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Resonance fluorescence near a photonic band edge:
Dressed-state Monte Carlo wave-function approach

Tran Quang and Sajeev John
Department of Physics, University of Toronto, 60 St. George Street, Toronto, Ontario, Canada M5S 1A7

~Received 2 June 1997!

We introduce a dressed-state Monte Carlo wave-function technique to describe resonance fluorescence in a
broad class of non-Markovian reservoirs with strong atom-reservoir interaction. The method recaptures photon
localization effects which are beyond the Born and Markovian approximations, and describes the influence of
the driving field on the atom-reservoir interaction. Using this approach, we predict a number of fundamentally
new features in resonance fluorescence near the edge of a photonic band gap. In particular, the atomic
population exhibits inversion for moderate applied field intensity. For a low external field intensity, the atomic
system retains a long-time memory of its initial state.@S1050-2947~97!09711-4#

PACS number~s!: 42.50.Lc, 42.50.Hz, 32.80.2t
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Localization of light@1# in photonic band-gap~PBG! ma-
terials@2,3# gives rise to fundamentally new effects in atom
radiation field interactions. In recent years, several dielec
structures have been predicted@2–5# and observed@6–10# to
exhibit a photonic band gap, a range of frequencies for wh
no propagating electromagnetic modes are allowed. This
istence of PBG materials gives rise to a number of inter
ing phenomena including inhibition of spontaneous emiss
@2,11,12#, strong localization of light, and formation of atom
photon bound state@3,13,14#. Other confined photonic sys
tems@15–18# such as microcavities, optical fibers, and op
cal wires also exhibit novel features arising from our abil
to tailor the photon density of states~DOS! in a prescribed
manner. The distinguishing common feature of the confin
photonic systems is that the photonic mode density exhib
rapid variation with frequency at certain edge or cutoff fr
quencies. For example, in the optical fibers, the mode den
vanishes abruptly below a waveguide cutoff frequencyv0 .
For v>v0 , the mode density of the fiber diverges
~v2v0)21/2 @18#. In photonic band-gap materials, the DO
exhibits band-edge and other van Hove singularities. At
band-edge frequencyvedge, this can take the form of a sin
gularity of the formuv2vedgeu21/2 ~one-dimensional or iso
tropic PBG!, step discontinuity~two-dimensional PBG!, or a
singularity of the formuv2vedgeu1/2 in a anisotropic three-
dimensional PBG@13#.

Photon localization near the singularity of the mode d
sity of a PBG leads to a novel regime of strong interact
between atoms and the radiation reservoir. In this situat
the Born and Markov approximations normally used in d
riving master equation for atomic systems@19# are invalid.
Recent attempts using only the Born approximation@20,21#
failed to capture the effects of light localization and vacuu
Rabi splitting of the atomic level near a photonic band ed
Moreover, the rapid variation of the photon mode dens
may lead to a dramatic influence of an applied field on
atom-reservoir interaction as a result of the different DO
at the different dressed-state transition frequencies. The
fect of the applied field on the atom-reservoir interaction h
been discussed previously@22–25# in the framework of Born
and Markovian approximations. This, however, is inadequ
561050-2947/97/56~5!/4273~5!/$10.00
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for the case when the dressed-state transition frequencie
main close to cutoff or edge frequencies.

In this paper we introduce a dressed-state Monte C
wave-function~MCWF! technique@26–28# for a wide class
of non-Markovian atom radiation reservoir interactions. Th
method overcomes the shortcomings of the Born and M
kovian approximations, and captures the influence of
driving field on the atom-reservoir interaction. Using th
technique, we find new rich features of resonance fluor
cence near the band edge of a PBG. In contrast to free-s
resonance fluorescence, atomic population inversion oc
for a moderate intensity of the applied field. Furthermore,
show that, for a low intensity of the driving field, the atom
system keeps a long-time memory of its initial state. T
may be relevant to an optical memory device at the ato
scale.

Consider a system of a two-level atoms driven by a cl
sical external laser field and coupled to the radiation fi
reservoir. The atoms have an excited stateu2&, ground state
u1&, and resonant transition frequencyv21. The Hamiltonian
of the system in the interaction picture takes the formH
5H01H1 , where

H05 1
2 \D~s222s11!1\«~s121s21!1(

l
\dlal

†al ,

~1!

