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Coherent control of spontaneous emission near a photonic band edge:
A qubit for quantum computation
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Department of Physics, University of Toronto, 60 St. George Street, Toronto, Ontario, Canada M5S 1A7

~Received 14 May 1999; revised manuscript received 5 August 1999!

We demonstrate the coherent control of spontaneous emission for a three-level atom located within a
photonic band-gap structure with one resonant frequency near the edge of the photonic band gap. Spontaneous
emission from the three-level atom can be totally suppressed or strongly enhanced depending on the relative
phase between the steady-state control laser coupling the two upper levels and the pump laser pulse used to
create an excited state of the atom in the form of a coherent superposition of the two upper levels. Unlike the
free-space case, the steady-state inversion of the atomic system is strongly dependent on the externally pre-
scribed initial conditions. This nonzero steady-state population is achieved by virtue of the localization of light
in the vicinity of the emitting atom. It is robust to decoherence effects provided that the Rabi frequency of the
control laser field-atom interaction exceeds the rate of dephasing interactions. As a result, such a system may
be relevant for a single-atom, phase-sensitive, optical memory device on the atomic scale. The protected
electric dipole within the photonic band gap provides a basis for a qubit to encode information for quantum
computations.@S1050-2947~99!08412-7#

PACS number~s!: 42.50.Gy, 42.70.Qs
lti
nd
bu

f
y
na
nt

i
o
r

o
i

d
s

-
o
in
lo
b

s
n
e

a
du
ci
a
n

c
e
y
n

e
sly

ne-

with
n-
tant
ed
lica-
ons
o-
p-

an

ers
an
for

,
ical
en-
rger
da-
c-

ime
is a

trap
ne

ing

, re-
I. INTRODUCTION
Spontaneous emission is a fundamental process resu

from the interaction between radiation and matter. It depe
not only on the properties of the excited atomic system
also on the nature of the environment to which that system
optically coupled@1,2#. It is possible to control the rate o
spontaneous from an excited atom by altering the densit
electromagnetic modes in the neighborhood of the reso
frequency, i.e., by modifying the accessible modes i
which the excited atom can radiate. If the modal density
the vicinity of the frequency of interest is less than that
free space, the atomic decay will be retarded, if it is greate
will be accelerated@3#.

When the density of electromagnetic modes is a smo
function of frequency over the spectral range of the atom
transition, the rate of spontaneous emission is describe
Fermi’s golden rule. On the other hand, abrupt change
the photon density of states~colored vacuum! and photon
localization effects@4# may drastically modify the spontane
ous emission dynamics. This modification takes the form
long time memory effects and non-Markovian behavior
the atom-reservoir interaction. Strong modification in the
cal density of electromagnetic modes can be effected
means of photonic crystals. These are dielectric material
which the refractive index exhibits strong three dimensio
ally periodic modulation and which in special circumstanc
may exhibit a photonic band gap~PBG! @5,6#. In carefully
engineered semiconductor photonic crystals such as Si, G
or Ge, this PBG is centered at roughly twice the index mo
lation wavelength and extends over a range of frequen
that is approximately 10% of the center frequency of the g
@7#. For the frequency range spanned by a PBG there is
propagating electromagnetic wave in any direction in spa
In other words a PBG is a 4p Steradian stop band for som
frequency range. Within a PBG the photonic mode densit
zero. It has been suggested that this would be accompa
by the inhibition of single-photon spontaneous emission@5#,
PRA 601050-2947/99/60~6!/5046~23!/$15.00
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classical light localization@6#, a photon-atom bound stat
@8#, fractionalized single-atom inversion, and anomalou
large vacuum Rabi splitting@8–10#. In the presence of many
atoms, it also leads to anomalously fast collective sponta
ous emission rates near the band edge@11# and photon hop-
ping conduction deeper within the gap@12#.

The suppression of spontaneous emission combined
the coherent localization of light within a PBG leads to i
teresting phenomena in quantum optics as well as impor
technological applications. In the visible and near-infrar
wavelength regimes, PBG materials have numerous app
tions in the telecommunications industry. These applicati
include the design of zero-threshold, highly efficient micr
lasers@11#, light-emitting diodes that exhibit coherence pro
erties at the single-photon level@13#, low-threshold optical
switches, and all optical transistors.

The localized mode associated with a defect site in
otherwise perfect photonic crystal, acts as a high-Q micro-
cavity. They are also useful for filters, single-mode mas
and lasers. On a more fundamental level, they provide
experimental realization of the Jaynes-Cummings model
cavity quantum electrodynamics~QED! at optical frequen-
cies @14#. Unlike ordinary high-Q microcavity resonators
localized states in a PBG may extend over many opt
wavelengths. These localized states facilitate coherent
ergy transport and cooperative effects on a scale much la
than the optical wavelength. This leads to a host of fun
mentally new effects in quantum optics. The ability to sele
tively control spontaneous emission, while at the same t
preserving propagative effects over many wavelengths,
unique feature of PBG systems.

