Achieving an Accurate Surface Profile of a Photonic Crystal for Near-Unity Solar Absorption in a Super Thin-Film Architecture

Ping Kuang, Sergey Eyderman, Mei-Li Hsieh, Anthony Post, Sajeev John, and Shawn-Yu Lin

ABSTRACT: In this work, a teepee-like photonic crystal (PC) structure on crystalline silicon (c-Si) is experimentally demonstrated, which fulfills two critical criteria in solar energy harvesting by (i) its Gaussian-type gradient-index profile for excellent antireflection and (ii) near-orthogonal energy flow and vortex-like field concentration via the parallel-to-interface refraction effect inside the structure for enhanced light trapping. For the PC structure on 500-μm-thick c-Si, the average reflection is only ~0.7% for λ = 400–1000 nm. For the same structure on a much thinner c-Si (t = 10 μm), the absorption is near unity (A ~ 99%) for visible wavelengths, while the absorption in the weakly absorbing range (λ ~ 1000 nm) is significantly increased to 79%, comparing to only 6% absorption for a 10-μm-thick planar c-Si. In addition, the average absorption (~94.7%) of the PC structure on 10 μm c-Si for λ = 400–1000 nm is only ~3.8% less than the average absorption (~98.5%) of the PC structure on 500 μm c-Si, while the equivalent silicon solid content is reduced by 50 times. Furthermore, the angular dependence measurements show that the high absorption is sustained over a wide angle range (θinc = 0–60°) for teepee-like PC structure on both 500 and 10-μm-thick c-Si.

KEYWORDS: photonic crystal, antireflection, light trapping, ultrathin silicon, thin-film photovoltaics

The development and utilization of solar cells and solar power have steadily increased in recent years in the effort to create a sustainable, renewable, clean energy resource. At present, crystalline and multicrystalline silicon (c-Si and m-Si)-based photovoltaics (PVs) are still the largest constituents of worldwide solar cell and module productions. However, the utilization of c-Si solar cells is being hindered by their high dollar-per-Watt cost. In order to retain its competitiveness, the best approach is to develop different silicon PV cell designs which are capable of achieving high energy conversion efficiency while using much less high-quality c-Si material, and the thickness of silicon has to be reduced from hundreds of micrometers to a cost-effective level of tens of micrometers, or even less. Some reports have already experimentally shown that moderate conversion efficiencies have been achieved with ultrathin c-Si solar cells. Nevertheless, thinner silicon still has a major disadvantage of insufficient light absorption in the longer near-infrared (IR) range of the solar spectrum, which in turn reduces the efficiency of the solar cell device.

In order to overcome low IR absorption in thin-film solar cells, various schemes of light trapping mechanisms were proposed to (i) reduce the reflection and (ii) enhance light absorption. Both approaches are critical and desirable for performance improvement and cost reduction in solar cells. For reflection reduction, antireflective coating (ARC) designs of nanowires and nanorods, moth-eyes, and graded-index multilayer films have been extensive studied. Furthermore, textured or patterned nanostructures such as nanowires, nanocones, nanopyramids, plasmonics, and photonic crystals (PCs) all have been extensively investigated for enhanced light trapping and improved absorption in thin-film solar cells. One intriguing optical phenomenon is the parallel-to-interface refraction (PIR) in PCs. PIR effect is a negative refraction of light inside a PC, producing nearly perpendicular light-bending phenomenon. This acute light-bending phenomenon directly results in increased optical path.
lengths and exhibits vortex-like circulation patterns inside a structured medium, thus improving light trapping and absorption over a broad wavelength range.21,24,25 We already have experimentally demonstrated the PIR effect in amorphous silicon (a-Si)-based 3D simple cubic woodpile PCs, which exhibit broadband, wide-angle near-unity absorption.27

