

(z0)gcv. (C11)

Using
∑

�k′ η�k′,�k = |φ1(0)|√S, we find

�̃α,�k,�q 	 |φ1(0)|
√

S
∑

n

δ�k,�q+ �Gn
dαuα,�q, �Gn

(z0)gcv. (C12)

We write the Hamiltonian of the exciton-photon system as

H = HX + HP + Hint, (C13a)

HX =
∑
α�k

E1s(�k)β†
α,�kβα,�k, (C13b)

HP =
∑

�q
h̄ω�qa

†
�qa�q, (C13c)

Hint =
∑
n,α,�q

ih̄�α,n,�qβ
†
α,�q+ �Gn

a�q + H.c., (C13d)

where β† is the exciton creation operator and

h̄�α,n,�q = |φ1(0)|dαuα,�q, �Gn
(z0)gcv

√
h̄ω�q/2ε0. (C14)

The above model resembles the Dickle model where a
single photonic mode couples to many atoms coherently.
The collective exciton-photon coupling strength is then
written as

h̄��q = |φ1(0)||gcv|
√

h̄ω�q/2ε0

[∑
nα

d2
α|uα�q, �Gn

(z0)|2
]1/2

(C15)

	 h̄�X

[
λX

h̄ω�q
E1s

∑
nα

|uα�q, �Gn
(z0)|2

]1/2

, (C16)

where we have used |gcv| 	 1 and dα 	 d and

h̄�X ≡ |φ1(0)|d
√

E1s/2ε0λX (C17)

with λX = hc/E1s . Here, h̄�X serves as a natural unit of the
exciton-photon coupling in a semiconductor. From Fourier
transformation, we find∑

n

|uα�q, �Gn
(z0)|2 = S−1

uc

∫
uc

d �ρ|uα�q( �ρ,z0)|2, (C18)

where the integration is performed in the unit cell of the PhC
in the x-y plane. Thus

h̄��q = h̄�X

[
λX

h̄ω�q
E1s

S−1
uc

∫
uc

d �ρ
∑

α

|uα�q( �ρ,z0)|2
]1/2

. (C19)

Since the magnitudes of the photonic wave vector �Gn are
much smaller than the excitonic wave vector, one can use the
approximation E1s(�k + �Gn) 	 E1s(�k). The spectrum of the
lower branch polariton is then

ELP(�q) = 1
2

(
E1s(�q)+h̄ω�q−

{
[E1s(�q)−h̄ω�q]2+4h̄2�2

�q
}1/2)

.

(C20)

The above spectra can be generated by the following
effective Hamiltonian:

H = H0 + HI , (C21a)

H0 =
∑

�q
[E1s(�q)b†�qb�q + h̄ω�qa

†
�qa�q], (C21b)

HI =
∑

�q
ih̄��q(b†�qa�q − a

†
�qb�q), (C21c)

with

b�q ≡
∑
αn

�αn�q
��q

βα�q+ �Gn
(C22)

being the collective exciton operator.

2. Exciton-photon coupling: Multiple quantum wells

We now extend the above derivations to the situations with
MQWs. The wave functions of electron and hole in the lth QW
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are now written as

〈�r|c†�q,l,σ
|0〉 = 1√

Se(zl)
ei �q· �ρ�( �ρ,zl)u�c( �ρ,z)ξc(z)χσ ,

〈�r|d†
�q,l,σ

|0〉 = 1√
Se(zl)

ei �q· �ρ�( �ρ,zl)u�v( �ρ,z)ξv(z)χσ .

Here �( �ρ,zl) is 0 (or 1) in the air (or semiconductor) region and
Se(zl) is the area of the semiconductor region in the x-y plane
for the lth QW. In the case where all QWs are contained in
the central slab and none are in the PBG cladding regions, we
can set Se(zl) = S and �( �ρ,zl) = 1 for all l. A more detailed
account of the scenario in which QWs are placed in the PBG
cladding is provided in Refs. [28,29,36]. zl is the z coordinate
at the center of the lth QW. Using the above wave functions
and repeating the derivation in the previous section, we obtain
the collective exciton-photon coupling:

h̄� = h̄�XYcav, (C23a)

Ycav =
[∑

l,α

h̄ω�qλX

E1s

S−1
uc

∫
uc

d �ρ|uα,�q( �ρ,zl)|2�( �ρ,zl)

] 1
2

.