H15 i\(
l

gl~al
†s122s21al!. ~2!

Heres i j 5u i &^ j u ( i , j 51,2) are the atomic operators;al and
al

† are the radiation field annihilation and creation operato
D5v212vL ; dl5vl2vL ; vL andvl are the applied field
frequency and the frequency of a model, respectively;« is
the resonant Rabi frequency of the applied field; andgl is
the atom-radiation field coupling constant.

To include the role of the applied field on atom-rese
voir interaction, we use the basis of dressed statesu1̃&5

cu1&2su2&, u2̃&5su1&2cu2&. Here c[cosf, s[sinf, and
sin2f51

2@12sgn(D)/(4«2/D211)1/2#. This leads to the
dressed-state Hamiltonian@25#
4273 © 1997 The American Physical Society
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H05\V~R222R11!1(
l

\dlal
†al , ~3!

whereV5(«21D2/4)1/2 and Ri j 5u ĩ &^ j̃ u ( i , j 51,2) are the
dressed atomic operators. In the dressed-state basisu ĩ &, s21
in the interaction HamiltonianH1 must be replaced bys21
5cs(R222R11)1c2R212s2R12, and the atomic population
on the bare stateu2& can be written aŝ s22&5s2^R11&
1c2^R22&22cs Re(̂ R12&). We define the time-dependen
interaction picture HamiltonianH̃1(t)5U†(t)H1U(t) where
U(t)5exp(2iH0t/\). In this interaction picture, the interac
tion HamiltonianH̃1 takes the form

H̃15 i\(
l

gl@al
†~csR3eidlt1c2R12e

i ~dl22V!t

2s2R21e
i ~dl12V!t!2H.c.#, ~4!

To determine the dynamics of this problem in an amp
tude picture, we consider the projection of the atom
dressed-state wave function onto the one-photon secto
the full Hilbert space,

uC~ t !&AF5b1~ t !u1̃& ^ uvac&1(
l

b1l~ t !u1̃& ^ al
†uvac&

1b2~ t !u2̃& ^ uvac&1(
l

b2l~ t !u2̃& ^ al
†uvac&.

~5!

The process of resonance fluorescence, however, span
multiphoton sector of the atom-radiation field Hilbert spa
since energy absorbed by the atom from the external l
field can be re-emitted by the process of spontaneous
stimulated emission. That is, the state vectoruC&AF fails to
capture the possibility of random repopulation of the atom
ground state with many photons scattered into the radia
field reservoir. In what follows, the multiphoton contributio
in repopulation of the ground state will be added in terms
a Monte Carlo simulation. The time-dependent Schro¨dinger
equation, projected on the one-photon sector of the Hilb
space, takes the form

d

dt
b1~ t !5cs(

l
glb1le2 iDlt1s2(

l
glb2le2 i ~Dl12V!t,

~6!

d

dt
b2~ t !52c2(

l
glb1le2 i ~Dl22V!t2cs(

l
glb2le2 iDlt,

~7!

d

dt
b1l~ t !52csglb1eiDlt1c2glb2ei ~Dl22V!t, ~8!

d

dt
b2l~ t !52s2glb1ei ~Dl12V!t1csglb2eiDlt. ~9!

Substituting solutions of Eqs.~8! and ~9! into Eqs.~6! and
~7!, we obtain,
-
c
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,
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n
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d

dt
b1~ t !52c2s2E

0

`

G0~ t2t8!b1~ t8!dt81cs3e22iVt

3E
0

`

G0~ t2t8!b2~ t8!dt82s4E
0

`

G2~ t2t8!