Just as point defects in a photonic crystal are used to
light, extended defects can be used to guide light from o
location to another. Extended defects~such as a line of point
defects! can be engineered for the purpose of wave guid
through the otherwise impenetrable PBG@15,16#. In large-
scale PBG materials made from self-assembly methods
5046 ©1999 The American Physical Society
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gions of crystalline order are separated by grain bounda
These planar defects may likewise act as waveguiding p
within the PBG. Engineered line defects and planar defe
can be used to guide light between individual microcav
devices, thereby allowing the PBG material to act as a h
for integrated optical circuits.

Small-scale photonic crystals with complete thre
dimensional~3D! gaps at microwave frequencies have
ready been realized@17# by direct drilling methods, and
large-scale two-dimensional PBG systems have been
duced in the near infrared@18# using electrochemical etchin
methods. The outstanding problem in the field is the mic
fabrication of large-scale photonic crystals with full thre
dimensional band gaps at infrared and optical frequenc
To achieve band gaps for the infrared and visible spe
several challenges exist. The periodicity of the crystal sho
be on the scale of the wavelength of light~about 500 nm!,
both constituent materials of the crystal should be topolo
cally interconnected@19#, and the ratio of their refractive
indices n should be close to 3.0@7#. Two approaches are
currently being employed to create photonic crystals. T
first one is engineering by microlithography@20,21#. How-
ever, it is very cumbersome and expensive to extend
microengineering method to produce large-scale 3D st
tures with periodicity on the scale of the wavelength of v
ible light @22#. The second approach involves self-organizi
systems such as colloidal crystals@23–25# and artificial opals
@26–28# as templates for PBG microfabrication. Monodi
perse colloidal suspensions of latex microspheres and S2
spheres~opals! can sediment into crystalline structures wi
excellent long-range periodicity at optical length scales@25#.
Colloidal crystal growth produces inherently thre
dimensional structures, a significant advantage over lit
graphic techniques which primarily produce tw
dimensional patterns. However, neither colloids nor op
~close-packed fcc lattice of SiO2 spheres! achieve the high
refractive index ratios and interconnectedness necessar
photonic band-gap formation. Therefore, it is necessary
invert the structure by infiltrating the template with a hig
refractive index semiconductor such as GaP, Si, or Ge.
original template may be finally removed by chemical
heat treatment. It has been demonstrated theoretically@7# that
such structures exhibit near-visible photonic band gaps
the scale of 10% of of the gap frequency. This type of ‘‘i
verted’’ opal structure was experimentally realized in R
@29#, where a closed-packed fcc lattice of air spheres in T2
~refractive indexn52.8) is reported. A similar structur
made of carbon was reported@30# using an artificial opal
template. Most recently, an inverse opal consisting of Cd
was realized@31#. Such macroporous crystals suggest
feasibility of producing a new class of 3D photonic crysta
for the optical spectrum. Structures of this type made ou
GaP or Si would be relevant to quantum optical experime
in which atoms, dye molecules, or other active materials
inserted into specific locations within the photonic crysta

The absence of single-photon spontaneous emission
an isolated atom in a PBG guarantees that the emitted ph
remains partially localized in the vicinity of the emittin
atom leading to the formation of a photon-atom bound s
@8#. On the other hand, driving an atom with a sufficien
strong resonant field alters the radiative dynamics in a f
damental way@32,33#, even in ordinary vacuum@34–36#. It
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leads to such interesting effects as the enhancement o
index of refraction with greatly reduced absorption@37#,
electromagnetically induced transparency@38# and optical
amplification without population inversion@39#. The coher-
ent control of molecular chemical reactions@40# is an emerg-
ing frontier in chemical physics@41#. Using the coherence
properties of an external laser-field-driven interaction, rad
tively controlled chemical pathways can be enhanced or
tarded by quantum-mechanical interference effects. Selec
photodissociation of molecules mediated by the interfere
between two two-photon excitation processes has been
ported@42#. Coherent control of current in a semiconduct
has also been demonstrated@43#. Here the direction of the
electrical current, formed by interband transitions in a bu
semiconductor via coherent one- and two-photon absorpt
is controlled by simply adjusting the relative phase of t
two beams that are optically generating carriers across
gap. In view of these achievements, it is of great interes
consider the combined effects of coherent control by me
of external laser fields and the coherent localization effe
facilitated by a photonic band gap.