Here, we report on a teepee-like PC on c-Si which fulfills two critical criteria in solar energy harvesting by (i) its gradient-index profile for antireflection and (ii) parallel-to-interface energy flow and vortex-like field concentration for enhanced light trapping. Hence, such structure offers superior absorption in a much broader visible and near-IR wavelength range, specifically matching the silicon bandgap for maximum solar energy harvesting. To experimentally realize the teepee-like PC, we have developed a unique reactive-ion etching (RIE) dry etching process, which is repeatable and IC-technology compatible for high-throughput, wafer-scale fabrications. We show, for the PC structure on conventional 500-μm-thick c-Si with only one-layer (1L) ultrathin SiO2 ARC (t ∼ 60 nm), the minimum reflection (Rmin) is suppressed to a negligible level of ∼0.004%, and the average reflection (Ravg) is only ∼0.7% for λ = 400−1000 nm. We also show, for the same structure on much thinner c-Si (t = 10 μm), with the 1L SiO2 ARC and a 200 nm silver (Ag) back reflector, the absorption is near unity (A ∼ 99%) for visible wavelengths, while the absorption is significantly increased to ∼79% due to the aforementioned PIR effect in the weakly absorbing, near-IR range (λ ∼ 1000 nm). This is more than 13 times of absorption enhancement when compared to only ∼6% absorption for a 10-μm-thick c-Si planar film. We believe this is the highest near-IR absorption reported for 10-μm-thick c-Si to date. For comparison, the average absorption (Aavg ∼ 94.7%) of the teepee-like PC on 10 μm c-Si for λ = 400−1000 nm is only ∼3.8% less than that for the same teepee-like PC on 500 μm c-Si, while the equivalent silicon solid content is reduced by 50 times. Furthermore, the angular dependence measurements show that the high absorption is sustained over a wide angle range (θinc = 0−60°) for teepee-like PC on both 500 and 10-μm-thick c-Si.

RESULTS AND DISCUSSION

We propose a unique architecture design, namely, teepee-like PC as shown in Figure 1a. The SEM images (Figure 1c, d) reveal the actual structures of the teepee-like PC structure with the simple cubic symmetry29 at different viewing directions. The periodicity of the PC is a ∼1.2 μm, and the height (h) is 1.4 μm. Figure 1d (low magnification) shows the front view of the structure, which demonstrates a uniform RIE etching results on the silicon surface and preserves a V-shaped, inverse-conical like profile with very high h/(a/2) ratio (∼2.3). The bottom of trenches also is very sharp, with the sidewall angle ~70°. For comparison, The typical inverted pyramid structure profile by KOH etching has a sidewall angle of ~54°, and a h/(a/2) ratio of only ~1.3. Therefore, the teepee-like PC has a greater vertical depth for better light trapping. As shown in Figure 1c, some minor surface roughness is resulted due to the dry etch, which can cause silicon surface degradation and high surface recombination velocity.30 To overcome this, an ultrathin SiO2 coating (t ∼ 60 nm) by high-temperature oxidation and annealing was introduced, which could provide efficient surface passivation as well as excellent antireflection property.31,32

From the optical image in Figure 1b, it is easily seen that the surface reflection for polished silicon wafer surface is noticeably high, while the RPI logo is clearly visible. On the contrary, the reflection of the PC structure with 1L SiO2 ARC (t ∼ 60 nm) is substantially reduced. The sample appears to be black, indicating a very high absorption in the c-Si. (The bottom half of the sample silicon area is unpatterned and flat, so the logo is still visible in this area.)