3b1~ t8!dt81c3se22iVt

3E
0

`

G1~ t2t8!b2~ t8!dt8, ~10!

d

dt
b2~ t !5c3se2iVtE

0

`

G0~ t2t8!b1~ t8!dt82c2s2

3E
0

`

G0~ t2t8!b2~ t8!dt81cs3e2iVt

3E
0

`

G2~ t2t8!b1~ t8!dt8

2c4E
0

`

G1~ t2t8!b2~ t8!dt8, ~11!

where G0(t2t8)5(lgl
2e2 i (vl2vL)(t2t8) and G6(t2t8)

5(lgl
2e2 i @vl2(vL62V)#(t2t8) are the delay Green’s func

tions at the Mollow frequenciesvL and vL62V, respec-
tively. In a system, such as a PBG material, with fast var
tion of the density of states in the frequency rangevL
22V to vL12V, these Green’s functions may be very d
ferent. This difference embodies the influence of the exter
applied field on the atom-reservoir interaction. For a stro
external field, the dressed-state transition frequenciesvL and
vL62V may be pushed far away from the band-edge sin
larity. In this case, these Green’s functions are proportio
to the DOS atvL andvL62V, and it is sufficient to solve
the quantum dynamics in the Born and Markov approxim
tions @22–25#. For weak and moderate external fields, t
Mollow’s spectral components remain close to the DOS s
gularity and it is essential to solve Eqs.~10! and~11! without
recourse to the Born and Markovian approximations. Ev
for strong external field, the non-Markovian effects m
cause new interesting features when one of the Mollo
spectral components is close to the DOS singularity.

In general, the Green’s functions are determined by
structure of the density of states. For a broadband, smoo
varying density of state~as in free space!, the dependence o
the Green’s functions on the applied field can be ignor
G0(t2t8)5G6(t2t8);(g/2)d(t2t8), whereg is the spon-
taneous emission rate of the atom. Equations~10! and ~11!
can be simplified to

d

dt
b1~ t !52~g/2!s2b1~ t !1~g/2!cse22iVtb2~ t !, ~12!

d

dt
b2~ t !52~g/2!c2b2~ t !1~g/2!cse2iVtb1~ t !. ~13!

Equations~12! and ~13! are equivalent to the quantum dy
namics of the effective atomic~non-Hermitian! Hamiltonian
@26–28#
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Heff5
1
2 \S D2 i

g

2Ds222
1
2 \Ds111\«~s121s21!.

~14!

In other words, Eqs.~12! and ~13! can be derived from Eq
~14! using the dressed-state atomic state vector in the fo

uC~ t !&5b2~ t !u2̃&1b1~ t !u1̃&. ~15!

We emphasize that Eqs.~10!–~13! describe only the
single-photon sector of the Hilbert space, and do not desc
the actual repopulation of the ground state after many p
tons have been scattered into the reservoir. Consequently
norm of the dressed-state wave functionP(t)5ub1(t)u2

1ub2(t)u2 changes with time. It has been shown that t
inadequacy may be overcome by recourse to a Monte C
wave-function technique@26–28#. In this method, the atomic
system can be described by the normalized wave func
‘‘no-jump state vector’’

uC̃~ t !&5
b2~ t !

AP~ t !
u2̃&1

b1~ t !

AP~ t !
u1̃&, ~16!

in which the evolution of the system from its initial sta
@b1(0)5c, b2(0)5s if atom is initially in its bare ground
state andb1(0)52s, b2(0)5c if atom is initially in its bare
excited state# is determined in a piecewise manner by Eq
~10! and~11!. At random instants of timet i , this evolution is
interrupted by a quantum jump~spontaneous emission even!
that reduces the atomic wave function to the ground st
The system then evolves further from its bare ground s
@with b1(t i)5c andb2(t i)5s# according Eqs.~10! and~11!
until the next random jump. For each piecewise time evo
tion of the system~realization!, we calculate the outer prod
uct uC̃(t)&^C̃(t)u. Repeating the above simulationN realiza-
tions, we obtain an approximate dressed-state atomic de
matrix rA(t)5(1/N)(1

NuC̃(t)&^C̃(t)u. In our numerical
simulation, the jump was imposed when the normP(t) was

FIG. 1. Atomic population on the bare upper state,n2(t)
5^s22(t)&, as functions of the scaled timegt for the ordinary
vacuum case. HereV/g53, g is the vacuum rate of spontaneou
emission,V is Rabi frequency, and the detuning of the laser f
quency from atomic resonanceD50. The number of realizations in
the Monte Carlo simulation isN55000 ~dashed curve! and N
5104 ~dotted curve!. The solid curve is an exact solution of th
optical Bloch equation for the same choice of parameters.
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equal to a random numberh chosen uniformly on the inter
val between zero and unity@27#. That is to say, after any
given jump a new random numberh is chosen to prescribe
the time of the subsequent jump.

