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Quantum self-induced transparency in frequency gap media
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PACS. 42.50Md – Optical transient phenomena: quantum beats, photon echo, free-induction de-
cay, dephasings and revivals, optical nutation, and self-induced transparency.

PACS. 42.50Ct – Quantum description of interaction of light and matter; related experiments.
PACS. 42.65Tg – Optical solitons; nonlinear guided waves.

Abstract. – We study quantum effects of light propagation through an extended absorbing
system of two-level atoms placed within a frequency gap medium (FGM). Apart from ordinary
solitons and single-particle impurity band states, the many-particle spectrum of the system is
shown to contain massive pairs of confined gap excitations and their bound complexes—gap
solitons. Quantum gap solitons propagate without dissipation, and should be associated with
self-induced transparency pulses in a FGM.

The self-induced transparency (SIT) pulses, predicted and observed in the pioneering work
of McCall and Hahn [1], may be regarded as solitons of the Maxwell-Bloch model [2], describing
classical radiation propagating in a single direction and coupled to an extended system of
two-level atoms. The model is completely integrable [3] and the time evolution of an arbitrary
radiation incident on an atomic system is described [4, 5] by the inverse scattering method [6].

In the case of a high-intensity pulse in ordinary vacuum, quantum corrections are negligibly
small. Therefore the quantum version of the classical model—quantum Maxwell-Bloch (QMB)
model—has been studied [7] only in the context of the superfluorescence phenomenon where
quantum effects play a crucial role [8]. But the situation is drastically changed for frequency
gap media (FGM), such as a frequency-dispersive medium [9], a photonic bandgap (PBG)
material [10, 11], and a one-dimensional Bragg reflector [12], where classical, linear wave
propagation inside a frequency gap is excluded [13, 14].

In this letter, we demonstrate the existence of nonclassical light propagation through an
extended homogeneous [15] system of two-level atoms placed within a FGM. These light pulses
are highly correlated quantum many-body states and are distinct from single-photon hopping
conductivity [16] through the photonic impurity band created by the atoms. Because of a
nonlocal polariton-atom coupling, an extension of the Bethe ansatz method [17] from the case
of a single atom embedded in FGM [13, 14] to the case of an extended many-atom system
requires a thorough analysis. The QMB model generalized to the case of FGM exhibits
hidden integrability [13], provided that the characteristic times of the interatomic resonance
dipole-dipole interaction (RDDI) and other collisional dephasing effects are much longer than
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the light pulse duration. Integrability of the model allows us to describe the time evolution of an
arbitrary light pulse incident on the system in terms of the allowed soliton modes. Making use
of the Bethe ansatz technique, we derive the Bethe ansatz equations (BAE), which completely
determine the spectrum of the radiation plus medium plus atoms system. Here we consider the
case of the atomic transition frequency ω12 lying deep inside a frequency gap of a frequency
dispersive medium, for which the McCall-Hahn theory is inapplicable.

Unlike an attractive effective photon-photon coupling in empty space (or nondispersive
media) [7] caused by scattering of photons on an atomic system, an effective polariton-polariton
coupling in FGM is shown to be attractive only for polaritons of the lower polariton branch.
Therefore bound many-polariton complexes (ordinary solitons) can be constructed only from
polaritons of the lower branch. In the limit of a macroscopically large number of polaritons,
these quantum complexes are nothing but SIT pulses (2π-pulses) of the classical theory slightly
modified due to a nonlinear polariton dispersion.

Due to the existence of a frequency gap, the multiparticle spectrum of the system, apart
from polaritons and ordinary solitons, also contains massive pairs of confined gap excitations,
which do not exist out of pairs, and bound complexes of these pairs—quantum gap solitons.
The energy-momentum dispersion relations for gap solitons are derived and the spatial sizes
and the velocities of propagation inside the atomic system are evaluated as functions of the
number of pairs and the atomic density.

In contrast to quantum gap solitons generated by a single atom, which propagate along a
radial coordinate centered at the atom [14], quantum SIT pulses in a doped FGM propagate
in a direction defined by a single wave vector. Furthermore, the gap SIT pulse, consisting of
an even number of gap excitations, is distinct from (odd photon number) gap soliton hopping
conduction inside the RDDI-mediated impurity band.