In order to create the teepee PC, a simple standard semiconductor fabrication process is utilized, which can readily achieve the desired surface profile by one-step RIE etching in c-Si. A typical photore sist 2D hole array with simple cubic symmetry (lattice constant a ∼ 1.2 μm) was made by standard photolithography. Then, RIE etching was carried out with the resist pattern as the etch mask (Figure 2a). Low RIE power was used to avoid excessive silicon etching damage and surface roughness by SF6 etchants. Different SF6/CHF3 ratios were
tested and resulted in various surface profiles, while CHF₃ provided passivation for the silicon surface. The low and medium SF₆/CHF₃ ratio etch (ratio = 1:1 and 2:1) inhibits aggressive SF₆ reaction on the sidewalls and promotes slower, anisotropic etching, as shown in Figure 2b,c after resist removal. In contrast, a high SF₆/CHF₃ ratio etch (ratio = 3:1) allows a faster and more isotropic etching in vertical and lateral directions, while the sidewalls still remain relatively smooth due to sufficient CHF₃ passivation. This fast, yet balanced RIE etching ultimately resulted in the V-shaped, inverted-conical absorption of samples (with 60 nm SiO₂ coating) with different SF₆/CHF₃ ratio etching. The absorption of 500-μm-thick planar silicon was also taken for comparison. It is evident that the RIE etched samples have much higher absorption than that of the planar silicon, which has an A_avg of 65.5% in the wavelength range λ = 400–1000 nm. Moreover, as the SF₆/CHF₃ ratio increases, the absorption is also increased. For low SF₆/CHF₃ ratio etch, the A_avg is 87.2%, while A_avg of the medium SF₆/CHF₃ ratio etched sample is improved to 92.4%. The A_avg is further improved, ultimately reaching near unity (98.5%) for the teepee-like PC structure achieved by the high SF₆/CHF₃ ratio etching.

It is well-known that subwavelength nanostructures, such as nanowires and nanorods, with effectively graded refractive index profiles at the air–silicon interface exhibit excellent antireflection properties. These structural designs provide superior antireflection with suppressed reflection over wide wavelength and angular range than traditional quarter-wavelength thin-film AR coatings. Minfeng Chen et al. introduced a selection principle for gradient-index ARC designs, of which a Gaussian-type profile with smooth and uniform refractive angle change (i.e., optical path change in the material) gives the optimal wide-angle AR performance. The expression for the Gaussian-type profile takes the general form:

\[n(x) = n_{\text{min}} + (n_{\text{max}} - n_{\text{min}})e^{-\left(\frac{x-a}{b}\right)^2} \]

where \(n_{\text{min}} \) and \(n_{\text{max}} \) are the minimum and maximum refractive index, respectively, \(x \) is the normalized optical distance, and \(b = 0.52 \pm 0.02 \), which represents the profile shape width.

By discretizing the cross section in the middle of our teepee-like PC structure (Figure 3d) and estimating the solid (volume) fraction of the silicon structure at each discretized level, we were able to calculate the effective refractive index, \(n(z) \), using effective volume filling ratio at different physical thickness, \(z \), which is proportional to the optical distance. (Optical constants of silicon were taken from elsewhere.) Figure 3a–c is the plot of the effective refractive indexes and their respective Gaussian fits at wavelengths \(\lambda = 400, 600, \) and 800 nm, respectively. It shows that \(n(z) \) of PC structure varies gradually along the normalized physical thickness and the variation can be closely fitted to the Gaussian-type profile (Figure 3e). Therefore, when lights impinge onto the sharp-angle sidewalls of the air–silicon interface, they have large incident angles and are refracted smoothly into the PC. This significantly reduces the backward reflection commonly observed at interfaces with abrupt index change, and we expect it will have excellent antireflection performance.