As an illustration for the dressed-state MCWF techniq
for Markovian systems, in Fig. 1 we plot the probability
the atom on the bare excited staten2(t)5^s22(t)& in an or-
dinary vacuum~dashed and dotted curves!, and compare this
with the exact solution of the optical Bloch equation~solid
curve! @29# for V53g andD50. Clearly, for a large numbe
of realizations~N5104 for the dotted curve!, the simulation
result is indistinguishable from the exact solution.

The simulation of the dressed-state MCWF for a reserv
with a singular DOS and non-Markovian noise can be carr
out analogously. The only difference in this case is the fo
of the Green’s functionG0(t2t8) and G6(t2t8). As an
illustration of the dressed-state MCWF technique for no
Markovian system, we choose an isotropic PBG described
the effective-mass dispersion relation near the band-edge
quency vc : vk5vl>vc1A(k2k0)2, with A>vc /k0

2

@13,14#. Using this dispersion relation, the delay Green
functions take the forms

-

FIG. 2. ~a! Atomic population on the lower and upper dress
states,̂ R11(t)& ~solid curve! and ^R22(t)& ~dotted curve!, and the
amplitude of the dressed-state atomic polarizationu^R12(t)&u
~dashed curve! as a function of a scaled timebt. Here both the
detuning of the laser frequency from the atomic resonance,D, and
the detuning of laser frequency from the band-edge frequencyd0

[vL2vc , are equal to zero. The number of Monte Carlo realiz
tions N55000 and the external Rabi frequencyV/b50.8. The
atom is initially in its bare ground state.~b! Same as~a!, except for
an external strong fieldV/b54.
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G0~ t2t8!5b3/2eid0~ t2t8!2 ip/4/Ap~ t2t8!, ~17!

G6~ t2t8!5b3/2eid6~ t2t8!2 ip/4/Ap~ t2t8!, ~18!

where d05vL2vc , d65vL62V2vc and b3/2

5v21
7/2d2/(6p«0\c3), where«0 is the Coulomb constant an

d is the atomic dipole moment@11#. Following the Monte
Carlo numerical simulation described above and the Gre
function Eqs. ~17! and ~18!, we obtain an approximate
atomic density matrixrA(t). This density matrix is then use
to evaluate expectation values of dressed-state and
atomic operators.

In Fig. 2, we plot atomic populationŝR11(t)& and^R22(t)&
on the dressed statesu1̃& andu2̃&, respectively, as a function o
a scaled timebt for the case when the atomic resonan
frequencyv21 and the laser frequency are at the edge f
quencyvc (D5d050) for moderate@Fig. 2~a!# and strong
@Fig. 2~b!# external fields. For the exact resonance c
~D50! in ordinary vacuum@29#, ^R11&5^R22&5 1

2 in the
long-time limit. In a PBG, the dressed stateu1̃& ~the left Mol-
low’s sideband with frequencyvc22V @29,30#! is inside the
gap and exhibits negligible decay, whereas the dressed
u2̃& ~the right Mollow’s sideband at the frequencyvc12V! is
outside the gap and exhibits resonance fluorescence. Co
quently, in the long-time limit, the atomic population on th
dressed stateu1̃& is much larger than the atomic population
the dressed stateu2̃&, as shown in Figs. 2~a! and 2~b!. This
imbalance of the atomic population between dressed st
modifies the spectrum of resonance fluorescence cons
ably. In particular, the left sideband is absent because of
negligible DOS inside the gap. The total intensity of the rig
sideband, which is proportional tôR21R12&5^R22&, is also
suppressed~relative to the corresponding Mollow sideban
in free space! as a result of the decrease in^R22& @solid
curves in Figs. 2~a! and 2~b!#. At a very strong applied field
both sidebands are almost totally suppressed, in agree
with Ref. @22#.