In the dipole, rotating-wave approximation [5] the Hamiltonian of the generalized QMB
model can be written as Ĥ = Ĥ0 + V̂ , where (setting h̄ = c = 1)

Ĥ0 = ω12

M∑
a=1

(
σza +

1

2

)
+

∫
C

dω

2π
ω p†(ω)p(ω) (1a)

represents the Hamiltonians of M identical two-level atoms and free polaritons, while the
operator

V̂ = −
√
γ

M∑
a=1

∫
C

dω

2π

√
z(ω)

[
σ+
a p(ω)eik(ω)xa + p†(ω)σ−a e−ik(ω)xa

]
(1b)

describes their coupling. The polariton operators p(ω) obey the commutator [p(ω), p†(ω′)] =
2πδ(ω−ω′), while the spin operators ~σa = (σxa , σ

y
a, σ

z
a), σ± = σx±iσy describe atoms having the

coordinates {xa, a = 1, . . . ,M} on the polariton propagation axis (the x-axis). The extent of
the atomic system is large compared to the optical wavelength. The states between frequencies
labeled as Ω⊥ and Ω‖ are forbidden for linear propagating polariton modes. Therefore, the
integration contour C consists of two allowed intervals, C = C− + C+, where C− = (0,Ω⊥)
and C+ = (Ω‖,∞). The coupling constant γ = 2πω12d

2/S0, where d is the atomic dipole
moment and S0 is the cross-section of a light beam. The information about the medium
spectrum is contained in the dispersion relation k(ω) = ωn(ω). The atomic form factor
z(ω) = ωn3(ω)/ω12, where n(ω) =

√
ε(ω) and ε(ω) = (ω2 − Ω2

‖)/(ω
2 − Ω2

⊥) is the dielectric

permeability of a frequency-dispersive medium. In the limit of empty space (n(ω) = 1), the
model Hamiltonian (1) obviously reduces to the QMB model, which describes the self-induced
transparency effect with quantum corrections and has the McCall-Hahn theory as a classical
limit.
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The eigenvalues of the model (1) within the N -particle sector of the Hilbert space are found
from the following Bethe ansatz equations:

exp [ikjL]

(
hj − iβ/2

hj + iβ/2

)M
= −

N∏
l=1

hj − hl − iβ

hj − hl + iβ
, j = 1, . . . , N , (2a)

where β = γ/ω12, kj ≡ k(ωj), E =
∑
j ωj is the eigenenergy of the N -particle Schrödinger

equation (Ĥ −E)|Ψ〉 = 0, and the “rapidity” hj ≡ h(ωj) is given by

h(ω) =
ω − ω12

ωn3(ω)
. (2b)

Here, we have placed the system in a box of length L and imposed periodic boundary conditions
on the wave function at the points ±L. BAE have a clear physical meaning: the first phase
factor on the l.h.s. is acquired by a polariton wave function during free propagation between
points ∓L/2, while the second one accounts for phase factors resulting from subsequent
scattering onM atoms. Propagating between the points∓L/2 the polariton is also scattered by
the other N−1 polaritons, and its wave function acquires the phase factor given on r.h.s. in eq.
(2a). Information concerning the nonlinear polariton dispersion is contained in the rapidity
h(ω). In empty space, it is reasonable to neglect the resonance dipole-dipole interaction
between atoms in self-induced transparency, since the dominant photon-atom interaction is
pointlike and the excited atom decays by stimulated emission into optical pulse modes. In
this case, light scattering from each of the M atoms is considered independently. In the FGM,
there are no classical modes available for stimulated emission and the polariton-atom coupling
is highly nonlocal: An excited atom (photon-atom bound state) exhibits nonlocal interaction
with other atoms which are within the classical tunneling distance. This leads to coherent
hopping conduction of a photon through the resulting impurity band [16]. If the characteristic
time of the interatomic hopping is much longer than the pulse duration, RDDI-mediated
transfer of energy between impurity atoms in an arbitrary direction can be neglected. Energy
transfer occurs through the soliton band [14] rather than the impurity band [16]. Equation (2a)
is obtained by including RDDI contributions only from virtual polaritons traveling in the same
direction as the incident pulse. In this generalization of the single-atom soliton band to an
M -atom soliton band, scattering from each atom is treated independently. Therefore, as well
as in ordinary vacuum [7], all reference to the atomic coordinates drops out of the eigenvalue
problem (2). This is equivalent to the independent atom (gas) approximation used by McCall
and Hahn in ordinary vacuum. Accordingly, in ordinary vacuum (n(ω) = 1), eqs. (2) reduce to
the BAE of the QMB model which, for large N , describe the classical McCall-Hahn solution.