To validate the gradient-index AR effect, we carried out total reflection measurements using unpolarized light source for c-Si-based teepee-like PC samples with two different thicknesses (\(t = 500 \) and 10 μm). Figure 4a shows the total reflection spectra...
for 500-μm-thick c-Si PC samples, while Figure 4b shows the spectra for 10-μm-thick samples. For comparison, the reflections of flat, polished c-Si films of respective thicknesses were also measured. As anticipated, in Figure 4a, the average reflection of the 500-μm-thick, planar c-Si is ≈35.5% in the visible and near-IR wavelength range [λ = 400-1000 nm]. For the teepee-like PC structure produced by RIE etching on 500-μm-thick c-Si, the reflection is drastically reduced in the same wavelength range. The average reflection is only ≈3.4% for λ = 400-1000 nm, with a minimum reflection of ≈2.5% at λ = 920 nm. Such significant reflection reduction is directly attributed to the graded index profile of the teepee-like PC structure at the surface of the c-Si. This shows that our unique PC structure itself already possesses a broadband, antireflection property due to the gradient-index, Gaussian-type profile even without additional antireflection coatings. However, one can anticipate further improvement if an index-matching oxide layer (e.g., SiO₂, ZnO, or Al₂O₃, etc.) is present on the c-Si surface of the structure. To demonstrate, an ultrathin layer of SiO₂ (~60 nm) was grown conformally by thermal oxidation on the surface of the PC structure, and additional reduction in reflection was observed. Rₓmin is suppressed to a negligible level of ~0.004% at λ ≈ 545 nm, and the R wxT is only ~0.7% over the entire wavelength range of λ = 400-1000 nm. The additional reduction in reflection is the result of index matching at the silicon–air interface by the ultrathin SiO₂ coating, which also can serve as a good passivation layer for mitigating surface recombination speed.34,35 Our PC c-Si structure with only one layer of ultrathin SiO₂ AR coating is much simpler and has superior AR performance than the traditional graded index multilayer AR coatings, which generally require 5–7 layers of oxide films with a total thickness of >1 μm.10,11 To our knowledge, the ultralow reflection of our structure is only rivaled by that of the recent "black silicon solar cell" with 20 nm Al₂O₃ AR coating by atomic layer deposition deposition.35 However, our process approach may have potential economic competitiveness advantages. Therefore, our teepee-like PC design offers another route for conventional c-Si solar cell applications with such ultralow reflection, which is also broad angle, as we will discuss in a later section.

Furthermore, in Figure 4b, reflection spectrum of the 10-μm-thick, planar c-Si is almost identical to that of the 500-μm-thick, planar c-Si, and the R wxT is ≈37.3% in the visible and near-IR wavelength range [λ = 400-1000 nm]. The slight increase of reflection and the Fabry–Perot interference pattern in the near-IR wavelength region are due to the backside of the 10-μm-thick silicon. Increased reflection at this wavelength range was also observed in the PC on 10-μm-thick silicon samples. For the teepee-like PC structure on 10-μm c-Si, the reflection is also significantly reduced in the same visible and near-IR wavelength range. The R wxT is only ≈5.9%, with an Rₓavg of ~2.8% at λ ≈ 630 nm. With 60 nm SiO₂ coating, the Rₓavg is decreased to ≈0.8% at λ ≈ 670 nm, and the R wxT is only ~4.1% over the entire wavelength range of λ = 400-1000 nm. The average reflection in the main portion of the spectrum (λ = 450–900 nm) is still at an impressive ~2.2%. Again, as in the planar film case, the average reflection continuously increases in the longer wavelength range and is mostly due to the backside of the 10-μm-thick silicon, with a maximum reflection of ~15.2% at λ ~ 1000 nm. Nevertheless, the relatively low reflection in near-IR region can provide a different pathway for producing high-efficiency c-Si thin-film solar cells with much lower cost due to much smaller thickness (t ~ 10 μm) of the structure comparing to conventional c-Si devices.