In this paper we study the combined effects of coher
control and photon localization on spontaneous emiss
from a three-level atom with one resonant frequency at
near the edge of a PBG. We demonstrate that storag
quantum information in a single atom is facilitated by t
localization of light in the vicinity of the atom when one o
the atomic transitions lies within a photonic band gap. T
nature of this information is controlled by the combination
quantum interference between different radiative pathw
within the atom mediated by the external laser field and p
ton localization effects mediated by the PBG. In our mod
system, a pump laser pulse is used to create an excited
of the atom as a coherent superposition of the two up
levels. A control, cw, laser field with a specific phase relati
to the pump laser pulse stimulates radiative transitions
tween the upper two excited states. It is shown that spo
neous emission can be totally suppressed or strongly
hanced by changing the relative phase between the co
laser field and the initial atomic Bloch vector determined
the pump laser pulse. Unlike the free-space case, the ste
state inversion of the atomic system is strongly dependen
the externally prescribed initial conditions. As a result, su
a system may be relevant for a single-atom, phase-sens
optical memory device on the atomic scale.

Provided that coherence can be maintained between
atomic levelsu2& and u3&, our model system can also act a
a qubit ~two-state system! to encode information for quan
tum computation. In our scheme, coherence is forced on
atomic system by means of the control laser field. Two
more such systems can be used to construct quantum
gates@44#. At the heart of quantum computation is the e
tanglement of many qubits which form the register of t
quantum computer. To create and maintain such a hig
entangled state, the qubits must be strongly coupled to
another and to an external field. Yet coupling to other ext
nal influences must be minimized since it leads to decoh
ence. Random perturbations from the environment caus
pure quantum state to evolve to a mixture of states
thereby lose its key properties of interference and entan
ment. The PBG material provides an ideal environment
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5048 PRA 60MESFIN WOLDEYOHANNES AND SAJEEV JOHN
satisfy these seemingly contradictory requirements by p
serving the resonance dipole-dipole interaction betw
neighboring qubits@12,8# while at the same time shieldin
them from the external environment~radiation reservoir!.

II. MODEL

A. Description of the model

The physical system we consider consists of a sin
three-level atom placed inside a photonic crystal which
then driven by a laser field, see Fig. 1. We letu1& denote the
ground level of the atom, andu2& and u3& the two excited
levels with orthonormality conditionŝi u j &5d i j , whered i j
is the Krönecker delta function. We designate the energy
level u i & by \v i and the frequency separation between le
u i & and u j & by v i j 5v i2v j . The transition between level
can be described using the atomic operatorss i j 5u i &^ j u. Us-
ing the propertys i j uk&5d jku i &, it follows that

FIG. 1. Schematic representations of a driven three-level sys
~a! in the V configuration and~b! in the L configuration. The tran-
sition frequencyv31 is near the band-edge frequencyva of a PBG.
Lines with arrows at both ends denote the control laser field of R
frequencyV driving the transitionu3&↔u2&. Double-arrowed lines
denote two-photon transitions. Dot-dashed lines denote dipole
lowed transitions. In theV configuration levelsu3& and u2& are of
the same symmetry, andv21 is deep inside the PBG so that the
are no single-photon spontaneous emissions on the transitionu3&
→u2& andu2&→u1&. Similarly in theL configuration levelsu2& and
u1& are of the same symmetry, andv32 is deep inside the PBG s
that there are no single-photon spontaneous emissions on the
sitionsu3&→u2& andu2&→u1&. The control laser field drives a two
photon transition (2vL5v32) in the V configuration and a single
single photon transition (vL5v32) in the L configuration. ~c!
shows indirect coupling of levelsu2& and u3& in a V system via
another levelu4&. Such a scheme will allow as to strongly coup
levels u2& and u3& even when the transitionv32 lies in the infrared
or far infrared.
e-
n

le
s

f
l

@s i j ,s lk#5d j l s ik2d iks l j . ~1!

We choose to work in Schro¨dinger picture of quantum me
chanics, where operators are treated as time indepen
The upper atomic levelu3& is dipole coupled to the ground
level u1& by radiation modes~photon reservoir! in a three-
dimensional periodic dielectric structure. The transition f
quencyv31 is assumed to be near the edge of the gap in
density of the reservoir photon modes. Each mode of
photon reservoir is characterized by a wave vectork and a
polarization indexl(51,2), and can be treated as a quantu
oscillator with frequencyvk . Transitions between photo
occupation number statesunkl& are described by the radia
tion field annihilation (akl) and creation (akl

† ) operators sat-
isfying the standard Bose algebra@akl ,ak8l8

†
#5dkk8dll8 .

All atomic operatorss i j commute with all operators (akl

andakl
† ) for the quantized electromagnetic oscillator.