(C23b)

The dimensionless quantity Ycav characterizes the exciton-
photon coupling in the microcavity. Similarly to Eqs. (C21)
and (C22), we define the collective exciton operator

b�q ≡
∑
l,αn

�l,αn�q
��q

βl,α�q+ �Gn
, (C24)

where

�l,αn�q = d|φ1(0)|ũα�q, �Gn
(zl)

√
ω�q/(2h̄ε0),

ũα�q, �Gn
(zl) = S−1

uc

∫
uc

d �ρe−i �Gn· �ρuα,�q( �ρ,zl)�( �ρ,zl). (C25)

From Fourier transformation, we obtain

� =
√∑

l

�2
l ,

where

�l = �X

√
h̄ω�qλX√
E1s

[
S−1

uc

∫
uc

d �ρ
∑

α

|uα,�q( �ρ,zl)|2�( �ρ,zl)

] 1
2

= d|φ1(0)|√ω0√
2h̄ε0

[
S−1

uc

∫
uc

d �ρ
∑

α

|uα, �Q(x) ( �ρ,zl)|2
] 1

2

.

In the final step, we have ignored the �q dependence of � in the
vicinity of the energy minima at �Q(ν) (ν = x,y) and we have
used the fact that all QWs are embedded in the solid central
slab.

When exciton inhomogeneous broadening is considered,
the exciton energy in the lth QW also contains a fluctuating
part δEl , i.e., E(l)

1s (�q) = E1s(�q) + δEl . The Hamiltonian matrix

is then⎛
⎜⎜⎜⎜⎜⎜⎜⎝

h̄ω�q −ih̄�1 · · · −ih̄�N−1 −ih̄�N

ih̄�1 E
(1)
1s (�q) · · · 0 0

... 0
. . .

...
...

ih̄�N−1 0 · · · E
(N−1)
1s (�q) 0

ih̄�N 0 · · · 0 E
(N)
1s (�q)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
(C26)

with N being the number of QWs. The eigenvalues E

and eigenvectors {v} of the Hamiltonian matrix satisfy the
following equations:

∑
l

h̄2�2
l

(E − h̄ω�q)
[
E − E

(l)
1s (�q)

] = 1, vl = h̄�lv0

E − E
(l)
1s (�q)

(C27)

for l = 1, . . . ,N with

v0 =
[

1 +
∑

l

h̄2�2
l[

Epol − E
(l)
1s (�q)

]2

]− 1
2

. (C28)

Hence the excitonic fraction of a polariton in the lth QW is

Pl = v2
l = h̄2�2

l[
E − E

(l)
1s (�q)

]2

[
1 +

∑
l

h̄2�2
l[

E − E
(l)
1s (�q)

]2

]−1

.

(C29)

When there are QWs placed in the photonic-crystal cladding,
such as in Refs. [28,36], the excitonic fraction varies signif-
icantly with the position of the QW. This is caused by the
variation in overlap of the photonic field and the excitonic one.
However, in the current work, since there are QWs only in the
central slab, the overlap between the excitonic and photonic
fields is nearly the same for all quantum wells, with Pl = 1

3Px

where Px = ∑
l Pl , in the case of three quantum wells in the

central slab. The photonic fraction is

P0 = v2
0 =

[
1 +

∑
l

h̄2�2
l[

E − E
(l)
1s (�q)

]2

]−1

. (C30)

Note that the eigenvalue equation (C27) can also be written as

∑
l,α,n

h̄2�
2
l,α,n,�q

(E − h̄ω�q)
[
E − E

(l)
1s (�q + �Gn)

] = 1, (C31)

which is Eq. (10) in the main text. The spectra of the upper
and lower polariton branches are obtained by diagonalizing
the system Hamiltonian numerically. From numerical diago-
nalization the two polariton branches are identified as the two
modes which have the largest photonic fraction.