Moreover, in order to achieve enhanced light trapping in thin c-Si (t = 10 μm), especially for longer wavelength light, it is critical to induce increased optical density of states via multitude of resonance modes inside a spatially engineered structure. The aforementioned PIR effect in PCs meets such a requirement. To gain better insights of the PIR light trapping mechanism, the total absorption measurements using unpolarized light source at near-normal incidence (θm = 5°) (see Methods section) were taken for the teepee-like PC structure on 10-μm-thick c-Si with a 60 nm ultrathin SiO₂ ARC layer and 200 nm Ag back reflector (Figure 5a). The use of low-loss silver back reflector is to eliminate transmission and to have stronger coupling of longer-wavelength incident light to PIR resonance modes formed by the teepee-like PC while minimizing unnecessary absorption in the metal.36 For comparison, the calculated absorption for PC-based structure was also obtained.
by finite-difference time-domain (FDTD) simulation with the optical constants retrieved from elsewhere,37 and it agrees with the measurement results very well. The slight absorption dip in the near-UV region ($\lambda \sim 370$ nm) is mainly due to the higher reflection from higher refractive index of silicon. In the visible and near-IR wavelength range, measured absorption spectrum for the teepee-like PC on 10-\textmu m c-Si structure (PC on 10 \textmu m Si, red curve in Figure 5a) shows that a broad, high absorption is maintained with an A_{avg} of \sim94.7\% for $\lambda = 400$–1000 nm, while the maximum absorption is close to unity ($A_{\text{max}} \sim 99.0\%$) at $\lambda \sim 650$ nm. The calculated absorption (blue curve) of PC-based structure in longer wavelength range shows many distinctive sharp absorption peaks, which are attributed to the PIR effect with near 90° light bending and vortex-like energy flow and circulation patterns. Also, smoothing the calculated absorption peaks in the near-IR spectral range ($\lambda = 800$–1000 nm) shows a similar, sustained high absorption ($A_{\text{cal}} \sim 89.2\%$) as the measured absorption ($A_{\text{meas}} \sim 90.5\%$), indicating the overall enhanced absorption due to PIR effect shown in simulation is also observed in the measurements. For comparison, the measured and calculated absorptions for a planar 10-\textmu m-thick c-Si flat film are shown in Figure 5b. Without any ARC and metallic back reflector, the planar 10 \textmu m Si sample has a maximum absorption $A_{\text{max}} \sim 64.1\%$ at $\lambda \sim 600$ nm. The calculated absorption curve is similar to the measurement except the Fabry–Perot resonances for $\lambda s > \sim 600$ nm. As expected, the measured absorption curve exhibits a diminishing trend at longer wavelengths due to the weakly absorbing nature of the silicon material near its bandgap edge. The measured absorption is only $\sim 42\%$, $\sim 20\%$, and $\sim 6\%$ at $\lambda = 800$, 900, and 1000 nm, respectively, in the near-IR region. For the PC on 10 \textmu m Si structure, the absorptions at the same wavelengths are $\sim 96\%$, $\sim 90\%$, and $\sim 79\%$, respectively. Comparing to the planar silicon film of same thickness, the teepee-like PC structure can enhance the absorption by as much as ~ 2.3, ~ 4.5, and ~ 13 times. The absorption enhancement is the direct result of enhanced light trapping via the PIR effect. Also, to our knowledge, the 79\% absorption at $\lambda = 1000$ nm is the highest absorption achieved for 10-\textmu m-thick c-Si. Therefore, a significant amount of solar irradiance (visible and near-IR) can be harnessed by the PC structure using only 10 \textmu m of silicon (only $\sim 2\%$ compared to standard 500-\textmu m c-Si). This shows the promise of our teepee-like PC structure for improving the solar energy collection and performance in thin-film c-Si solar cells.