In our model system we assume that the transitionu3&
→u2& between the two upper levels is driven by a reson
control laser field of angular frequencyvL , Rabi frequency
V, and phasefL . The Rabi frequencyV characterizes the
strength of the driving field, and is given by the product
the transition dipole moment and the driving field amplitu
~i.e., the square root of the field intensity!. We also assume
that spontaneous emission on the transitionsu3&→u2& and
u2&→u1& is inhibited either by symmetry considerations
by the presence of the photonic band gap.

If the three level atom is in the so-calledV configuration
@Fig. 1~a!#, the upper levelsu3& and u2& are of the same
symmetry, and single-photon spontaneous emissionu3&
→u2& is not dipole allowed. If we further assume that tra
sition frequencyv21 is deep inside the gap, then singl
photon spontaneous emission for the transitionu2&→u1& will
lead to a photon-atom bound state@10,45#. In such aV sys-
tem, the external control laser field of frequencyvL which
couples levelsu3& and u2& drives a two-photon transition
(2vL5v32), since the levels are of the same symmet
From a practical point of view, we want the transition fr
quencyv32 to be as large as possible, as it may be difficult
generate microwave fields of sufficient amplitude to dri
the required two-photon transition. However, the magnitu
of v32 is restricted by the width of the photonic band ga
For a gap centered at frequencyvo and with a gap-to-midgap
ratio of r[Dv/vo , conditions thatv31 be near the edge o
the gap and thatv21 be deep inside the gap require th
v325v312v21,rvo . Thus to makev32 large we need a
gap with as high a central frequency as possible and as l
a width as possible. For a gap centered at an optical
quency vo;1015 Hz and with a gap-to-midgap ratio o
10%, the frequency separationv32 between levelsu3& and
u2& must be approximately 531013 Hz.

Another means of overcoming the above practical limi
tion associated with theV system is to couple levelsu2& and
u3& indirectly by way of a transition to a higher levelu4&
which lies far above levelu3&. This will allow us to both
strongly couple levelsu2& and u3& and use a narrow-ban
gap, even when the transition frequencyv32 lies in the near
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or far infrared. Levelu4& is dipole coupled to levelu2& ~and
hence to levelu3&, since they are of the same symmetry! and
the transitionsv42 andv43 are both in the visible and bot
lie outside the gap, as shown in Fig. 1~c!. The transitionv42

is then pumped by a resonant laservp5v42 followed by a
stimulated emission into levelu3& using a laser which
couples levelsu4& and u3& @46#.

On the other hand, for a three level system in theL con-
figuration@Fig. 1~b!#, levelsu2& andu1& have the same sym
metry and there is no dipole-allowed single-photon spon
neous emission between these levels. If we further ass
that the transition frequencyv32 is far inside the gap, the
dipole-allowed transitionu3&→u2& will create a photon-atom
bound state whose radiative lifetime is given by the tw
photon spontaneous emission time for theu2&→u1& transi-
tion. To reconcile the conditions thatv31 is near the band
edge and thatv32 is deep in the gap, we require thatv21

5v312v32<rvo . Given the practical fact thatr<0.1, it
follows that levelsu2& and u1& should be close to each othe
but both far from levelu3&, as shown in Fig. 1~b!. This, in
turn, will reduce the decay rate of the photon-atom bou
state due to two-photon spontaneous emission fromu2&
→u1&. However, sincev32 is within the gap, the contro
laser driving the single-photon transitionu3&→u2& must be
injected by means of engineered or naturally occurring de
or waveguide modes within the band-gap material.

Our model system may be realized by trapping cold ato
in the void regions of a photonic crystal, using the propert
of the electromagnetic eigenmodes of a 3-d PBG material. If
the PBG material is illuminated by an intense laser field w
frequency near the bottom of the ‘‘air’’ band, a near
standing-wave electromagnetic field will arise with stro
electric-field gradients and peak intensities that lie in
void fraction of the material. This field distribution will ac
as an optical trapping potential for a cold atom vapor@47#.
This will trap atoms in the void regions of the photonic cry
tal where the field is most intense, and prevent the ato
from colliding with the dielectric backbone of the PBG m
terial. In a typical 3-d PBG material, the void fraction form
a connected network that accounts for nearly 75% of
volume of the material. Atoms which are optically trapped
this extensive void network will be immune to collision
dephasing and decoherence phenomena arising form d
interaction with atoms in the solid dielectric backbone. A
other way of realizing our model system is by doping t
solid fraction of the PBG material with an impurity thre
level atom such as a rare-earth atom or by means of a q
tum dot ~artificial atom! incorporated inside the semicon
ducting backbone of the photonic crystal with the requir
electronic transitions near the photonic band edge. Howe
in either of these latter cases, decoherence effects ar
from the interaction of the three-level system with phono
in the dielectric fraction of the PBG material need to
carefully considered.