It is instructive to derive first the main results of standard SIT theory from eqs. (2) with the
rapidity h(ω) ' (ω − ω12)/ω12 corresponding to the case of empty space. As L→∞, eqs. (2)
admit solutions in which N complex rapidities hj are grouped into a number of “strings”
containing 1 ≤ n ≤ N rapidities. A string with n rapidities is given by

hj = H + i(β/2)(n+ 1− 2j), j = 1, . . . , n, (3)

whereH is an arbitrary common real part (“carrying” rapidity). Due to the linear relationships
between the rapidity, frequency and momentum, particle frequencies and momenta are also
grouped into string structures, kj = K + i(γ/2)(n + 1 − 2j), ωj = Ω + i(γ/2)(n + 1 − 2j),
where K and Ω are common real parts of momenta and frequencies, respectively. To avoid
confusion, we use the term “string” for solutions of BAE in the h-space and the term “soliton”
to refer to string’s images in the ω- and k-spaces. In what follows, we consider for simplicity
the case when all N particles are grouped into a single string, i.e. N = n. Inserting kj and
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ωj in eq. (2a) and evaluating the product over j = 1, . . . , N , we obtain the simple equation
exp [iQnL] = 1, where

Q(Ω) = K −
2ρ

n
arctan

nγ

2(Ω− ω12)
(4a)

is the soliton momentum per photon, and the number of atoms is M = ρL. Here ρ is the linear
density of the number of atoms. Clearly Q(Ω) can be interpreted as the energy-momentum
dispersion relation of a soliton of size n, where the second term describes a contribution of
photon-atom scattering. The group velocity of soliton propagation V = dΩ

dQ is then given by

1

V
= 1 +

γρ

(Ω− ω12)2 + (nγ/2)2
=

1

c
+

2π

h̄c

ω12d
2
12na

(Ω− ω12)2 + (1/τs)2
. (4b)

In the last expression d12 is the atomic dipole moment, τs is the duration of a soliton, na is the
density of the atomic system, and for comparison we have restored the usual system of units.
Equation (4b) is easily seen then to be identical to the corresponding expression in the classical
SIT theory. The soliton duration is inversely proportional to the number of photons, τs ' n−1

[7]. Therefore, only macroscopically “long” strings, n� 1, propagate in an absorbing atomic
system without dissipation.

In FGM, eq. (3) is a solution of BAE if and only if the imaginary parts of rapidities hj and
corresponding momenta kj have the same sign,

sgn(Imhj) = sgn(Im kj), j = 1, . . . , n. (5)

It is easy to understand that the necessary condition (NC) (5) determines the frequency
intervals, in which an effective particle-particle coupling is attractive, and hence admits bound
many-particle complexes.

We start with the case when the real part of ωj lies outside the gap. Let ω = ξ + iη and
ξ ∈ C. Making use of the approach developed in [14], it is easy to show that the effective
coupling is attractive only between polaritons of the lower branch, ξ ∈ C−. Polaritons of the
upper branch are described by one-particle strings with real positive rapidities and do not
form any bound complexes. Bound many-polariton complexes (ordinary solitons) are quite
similar to solitons of the QMB model, despite their inordinate behavior on different polariton
branches. The dispersion relation of an ordinary soliton of size n is given by

q(ξ) = k(ξ)−
2ρ

n
arctan

βn

2h(ξ)
, (6a)

where k(ξ) = ξn(ξ). The group velocities inside, V = dξ/dq, and outside, v = dξ/dk, the
atomic system are then related by

1

V
=

1

v
+

ρβ

h2(ξ) + (βn/2)2

dh(ξ)

dξ
. (6b)

Since ordinary solitons in the FGM are off-resonance to the atomic transition, the effect of the
atomic system on their propagation is always weak, unlike the case of SIT in empty space.

Next we study the multiparticle excitations of the system with eigenenergies lying inside
the frequency gap. We look for an image of a Bethe string when the real parts of particle
frequencies ωj lie inside the gap, ξ ∈ G = (Ω⊥,Ω‖). To find the analytical continuations of the
functions k(ω) and h(ω), an appropriate branch of the function n(ω) is fixed by the condition
n(ξ ± i0) = ±iν(ξ), where ν(ξ) =

√
|ε(ξ)|. Soliton parameters ξj and ηj are determined by

the equations

Reh(ξj , ηj) = H, Imh(ξj , ηj) = β(l + 1/2− j), (7)
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which, in the general case, should be solved numerically. Approximate solutions of eqs. (7) are
easily found by the method of ref. [14]. One can show that in the model under consideration
gap excitations exist only for ξ ∈ (ω12,Ω‖). A string with an even number of particles, n = 2l,
describes a bound complex of l pairs of confined gap excitations—quantum gap soliton—with
the eigenenergy and momentum per particle of