In order to better illustrate the PIR effect in the teepee-like PC, a different experimental setup was used to measure the absorption in the weakly absorbing region (see Methods). Figure 5c shows the absorption plot in the near-IR wavelength range ($\lambda = 800$–1100 nm). The absorption curve of the PC 10 \textmu m structure is in strong agreement with the measured absorption in Figure 5a for $\lambda = 800$–1000 nm. In addition, for $\lambda = 1000$–1100 nm, the absorption is sustained $\sim 53\%$. For comparison, the measured absorption of a planar 10 \textmu m Si slab approaches $\sim 0\%$ in the same wavelength range. Furthermore, Figure 5d,e depicts the orthogonal slice plots generated by FDTD simulation for Poynting vector and the energy density distribution in the PC 10 \textmu m silicon structure for PIR resonances at $\lambda \sim 1010$ nm and $\lambda \sim 1070$ nm, which correspond to two sharp peaks in the calculation curve in Figure 5c. The plots show that the energy flow exhibits circulation in certain areas in addition to overall “parallel-to-
Gray area at the top indicates elliptical nanopores filled with air. The overall depth of nanopores is 1.4 μm, lattice constant is 1.2 μm, ellipse top radius is 0.72 μm, bulk thickness of silicon is 10 μm, and the thickness of silver substrate is 200 nm. A 60 nm thick SiO₂ (n = 1.45) is conformally placed on the surface of nanopores. The color bar on the right-hand side indicates a ratio E_s^2/E_w^2, where E_s and E_w are electric fields in the structure and in the incoming plane wave, respectively. These fields are obtained during the numerical experiment and transformed to the frequency domain. A factor of more than 120 intensity enhancement is apparent in specific hot spots for $\lambda \sim 10^{10}$ nm. Similarly, a factor of more than 90 intensity enhancement is shown in specific hot spots at $\lambda \sim 10^{70}$ nm. While optimal antireflection at the top surface of a solar cell is crucial to its performance, light trapping below the surface is important for those wavelengths where the intrinsic absorption length scale is long compared to the film thickness. The plot reveals that the light trapping in our structure occurs through the energy flow parallel to the air–silicon interface but strongly augmented by circulation in certain areas (detailed plot see Figure S2). The energy density distribution shows high-intensity peaks mostly concentrated in the central region where the Poynting vector exhibits vortex-like circulation patterns. This circulation and almost parallel-to-interface energy flow enhance the dwell time of light in the cell, leading to a substantial absorption increase in the near-infrared region where the intrinsic absorption of silicon is weak.24,25,28

The unique characteristic of PIR effect in PCs is its ability to achieve high absorption over broad angles. We show the angular response for the teepee-like PC structures (on 500 and 10 μm c-Si) as well as for the 500 and 10 μm planar c-Si. The results are depicted in 3D contour plots in Figure 6a–d for incident angle $\theta_{\text{inc}} = 5$–60°. For PC 500 μm Si sample, only a 60 nm SiO₂ ARC layer was used. (We assume no transmission for the 500 μm c-Si.) At $\theta_{\text{inc}} = 5^\circ$, the absorption is at ~ 97.3–99.2% for $\lambda = 400$–1000 nm, with an $A_{\text{avg}} \sim 98.5\%$ (Figure 6a). This is mainly attributed to the exceptional antireflection property of the gradient-index Gaussian-type profile of the teepee-like PC at the air–silicon interface. Furthermore, it is evident that the absorption of PC 500 μm Si at $\lambda = 400$–1000 nm is sustained at the same level for incident angles up to $\theta_{\text{inc}} = 45^\circ$, at which the A_{avg} is $\sim 97.5\%$. At $\theta_{\text{inc}} = 60^\circ$, there is a slight decrease in absorption around $\lambda = 800$–900 nm, but the overall
average absorption is still ~95.9% for $\lambda = 400$–1000 nm. On the contrary, the A_{avg} of 500 μm planar c-Si is only 65.5% at $\theta_{\text{inc}} = 5^\circ$ and is further reduced to 60.4% at $\theta_{\text{inc}} = 60^\circ$ (Figure 6c).

Therefore, the broadband, broad-angle near-100% absorption by the PC 500 μm c-Si with only a 60 nm SiO$_2$ ARC can provide a unique, yet simple, architecture for highly efficient solar energy harvesting in conventional c-Si solar cell applications.