B. Model Hamiltonian

The total HamiltonianH of our model system can be writ
ten as the sum of the atomic Hamiltonian
-
e

-

d

ct

s
s

e

s

e

ect
-

n-

d
r,

ng
s

HA5(
i 51

3

\v is i i ~2!

of the field Hamiltonian~neglecting the zero-point energy!

HF5 (
l51

2

(
k

\vkakl
† akl , ~3!

the total interaction Hamiltonian between the atom and
photon reservoir~which is responsible for spontaneous
well as stimulated emission!,

HAF5 i\ (
l51

2

(
k

gkl~akl
† s132s31akl!, ~4!

and the interaction Hamiltonian between the atom and
coherent monochromatic laser field~treated as a classica
field!:

HAL5 i\V@ei (vLt1fc)s232e2 i (vLt1fc)s32#. ~5!

Here gkl is the frequency-dependent coupling constant~as-
sumed to be real! between the atomic transitionu3&→u1& and
the mode$kl% of the radiation field:

gkl5
v31d31

\ S \

2eovkV
D 1/2

êkl•d̂31. ~6!

Also, d31 and d̂31 are the magnitude and unit vector of th
atomic dipole momentd31 for the transitionu3&→u1&, V is
the sample volume,êkl are the two transverse~polarization!
unit vectors, andeo is the Coulomb constant. The couplin
constantgkl fully characterizes the density of modes in th
photon reservoir. In the framework of perturbation theo
which is usually employed in quantum electrodynamics,
sumH05HA1HF is regarded as the Hamiltonian of the u
perturbed system whereas the sumHI5HAF1HAL describes
the perturbation. The total Hamiltonian of the system is th

H5H01HI . ~7!

The interaction HamiltoniansHAF and HAL are written in
electric dipole approximation.HAF andHAL are also written
in the rotating-wave approximation, which neglects virtu
processes of excitation~de-excitation! of the atom with si-
multaneous creation~annihilation! of a photon.

We refer to the model Hamiltonian~7! as describing the
‘‘leading approximation’’ to our physical model system. I
this leading approximation a number of spontaneous em
sion effects and nonradiative interactions are neglected
particular, the spontaneous emission channelsu3&→u2& and
u2&→u1& are absent in Eq.~7!. We demonstrate in what fol
lows that for coherent control in a PBG material, this leadi
approximation describes the essential physics. In Sec. V
VI we consider the corrections to this leading approximatio

We assume that the radiation-field reservoir is initially
the vacuum state. Att50, an ultrashort pumping laser puls
is used to prepare the atom in a coherent superposition o
two upper levelsu2& and u3& in the form

uC~0!&5cosuu3,$0%&1eifpsinuu2,$0%&. ~8!
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Here the state vectoru j ,$0%&[u j &u$0%& represents the atom i
the upper statesu j & and the vacuum electromagnetic fie
~that is no photons present!. The stateu j ,$0%& is a direct
product of the atomic stateu j & and the radiation stateu$0%&,
since the atomic operators are assumed to commute with
radiation field operators.

With the above initial condition, the system evolutio
may be described using the basis states of the unpertu
HamiltonianH0, listed below together with their correspon
ing eigenvalues:

u3,$0%&, \v3 , ~9a!

u2,$0%&, \v2 , ~9b!

u1,$1kl%&, \~v11vk!. ~9c!

Here the state vectoru1,$1kl%& represents the atom in th
ground stateu1& and a single photon in a mode$kl%. The
vectors u2,$1kl%& are assumed to be inaccessible in theV
system, since there is no single-photon spontaneous emis
on the transitionu3&→u2&. Two-photon spontaneous emi
sion is considered to be negligible compared to the tw
photon stimulated emission fromu3& to u2&, induced by the
classical control laser field. This latter effect is described
the classical Rabi field~two-photon transition! amplitude
\Vei (vLt1fL). Similarly, in the L system, single-photon
spontaneous emission fromu3& to u2&, although allowed, is
assumed to be negligible compared to stimulated emis
driven by the control laser field. For theL system, the effects
of stimulated emission are described by the classical R
field ~one-photon transition! amplitude\Vei (vLt1fL). It fol-
lows that the excitation number

N5u3,$0%&^3,$0%u1u2,$0%&^2,$0%u1 (
l51

2

(
k

akl
† akl

~10!

is a constant of the motion of the total HamiltonianH.
In the course of time, the initial state vectoruC(0)& de-

velops according to the Schro¨dinger equation into some lin
ear combination of the statesu j ,$0%& with the accompanying
spontaneous emission of a photon into the stateu1,$kl%&.
Accordingly, the state vector will be written as

uC~ t !&5b3~ t !e2 iv3tu3,$0%&1b2~ t !e2 iv2tu2,$0%&

1(
kl

b1kl~ t !e2 i (vk1v1)tu1,$kl%&, ~11!