The atomic population on the upper bare stateu2& also
exhibits new features. In Fig. 3, we plotn2(t)5^s22& as a
function of bt for the same parameters as in Fig. 2. Clear
the steady-state atomic population exhibits inversion (^s22&

FIG. 3. Atomic population on the bare upper state,n2(t), as a
function of a scaled timebt for D5d050 and N55000. Here
V/b50.8 ~solid curve! andV/b54 ~dotted curve!. In both cases,
the atom is initially in its bare ground state.
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.1/2) for the moderate value of the resonant Rabi freque
V/b50.8 ~solid curve!. This atomic population inversion
cannot be obtained in the framework of resonance fluo
cence in ordinary vacuum. Unlike conventional lasers, wh
require the existence of additional atomic levels to achie
inversion, atomic population inversion may occur for a ph
tonic band-gap laser using two-level atoms and mode
coherent pumping. At a strong resonant external field,
atomic system approaches a saturation state with s
dressed-state atomic polarization@dashed curve in Fig. 2~b!#
and small atomic population inversion~dotted curve in Fig.
3!. The atomic population inversion has been discussed
Refs. @22,25# using the Markovian approximation, ignorin
the effects of photon localization. In this paper, the ban
edge localization effects are included. As a result, the ato
population exhibits inversion for much weaker applied fie
(V<b) than that required in Refs.@22,25#. In Fig. 4 we plot
the atomic population in the upper bare stateu2& for the case
whenv21 andvL are far outside the gap and far inside t
gap. Clearly, outside the gap, the atomic system behave
in an ordinary vacuum~solid curve!. Inside the gap,n2(t)

FIG. 4. Atomic population on the bare upper state,n2(t), as a
function of a scaled timebt for D50, N55000, andV/b52. Here
the detuning of the laser frequency from the band edge is given
d0 /b55 ~solid curve! andd0 /b525 ~dotted curve!. The atom is
initially in the bare ground state.

FIG. 5. Atomic population on the bare upper state,n2(t), as a
function of a scaled timebt for D5d050, N55000, andV/b
50.2, for the case when the atom is initially in the bare exci
state ~dotted curve! and initially in the bare ground state~solid
curve!.
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exhibits sinusoidal Rabi oscillations characteristic of a driv
two-level system with very small spontaneous emission
cay rate@29# ~dotted curve!.

In Fig. 5 we plotn2(t) for the non-Markovian case of
weak external field in which the atom is initially in the e
cited state~dotted curve! or initially in the ground state~solid
curve!. In the former case, the weak-field resonance fluor
cence is strongly affected by localization of spontane
emission@11#. This is manifest in the long-time behavior o
the atomic system, which retains the memory of the ini
state as shown in Fig. 5. This is distinct from free-spa
resonance fluorescence@29,30#, where the long-time behav
ior of the atomic system is independent of its initial state.
such, the two-level atomic system in a PBG constitutes
optical memory device. For a multilevel atom interacti
with more than one external laser field, the non-Markov
effects of photon localization facilitate a coherent control
spontaneous emission, and the steady-state atomic inve
depends sensitively on the relative phase between the
fields @31#. On the other hand, for a strong external fieldV
@b, the external field itself dominates the dynamics, and
memory of the initial state on the long-time behavior of t
tt
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atomic system is suppressed.
In conclusion, we have considered band-edge resona

fluorescence using a dressed-state MCWF technique.
approach overcomes the shortcomings of the Born and M
kovian approximations, and the influence of the applied fi
on atom-reservoir interaction is accounted for. The dress
state MCWF approach may be used for a broad class
non-Markovian reservoirs including PBG materials, optic
fibers, and other confined photonic systems, where the
propriate non-Markovian master equation is difficult
solve. The new features of the band edge resonance fluo
cence include the occurrence of the atomic population inv
sion and long-time memory of the initial state. The no
Markovian effects of photon localization described he
suggest the possibility that collective switching of anN-atom
system near a photonic band edge may occur at a m
lower (V<b) threshold than previously considered@25#.

This work was supported in part by the Natural Scienc
and Engineering Research Council of Canada and the
tario Laser and Lightwave Research Centre, and by a g
from William F. McLean.
n-

ev.