Furthermore, Figure 6b shows the total absorption results of the teepee-like PC on 10 μm c-Si + 1 L SiO$_2$ ARC + 200 nm Ag structure for incident angle $\theta_{\text{inc}} = 5$–60$^\circ$. For $\theta_{\text{inc}} = 60^\circ$, as discussed before, a broad, high absorption is maintained with an A_{avg} of ~94.7% for $\lambda = 400$–1000 nm, while the maximum absorption is close to unity ($A_{\text{max}} \sim 99.0\%$) at $\lambda \sim 650$ nm. For other higher incident angles, no noticeable decrease in absorption is observed except for $\theta_{\text{inc}} = 60^\circ$, where two slight dips are observed at $\lambda = 500$ nm and $\lambda \sim 900$ nm. Nevertheless, the average absorption is still ~93.3%. For near-IR wavelength range $\lambda = 800$–1000 nm, the absorption decrease is mainly due to the back reflection from the silicon–silver interface. Still, the absorption remains unchanged for $\theta_{\text{inc}} = 5$–45$^\circ$ and is only reduced slightly to ~77.8% for $\lambda = 1000$ nm at $\theta_{\text{inc}} = 60^\circ$. This shows that the high near-IR absorption is the direct result of PIR effect in the PC 10 μm structure, which is insensitive to the change of incident light angles.24,25 For comparison, the A_{avg} of 10 μm planar c-Si is only 41.2% at $\theta_{\text{inc}} = 60^\circ$ and is further reduced to 38.3% at $\theta_{\text{inc}} = 60^\circ$ (Figure 6d).

More importantly, it should be emphasized that, at near-normal incidence for $\lambda = 400$–1000 nm, the A_{avg} (~94.7%) of the teepee-like PC structure on 10 μm c-Si is only ~3.8% less than the A_{avg} (~98.5%) of the teepee-like PC structure on 500 μm c-Si (Figure 6c), while the equivalent silicon solid content is reduced by 50%! Therefore, with only 2% of silicon (10 μm/500 μm), the 10-μm c-Si teepee-like PC has almost the same solar absorption efficiency as the 500-μm c-Si structure. Furthermore, the A_{avg} of the teepee-like PC structure on 500 μm c-Si has decreased ~2.6% at $\theta_{\text{inc}} = 60^\circ$, while the A_{avg} of the teepee-like PC structure on 10 μm c-Si has only decreased ~1.3%. This indicates that the teepee-like PC is actually more effective and efficient in much thinner silicon for light trapping purposes. In addition, based on the near-normal incidence absorption results, the calculated maximum achievable photocurrent density (MAPD)39 for the teepee-like PC structure on 10 and 500 μm silicon thicknesses are 34.8 and 36.2 mA/cm2 for $\lambda = 400$–1000 nm, respectively, which are very close to the maximum MAPD (assuming $A_{\text{avg}} = 100\%$) of 36.7 mA/cm2 for the same wavelength range. This again shows that only ~2% of silicon with the 10 μm PC structure is needed for near-maximum photocurrent density generation. In addition, the reduced silicon absorbing layer thickness can be advantageous with possible increased open-circuit voltage (V_{oc}).39 Therefore, our teepee-like PC shows great potential for thin-film c-Si solar cells applications.