with the amplitudesb2,3(t) and b1kl(t) determined by the
Schrödinger equation. In writing the general state vec
~11!, the time dependences of the amplitudes due to the
perturbed HamiltonianH0 are explicitly factored out in the
form of exponentials. Comparing Eqs.~11! and ~8!, we ob-
tain

b3~0!5cosu, ~12a!

b2~0!5eifpsinu, ~12b!

b1kl~0!50 ~12c!
he

ed

ion

-

y

n

bi

r
n-

as the initial values for the amplitudesb2,3(t) and b1kl(t)
corresponding to the initial state~8!. Conservation of prob-
ability requires that

^C~ t !uC~ t !&5ub3~ t !u21ub2~ t !u21(
kl

ub1kl~ t !u251.

~13!

C. Equations of motion

Using Eqs. ~7! and ~11! in the Schro¨dinger equation
i\(d/dt)uC(t)&5HuC(t)&, and projecting the result onto
u1,$kl%&, u2,$0%&, and u3,$0%&, respectively, we obtain the
following ~infinite! set of coupled equations for the amp
tudesb2,3(t) andbkl(t):

ḃ1kl~ t !5gklb3~ t !eimk, ~14a!

ḃ2~ t !5Veifcb3~ t !, ~14b!

ḃ3~ t !52Ve2 ifcb2~ t !2(
kl

gklb1kl~ t !e2 imkt, ~14c!

where the dot over an amplitude signifies the time derivati
and

mk5vk2v31 ~15!

is the detuning of the radiation mode frequencyvk from the
atomic transition frequencyv31. Equation~14a! can be in-
tegrated~in time!, using the initial conditionb1kl(0)50, to
give

b1kl~ t !5gklE
0

t

b3~ t8!eimkt8dt8. ~16!

Substituting this expression forb1kl(t) in Eqs. ~14b! and
~14c! then yields the following two coupled integrodifferen
tial equations:

ḃ2~ t !5Veifcb3~ t !, ~17a!

ḃ3~ t !52Ve2 ifcb2~ t !2E
0

t

G~ t2t8!b3~ t8!dt8,

~17b!

where

G~ t2t8!5(
kl

gkl
2 e2 imkl(t2t8) ~18!

is the delay Green’s function of the problem. In writin
down Eqs.~17a! and~17b!, we have exchanged the order
summation overkl and integration over time. The resultin
Green’s function depends very strongly on the photon d
sity of states of the reservoir. In essence,G(t2t8) is a mea-
sure of the photon reservoir’s memory of its previous st
on the time scale for the evolution of the atomic system, i
G(t2t8) is the memory kernel.

We now solve Eqs.~17a! and ~17b! for the amplitudes
b2,3(t) which determine the dynamical evolution of the sy
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tem. Upon taking the Laplace transforms of Eqs.~17a! and
~17b!, and using the initial conditions~12a! and ~12b!, we
find that

b̃3~s!5
s cosu2Veifsinu

s21sG̃~s!1V2
, ~19a!

b̃2~s!5
eifpsinu@s1G̃~s!#1Veifccosu

s21sG̃~s!1V2
, ~19b!

whereb̃2,3(s) andG̃(s) are the Laplace transforms ofb3,2(t)
and G(t), respectively, as defined byf̃ (s)5*0

`e2stf (t)dt,
and

f5fp2fc ~20!

is determined by the relative phase between the control
pump lasers. For a given dispersion relationvk , we can
calculateG(t2t8) from Eq.~18! which, in turn, can be used
to calculateG̃(s). This G̃(s) can then be used in Eqs.~19a!
and~19b!, and the resulting expressions inverted to find a
lytical expressions for the amplitudesb2,3(t). The atomic
populationnj (t) of level u j & ( j 52,3) ~i.e., the probability of
finding the atom in levelu j &), and its steady-state valuenjs ,
are then given by

nj~ t ![ubj~ t !u2, njs[ lim
t→`

ubj~ t !u2 ~ j 52,3!. ~21!

III. MODEL SYSTEM IN VACUUM

For comparison and interpretation purposes, it is instr
tive to first consider the case when our model system is
free space. For the free-space case, the spontaneous em
u2&→u1& for the V system can be ignored ifg21!g31; and
the spontaneous emissionu3&→u2& for the L system can be
ignored if g32!g31. Free space is characterized by the is
tropic dispersion relationvk5ck. For such a dispersion re
lation the Green’s function~18! takes the form~see Appen-
dix A!

G~ t2t8!5g31d~ t2t8!, ~22!

where

gm15
1

4peo

4vm1
3 dm1

2

3\c3
~23!

is the spontaneous emission rate for the transitionum&
→u1&, and d(t2t8) is the Dirac delta function. Since fre
space is an infinitely broad photon reservoir~flat spectrum!,
its response should be instantaneous and the memory e
associated with spontaneous emission dynamics is infini
mally short compared to all times of interest for the syste
Interactions governed by such a delta function memory k
nel are said to be Markovian@48#.