APPENDIX D: FIELD INTENSITY DISTRIBUTIONS
IN VARIOUS ARCHITECTURES

We study the photonic field intensity distributions in the
different architectures considered in Sec. V and how they affect
the exciton-photon couplings. We assume the excitonic field
is distributed uniformly in the semiconductor region. In each
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FIG. 17. (a) Field intensity distribution S−1
∫

d �ρ| �E( �ρ,z)|2 along the growth axis in the slanted-pore and symmetric and asymmetric woodpile
systems for band edge photons (at �Q(y) in the slanted-pore system and �Q(x) in the asymmetric and symmetric woodpile systems). To ensure
� �Q(ν) = 40 meV, the lattice constant is a = 240 nm in the slanted-pore system, while a = 270 nm and a = 275 nm in the symmetric and
asymmetric woodpile systems. (b) Same plot as (a), zoomed in on the region of the central slab.

of these photonic-crystal systems, we consider four unit cells
of photonic crystal, composed of AlGaAs above and below a
central slab layer containing the GaAs/AlGaAs MQWs. In the
case of the slanted-pore system, the width of the central slab is
0.08a and in the case of the woodpile-based systems, the width
of the central slab is 0.07a. As described in Fig. 13, the lattice
constant is about a ≈ 240 nm and a ≈ 270 nm in the slanted-
pore and woodpile-based systems, respectively. These choices
set the exciton-photon detuning � �Q(ν) ≈ 40 meV. In Fig. 17(a),
we plot the field intensity distributions along the growth axis
for the slanted-pore and asymmetric and symmetric woodpile
systems. Figure 17(b) is a magnified section of Fig. 17(a),
depicting the region around the central slab. These results
reveal that in the slanted-pore system, the peak field intensity
is weaker than in the woodpile systems, but extends over a
larger range in z. In the slanted-pore system, the interplay
between this weaker field intensity (which diminishes h̄� �Q(ν) )
and the smaller lattice constant (which enhances h̄� �Q(ν) [cf.
Eq. (9) and associated description]) ultimately results in very
slightly weaker coupling strengths compared to the symmetric-
woodpile system.

APPENDIX E: HIGH-MOMENTUM CUTOFF
IN THE CALCULATION OF Tc

In computing the critical temperature in Eq. (16), we
demand that the combined occupancy of the ground and
excited states be equal to the total number of particles in
the system. In this appendix, we elucidate the convergence
of this process based on the number of excited states that are
considered. That is to say, we show how the sum is truncated,
based on both physical and numerical considerations.

For excitons having Bohr radius aB trapped in a box trap of
side length D, a simple physical argument provides an order-
of-magnitude estimate of the number of permitted states of our
system. We count only distinct exciton states, meaning that
there is negligible spatial overlap between adjacent excitons.
Approximating the spatial extent of the exciton wave functions
as squares of area a2

B , an order-of-magnitude estimate of the

number of distinct exciton states in a 2D box of side length D

is M2 where M ∼ D/aB . The total number of distinct exciton
states is the same in coordinate and momentum space. In
momentum space, the box trap induces a discretization of the
exciton-polariton wave vectors in increments of π/D in both
the qx and qy directions. Subsequently, we consider momenta
only up to Mπ/D in both qx and qy . This is indicated in
Fig. 4. For momenta higher than qcut ∼ Mπ/D = π/aB , the
de Broglie wavelength of the excitons would become smaller
than the dimensions of the exciton and would probe the internal
structure of the exciton itself.

We plot the critical temperature dependence on the actual
numerical high-momentum cutoff in Fig. 18. The rapid
convergence for qcut > π/aB is consistent with the physical
argument given above. Our results suggest that beyond a cutoff
of qcut = 2π/aB (for realistic values of the exciton-photon
detuning, exciton-photon coupling strength, box trap side
length, and exciton-polariton density), the critical temperature
remains unchanged. Therefore, we take qcut = 2π/aB for all of
our calculations. The large critical temperature for very small
momentum cutoffs is an artifact of ignoring the large number
of excitonlike states and placing too much statistical weight
on the low-energy photonlike states.