METHODS

Teepee Photonic Crystal Fabrication. Samples were fabricated on either standard 100 nm p-type ($\rho = 1$–5 Ω cm) 500-μm-thick silicon wafer or 100 mm SOI wafers (vendor: Ultrasil; device layer: 10 μm thick, p-type, $\rho = 0.6$–0.85 Ω cm; buried oxide layer: 250 nm thick; handle layer: 500 μm thick, p-type, $\rho = 1$–5 Ω cm) using standard photolithography and RIE dry etching processes. Standard RCA MOS clean was carried out at 70 °C for 10 min each for the silicon wafers, and HF 49% dip is done for 20 s to remove the native oxide. After cleaning, DUV photoresists (UVI1400, $t = 1.2$ μm) were spin-coated on wafers by Gamma Automatic Coat-Develop Tool. Photore sist exposure and patterning were done with ASML DUV stepper to achieve square lattice circular holes ($a = 1.2$ μm, $d = 0.3$ μm). Exposed photore sist is removed by 726-MIF developer. Standard RIE etching (Oxford PlasmaLab 80+ RIE System) with SF_6/CHF$_3$/O$_2$ gas mixture was used for silicon etch. RIE power was kept relatively low at 50 W. Isotropic etching with undercut is resulted from the aggressive SF_6 etchant, and CHF$_3$ creates a passivation layer to slow down the etching and balance the over etching at the undercut region. Excess photore sist remained after etching was completely removed by O$_2$ plasma. Silicon dioxide (SiO$_2$) layer was created by wet oxidation in a MRL Industries tube furnace at 900 °C for 20 min and then annealed for 10 min at the same temperature. The thickness of SiO$_2$ was characterized on a planar reference silicon piece using the FilMetrics (FSO-EXR) optical measurement system. SOI backside handle layer removal: Silicon nitride (Si_3N_4) was grown by LPCVD as the etch protection during KOH etch. Sample Optical Characterization. Total reflection and absorption measurements were performed using an integrating sphere (LabSphere) with an unpolarized xenon or tungsten-halogen light source. Ocean Optics 2000+ spectrometer was used for data collection. Reflection measurements were taken by placing the samples at the back of the integrating sphere, which collects the total reflected light. The samples were aligned at an 8° angle in order to avoid the specular reflection escaping through the front aperture. The sample was inserted in the middle of the sphere, and the absorption (A) was measured. For angular dependence measurements, the sample holder was rotated accordingly with respect to the incident light beam. The absorption at normal incidence (0°) was neglected because the specular reflection from the sample surface would escape from the integrating sphere. For near-IR wavelength range absorption measurements, Acton SpectraPro SP-2300i monochromator system (Princeton Instruments) was used for data collection with either a high-quality silicon detector or a thermoelectric-cooled InGaAs detector.

CONCLUSION

In summary, we proposed and demonstrated a unique teepee-like PC design with broadband, wide-angle near-unity solar energy absorption, which is achieved by two light trapping mechanisms: (i) Gaussian-type gradient-index interface profile and (ii) near-orthogonal parallel-to-interface negative refraction. The teepee-like PC structure is realized by a unique but simple photolithography patterning and RIE dry etching process, which is repeatable and IC-technology compatible for large-area, high-throughput wafer-scale fabrications. The funnel-like geometry of the PC structure with greater vertical depth and higher sidewall angle means it can achieve better light trapping than typical KOH-etched inverted pyramid structures. Teepee-like PC on 500-μm c-Si can already achieve a broadband near-zero reflection and near-unity absorption ($A = 98.5\%$) in $\lambda = 400$–1000 nm. For teepee-like PC on much thinner c-Si ($t = 10$ μm), the average absorption is ~94.7%. Even for near-IR wavelengths ($\lambda = 800$–1000 nm), the average absorption is sustained at ~90.5%. The main reason for enhanced light trapping and significantly improved near-IR absorption in much thinner c-Si is the PIR effect, which creates near-90° optical refraction and vortex-like energy circulation patterns concentrated inside absorbing material. Therefore, the teepee-like PC shows excellent promise for achieving greater efficiency improvement in both conventional and thin-film c-Si solar cells toward the Shockley–Queisser limit.40
Dependence of absorption on the periodicity of teepee-like PCs. Dependence of MAPD on the periodicity of teepee-like PCs. Orthogonal slice for resonance at $\lambda = 1070$ nm of the zoomed-in, high-resolution section of the energy density distribution plot showing the close-up of the high field concentration regions. AFM characterizations of flat silicon with or without RIE etching. EDS analysis of teepee PC structure with RIE etching (PDF).

REFERENCES