From Eq.~22! we obtainG̃(s)5g31 for the Laplace trans-
form of the Green’s function, and using this in Eqs.~19a!
and ~19b! we obtain
nd
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-
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b̃3~s!5
s cosu2Veifsinu

D~s!
, ~24a!

b̃2~s!5
eifpsinu~s1g31!1Veifccosu

D~s!
, ~24b!

whereD(s)5s21g31s1V25(s2r 1)(s2r 2), with

r 1,252
g31

2
6AS g31

2 D 2

2V2. ~25!

Equations~24a! and ~24b! are easily inverted to give

b3~ t !5(
j 51

2

Cje
r j t, b2~ t !5(

j 51

2

D je
r j t, ~26!

where

Cj5
r jcosu2Veifsinu

r j2r k
~ j Þk!, ~27a!

D j5
~r j1g31!e

ifpsinu1Veifccosu

r j2r k
~ j Þk!. ~27b!

From Eq.~25! we see that both rootsr j are~a! negative when
V<g31/2; and~b! complex with a negative real part equal
2g31/2 whenV.g31/2. Thus the time evolution of ampli
tudes b2,3(t) @and hence of the upper level populatio
n2,3(t)# can be divided into two regimes of different beha
ior. ForV.g31/2, the populations display pronounced osc
lations before decaying to zero, as shown in Fig. 2, where
have plotted the atomic populationn3(t) as a function of the

FIG. 2. Atomic populationn3(t) in ordinary vacuum as a func
tion of the scaled timeg31t for the initial conditionsu5p/4 ~that is
equal superposition of the upper levels!, for f52p/2 and for dif-
ferent values ofV, the driving field strength:V50 ~solid curve!,
V50.35g31 ~dotted curve!, V50.75g31 ~dashed curve!, and V
52g31 ~dot-dashed curve!. When V50 there is no transfer of
population between levelsu3& andu2&, and thereforen3(t) exhibits
simple exponential decay. Here we have assumed that spontan
emissions on the transitionsu3&→u2& and u2&→u1& are neglected
either because of symmetry or because the corresponding deca
is very small compared tog31. These results apply to both theL
andV configurations.
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scaled timeg31t. On the other hand, whenV,g31/2, the
populations barely complete an oscillation before decay
to zero. WhenV5g31/2, D(s)50 has a double rootr 1
5r 252g31/2 and inversion of Eqs.~24a! and ~24b! gives

b3~ t !5$cosu2@~g31/2!cosu1Veifsinu#t%e2(g31/2)t,
~28a!

b2~ t !5eifp$sinu1@~g31/2!sinu1Ve2 ifsinu#t%e2(g31/2)t.
~28b!

Thus the driving field induces oscillations on the populatio
of the upper levels. The stronger the driving field~i.e., the
larger theV), the faster the oscillations.

Equation ~25! shows that both rootsr j ( j 51,2) have a
negative real part, irrespective of the value ofV. This means
that the amplitudesb2,3(t) decay in time and tend to zero a
t→` so that steady state populationsn2s and n3s are both
zero:

njs[ lim
t→`

ubj~ t !u250 ~ j 52,3!. ~29!

In other words, in free space, the populations of the exc
statesu3& and u2& eventually decay to the ground levelu1&
~there is no population trapped on the upper levels!, indepen-
dent of the strengthV of the driving field. The only effect of
the driving field is to cause transfer of populations fromu3&
to u2&, and vice versa, until all the upper-level populatio
decays to the ground level. This is a general result valid
almost any broadband smoothly varying electromagn
density of states. On the other hand, when the density
electromagnetic modes vanishes in the vicinity of an ato
transition~such as near a photonic band edge! photon local-
ization leads to nonzero steady-state atomic populations
the excited levels@10#. The extent of localization depend
sensitively onV and the initial atomic state, as will be see
in Sec. IV.

IV. MODEL SYSTEM IN A PBG MATERIAL

We now consider the case where our three-level syste
placed within a PBG structure in such a way that the tran
tion frequencyv31 is near the edge of a photonic band g
@8–10#. In a PBG one finds a modified dispersion relation
the photons in the radiation reservoir. We begin by cons
ering an isotropic ‘‘effective-mass’’ approximation@8# for
the photon dispersion relation in a PBG material:

vk'va1A~k2k0!2, A'va /k0
2'c2/vc , ~30!

whereva is the upper band-edge frequency andk0 is a con-
stant characteristic of the dielectric material. This dispers
relation is valid for frequencies close to the upper photo
band edge. If the photonic band gap is large and if the
evant atomic transitions are near the upper band edge, it
very good approximation to completely neglect the effects
the lower~dielectric! band.