ε = ω12 +
b

a3
H2 ∼ ω12 +

ω2
12

∆
H2 , (8a)

q = −
H

a
|κ′(ω12)| ∼ −

ω2
12

∆
H , (8b)

where κ(ξ) = ξν(ξ), κ′ = dκ/dξ, and ∆ = Ω‖ − Ω⊥ is the gap size. The parameters a and
b are found as coefficients in the Taylor series of the function φ(ξ) = [ξν3(ξ)]−1 at the point
ξ = ω12: φ(ξ) ' a + b(ξ − ω12). The soliton parameters are roughly estimated as a ∼ ω−1

12 ,
b ∼ (ω12∆)−1, and κ′(ω12) ∼ ω12∆−1. From the condition q > 0, one finds H < 0. The results
obtained are valid only for quite a small kinetic term of soliton energy, εkin = bH2/a3 � ∆, i.e.
|H| � ∆/ω12 when the gap soliton dispersion is described in the effective mass approximation.
Thus, outside the atomic system, gap solitons are heavy massive excitations with a small group
velocity v = dε/dq ∼ −H. At arbitrary |H| or for quite big solitons (l � 1), we have to solve
eq. (7) numerically.

The spatial size of a pair, δ ' κ−1(ω12), is nothing but the penetration length of the
radiation with the frequency ω12 ∈ G into the medium, and hence it lies on the scale of a few
wavelengths. Since κ(ξ) is monotonically decreasing function, the gap soliton size, in sharp
contrast to the case of ordinary solitons, grows with the growth of the number of pairs l.

For a gap soliton, the dispersion relation inside the atomic system takes the form

Q(εl) = q(εl)−
ρ

l
arctan

βl

H
. (9a)

The group velocity of a gap soliton inside the atomic system, Vl = dεl/dQ, is then found to be

1

Vl
=

1

v
+

ρβ

H2 + β2l2
dH

dε
∼

1

v

(
1−

∆

ω2
12

ρβ

H2 + β2l2

)
. (9b)

In sharp contrast to the case of ordinary solitons, the particle-atom scattering speeds up a
gap soliton: Vl > v, because dH/dε is negative in the effective mass approximation, and
−∆/ω12 < H < 0. From the condition Vl < 1, it follows that H < − ∆

ω12
(ρβ/∆)1/2. These

two restrictions are mutually consistent only if ρβ/∆ < 1. This is simply the condition that
the polariton gap ∆ must be larger than the interaction between the radiation and the atomic
system which is characterized by the parameter ρβ = 2πd2

12na. In other words, the atomic
density na must be not so large to destroy the polariton gap itself.

In the absence of the impurity atoms, the Hamiltonian (1) is quadratic. However, the BAE
allow correlated pairs of photons to propagate through a harmonic gap medium, even though
single-photon propagation is forbidden. A 1D free field can be described either on the basis
of free polaritons or in terms of interacting Bethe particles, such as solitons and gap solitons.
While the Bethe basis is unnecessarily cumbersome in the absence of the impurity atoms,
in the presence of atoms the only modification is an additional phase factor in the l.h.s. of
eq. (2a) and a specific choice of h(ω) and β.

This scenario occurs in all integrable models, where an effective intermode coupling is
generated by particle-impurity scattering [18]. In particular, in the QMB model, quantum
solitons diagonalize the system Hamiltonian both in the presence and in the absence of atoms.
To describe a light propagation through an atomic system, one can represent an incident
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pulse as a linear superposition of different soliton states. In the absence of atoms, all solitons
propagate with the same velocity, therefore the initial shape of the pulse is preserved. In
the presence of atoms, the soliton velocity depends on soliton parameters leading to a spatial
separation of solitons in the propagation process.

In FGM, gap solitons are naturally contained in the spectrum of Bethe excitations of an
undoped medium. Atoms with the transition frequency lying deep inside the gap speed up
resonance solitons that should result in a spatial separation of gap solitons propagating in
an extended doped medium. This represents an entirely new mechanism for nondissipative
subgap energy transfer in a FGM. These quantum solitons involve only a small (even) number
of photons and are entirely distinct from high-intensity classical solitary waves in a doped PBG
material [19]. Furthermore, they suggest that a doped FGM with suitable optical pumping
may act as a source of novel quantum-correlated states of light.
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