APPENDIX F: EFFECT OF HIGHER EXCITONIC STATES
AND OTHER CONFINED PHOTONIC BANDS

1. A method for multiple-mode coupling

To discuss the effect of higher excitonic states and other
confined photonic bands on the polariton spectrum, we
present a method to simplify the diagonalization of a large
matrix. The general form of the exciton-photon coupling
Hamiltonian is

H =
∑

i

h̄ωia
†
i ai +

∑
j

Ejb
†
j bj +

∑
i,j

(gi,j a
†
i bj + g∗

i,j b
†
j ai)

(F1)
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FIG. 18. The critical temperature computed from Eq. (16) as
a function of the high-momentum cutoff qcut. Here, the exciton-
photon detuning is � �Q(x) = � �Q(y) = 30 meV, the exciton-photon
coupling is h̄� �Q(x) = h̄� �Q(y) = 15 meV, the box-trap side length is
D = 10μm, and the polariton density is (5aB )−2 where aB = 9 nm
is the exciton Bohr radius. The exciton mass is mexc = 0.176m0,
the photon effective mass is mph = 5 × 10−6m0, and the condensate
fraction is f = 0.1. The dashed line indicates the momentum cutoff
at qcut = 2π/aB , which we use throughout the paper. The upper
horizontal axis indicates by how much, in energy, the bare exciton
has dispersed at the corresponding qcut.

with i = 1, . . . ,N1 and j = 1, . . . ,N2 labeling the states of
photon and exciton, respectively. We are interested in the
lowest eigenvalue ELP and its eigenstate ϕ of the Hamiltonian
which correspond to the lower polariton branch. That is(

Ĥ1 Ŝ

Ŝ† Ĥ2

)(
ϕ1

ϕ2

)
= ELP

(
ϕ1

ϕ2

)
, (F2)

where Ĥ1 (Ĥ2) is the Hamiltonian of photon (exciton), Ŝ is
their mutual coupling, and ϕ1 (ϕ2) is the eigenfunction in
the photon (exciton) sector. Eliminating ϕ2 from Eq. (F2)
yields

Ĥ effϕ1 = ELPϕ1, (F3a)

Ĥ eff = Ĥ1 + Ŝ(ELP1̂ − Ĥ2)−1Ŝ†. (F3b)

It is easier to solve the problem in the photon sector because
N1 � N2. Numerically, the calculation is done by a recursive
method. To implement this method, we begin with an estimate
of ELP which can obtained from Eq. (10). Using this value
of ELP, we construct the Hamiltonian Ĥ eff , diagonalize it,
and take the lowest eigenvalue, ẼLP. We then use ẼLP as
the new ELP and use it to construct Ĥ eff again. We repeat
this process iteratively. After sufficient iteration, ELP can be
found to the desired precision. In this work, we iterate this
process approximately 103 times until the fractional difference
in eigenvalues ẼLP−ELP

ELP
falls below 10−6. After having found

ELP to the desired precision, one can then obtain the eigenstate
ϕ1. Then, through

ϕ2 = (ELP1̂ − Ĥ2)−1Ŝ†ϕ1, (F4)

we can obtain the eigenstate ϕ2 in the exciton sector. The
specific form of Ĥ eff is rather simple:

H eff
i1,i2

= h̄ωi1δi1,i2 +
∑

j

Si1,j (ELP − Ej )−1S∗
i2,j

. (F5)

We now describe the calculation of the second term (referred to
as the self-energy) in Eq. (F5). This is essentially second-order
Brillouin-Wigner perturbation theory, which is equivalent to
solving the problem in restricted variational subspace with a
single polariton.