Y.

,

ics

ic.

wal
@1# S. John, Phys. Rev. Lett.53, 2169 ~1984!; Phys. Rev. B31,
304 ~1985!.

@2# E. Yablonovitch, Phys. Rev. Lett.58, 2059~1987!.
@3# S. John, Phys. Rev. Lett.58, 2486~1987!.
@4# K. M. Ho, T. J. Chan, and C. M. Soukoulis, Phys. Rev. Le

65, 3152~1990!.
@5# J. D. Joannopoulos, P. R. Villeueuve, and S. Fan, Nature~Lon-

don! 386, 143 ~1997!.
@6# E. Yablonovitch, T. J. Gmitter, and K. M. Leung, Phys. Re

Lett. 67, 2295~1991!.
@7# U. Gruning, V. Lehmann, and C. M. Engelhardt, Appl. Phy

Lett. 66, 3254~1995!; U. Gruning, V. Lehmann, S. Ottow, an
K. Busch,ibid. 68, 747 ~1996!.

@8# E. Ozbay, E. Michel, G. Tuttle, M. Sigala, R. Biswas, and
M. Ho, Appl. Phys. Lett.64, 2059~1994!.

@9# R. Baughman and A. Zakhidov~private communication!.
@10# For a review, seePhotonic Band Gap Materials, Vol. 315 of

NATO Advanced Study Institute Series E: Applied Scien,
edited by C. M. Soukoulis~Kluwer, Dordrecht, 1996!.

@11# S. John and Tran Quang, Phys. Rev. A50, 1764~1994!.
@12# S. Bay, P. Lambropoulos, and K. Molmer, Opt. Commun.132,

257 ~1996!.
@13# S. John and J. Wang, Phys. Rev. Lett.64, 2418~1990!; Phys.

Rev. B43, 12 772~1991!.
@14# S. John and Tran Quang, Phys. Rev. Lett.74, 3419~1995!.
@15# Confined Electrons and Photons, edited by E. Burstein and C

Weisbuch~Plenum, New York, 1995!.
@16# S. Haroche and Kleppner, Phys. Today42„1…, 24 ~1989!.
.

.

s

@17# S. D. Brorson, H. Yokoyoma, and E. P. Ippen, IEEE J. Qua
tum Electron.26, 1492~1990!.

@18# D. Kleppner, Phys. Rev. Lett.47, 233 ~1981!.
@19# G. S. Agarwal, Quantum Optics~Springer-Verlag, Berlin,

1974!.
@20# M. Lewenstein, T. M. Mossberg, and R. J. Glauber, Phys. R

Lett. 59, 775 ~1987!.
@21# A. G. Kofman, G. Kurizki, and B. Sherman, J. Mod. Opt.41,

353 ~1994!.
@22# T. W. Mossberg and M. Lewenstein, J. Opt. Soc. Am. B10,

340 ~1993!.
@23# O. Kocharovskya, S. Y. Zhu, M. O. Scully, P. Mandel, and

V. Radeonychev, Phys. Rev. A49, 4928~1994!.
@24# C. H. Keitel, P. L. Knight, L. M. Narducci, and M. O. Scully

Opt. Commun.118, 143 ~1995!.
@25# S. John and Tran Quang, Phys. Rev. Lett.78, 1888~1997!.
@26# H. Carmichael,An Open Systems Approach to Quantum Opt

~Springer, Berlin, 1993!, and references therein.
@27# R. Dum, P. Zoller, and H. Ritsch, Phys. Rev. A45, 4879

~1992!.
@28# J. Dalibard, Y. Castin, and K. Molmer, Phys. Rev. Lett.68,

580 ~1992!; P. Stenius and Imamoglu, Quantum Semiclass
Opt. 8, 283 ~1996!.

@29# C. Cohen-Tannoudji, J. Dupont-Roc, and G. Grynberg,Atom-
Photon Interactions~Wiley-Interscience, New York, 1992!,
Chap. VI.

@30# B. M. Mollow, Phys. Rev.188, 1969~1969!.
@31# Tran Quang, M. Woldeyohannes, S. John, and G. S. Agar

~unpublished!.