We consider excitons in the pth s orbital in a single quantum
well. The exciton-photon coupling term is written as [cf.
Eq. (8d)]

Hint =
∑

α,p,n,i,�q
ih̄�α,p,n,i,�qβ

†
α,p,�q+ �Gn

ai,�q + H.c. (F6)

The self-energy is then

�i1,i2 (�q) =
∑
α,p,n

h̄2�
∗
α,p,n,i1,�q�α,p,n,i2,�q
ELP − Eα,n(�q)

. (F7)

Inserting the specific expression for the exciton-photon cou-
pling,

h̄�α,n,i,�q = dφ1(0)uα,i,�q, �Gn
(z0)

√
h̄ω�q/2ε0, (F8)

into Eq. (F7) and using Eα,n(�q) 	 E(�q) (meaning that the
inhomogeneous broadening of the exciton between different
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FIG. 19. (a) Collective exciton-photon coupling in the symmetric
woodpile of Fig. 1(a) with (curve with squares) and without (curve
with dots) the contribution from the higher excitonic and photonic
states. The parameters are the same as in Fig. 9(a), with the exception
that approximately 110 QWs populate both the central slab layer
and the first unit cell of symmetric woodpile above and below the
central slab. (b) Transition temperature as a function of the polariton
density for two scenarios. For one scenario (solid green curve) higher
photonic bands are ignored. For the other scenario (dotted red curve)
four degenerate higher photonic bands are considered. The band edge
is 80 meV higher than that of the lowest confined photonic band and
the effective mass is 1000 times as large as that of the lowest confined
photonic band. The coupling constant h̄� �Q(x) = 28 meV, and the
exciton recombination energy is 1.966 eV. The box side length is
D = 10 μm and the lattice constant of the symmetric woodpile is
a = 269 nm.
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QWs is small), we obtain

�i1,i2 (�q) = d2h̄
√

ωi1ωi2

2ε0

∑
p

φ2
p(0)

[ELP − Eps(�q)]
S−1

uc

×
∑

α

∫
uc

d �ρu∗
α,i1

( �ρ,z0)uα,i2 ( �ρ,z0), (F9)

where Eps(�q) is the energy of the exciton in the pth s orbital
with wave vector �q. The summation over all s-orbital exciton
states converges very quickly as the amplitude φ2

p(0) decreases
rapidly with the index p. In the limit that we consider only 1s

excitons, Eq. (F9) becomes

�i1,i2 (�q) =
∑
α,n

h̄2�
∗
α,n,i1,�q�α,n,i2,�q

ELP − E1s(�q)

= φ2
1(0)d2h̄

√
ωi1ωi2

2ε0[ELP − E1s(�q)]

∑
α,n

uα,i1,�q, �Gn
(z0)∗uα,i2,�q, �Gn

(z0)

= φ2
1(0)d2h̄

√
ωi1ωi2

2ε0[ELP − E1s(�q)]
S−1

uc

×
∑

α

∫
uc

d �ρu∗
α,i1

( �ρ,z0)uα,i2 ( �ρ,z0). (F10)

For the structure with MQWs we need to sum over the
contribution from each QW. The contribution from the lth
QW in the slab layer is∑

α

∫
uc

d �ρu∗
α,i1

( �ρ,zl)uα,i2 ( �ρ,zl). (F11)

Therefore the whole expression for the self-energy is

�i1,i2 (�q) = d2h̄
√

ωi1ωi2

2ε0

∑
p

φ2
p(0)

[ELP − Eps(�q)]
S−1

uc

×
∑
l,α

∫
uc

d �ρu∗
α,i1

( �ρ,zl)uα,i2 ( �ρ,zl). (F12)

2. Numerical results

We find that including higher excitonic states and other
confined photonic bands modifies the collective exciton-
photon coupling only slightly and can safely be ignored. The
results, calculated using the method of the previous section,
are plotted in Fig. 19(a).

We show that higher confined photonic bands do not affect
the transition temperature given the predominance of the huge
excitonic density of states. In Fig. 19(b) we plot the transition
temperature of polariton BEC as a function of density for two
cases, one without higher photonic bands (the solid curve) and
the other case with the four lowest photonic bands. The edge of
the second lowest band is 80 meV above the edge of the lowest
confined photonic band. The effective mass of higher bands
is roughly 1000 times that of the lowest confined photonic
band. Clearly, high density of states of other low-lying
photonic bands is overwhelmed by the even higher excitonic
density of states and the BEC transition temperature is barely
affected.
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