The dispersion relation (30) is isotropic since it depen
only on the magnitudek of the wave vectork. While there is
no physical PBG material with an isotropic gap, this pr
vides an instructive toy model for studying quantum opti
effects. Such a dispersion relation associates the band-
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wave vector with a sphere ink space,uku5k0. By associating
the band edge with the entire sphereuku5k0 ~spherical Bril-
louin zone!, the isotropic model~30! artificially increases the
true phase space available for photon propagation near
band edge. This results in a photonic density of statesr(v)
which, near the band edgeva , behaves as (v2va)21/2,v
.va , the square-root singularity being characteristic o
one-dimensional phase space@8#.

In a real three-dimensional PBG material with an allow
point-group symmetry the gap is highly anisotropic and
band edge is associated with a pointk5k0 ~or a finite col-
lection of symmetry related points! in k space, rather than
with the entire sphereuku5k0. In other words, the magnitud
of the band-edge wave vector varies ask is rotated through-
out the Brillouin zone. Thus a more realistic picture of t
band-edge behavior requires the incorporation of
Brillouin-zone anisotropy. In the effective-mass approxim
tion, the photon-dispersion relation takes the vector form

vk'va1A~k2k0!2, A'va /k0
2 . ~31!

This anisotropic effective-mass dispersion relation leads
photonic density of states at a band edgeva which behaves
as r(v);(v2va)1/2,v.va , characteristic of a three
dimensional phase space@8#.

The isotropic dispersion relation~30! leads to qualita-
tively correct physics. However, the anisotropic model~31!
introduces important quantitative corrections@8#. The most
significant difference between the anisotropic and isotro
models comes out more explicitly when considering an
driven two-level atom with frequency near the edge of
photonic band gap. In this case the isotropic model lead
nonzero steady population on the upper level even when
transition frequency is slightly outside the gap@10#, whereas
the anisotropic model leads to fractionalized steady-s
population on the upper level only when the transition f
quency is inside the gap~see Appendix C!.

As shown in Appendix A, under the effective-mass anis
tropic dispersion relation~31!, the Green’s functions~18!
take the form

G~ t2t8!52a
ei [d(t2t8)1p/4]

A4p~ t2t8!3
, va~ t2t8!@1, ~32!

where

a'
1

4peo

v31
5/2d31

2

3\c3
~33!

(a2 has the dimension of frequency!, and

d5v312va ~34!

represents the detuning of the atomic transition freque
v31 from the upper band edge frequencyva . Equation~32!
is valid only whenva(t2t8)@1. The full expression for
G(t2t8), including its short-time behavior, was given
Ref. @49#. This rather complicated general expression
G(t2t8) differs from the approximate expression~32! only
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in the region (t2t8)→01 , which is not of much interest to
us @49#, as we are mainly interested in long-time memo
effects.

Equation ~32! shows that the memory kernelG(t2t8)
decays with time as a power-law decay, and describes lo
time memory effects in spontaneous emission dynamics
to the presence of the photonic band gap. In other words
atom-reservoir interaction within a PBG is highly no
Markovian@49#. For the isotropic dispersion relation~30! the
memory kernelG(t2t8) decays in times as (t2t8)21/2 ~see
Appendix A!. This enhanced memory for the isotropic mod
is an artifact of the singular phase space occupied by
band-edge photons of vanishing group velocity.

For the anisotropic band edge in the effective-mass
proximation, the Laplace transform of Eq.~32! is given by

G̃~s!5aeip/4As2 id. ~35!

Using this in Eqs.~19a! and ~19b!, we obtain

b̃3~s1 id!5
~s1 id!cosu2Veifsinu

D~s!
, ~36a!

b̃2~s1 id!5@~s1aeip/4As1 id!eifpsinu

1Veifccosu#/D~s!, ~36b!

where

D~s!5~s1 id!21aeip/4~s1 id!As1V2

5)
j 51

4

~As2eip/4uj !. ~37!

Hereuj ( j 51, . . . ,4) are theroots of the quartic equation

x41ax312dx21adx2~V22d2!50 ~38!

given by @50#

u1,352s16@A2r /21s1
2#1/2, ~39a!

u25u4* 52s22 i @A1r /22s2
2#1/2, ~39b!

where

A5~r 2/41V22d2!1/2, ~40a!

s1,25
1

4
~a6Aa228d14r !, ~40b!

r 5~B2q/2!1/32~B1q/2!1/31h1/3, ~40c!

B5F S p

3D 3

1S q

2D 2G1/2

, ~40d!

p52
h1

2

3
1h2 , q522S h1

3 D 3

1
h1h2

3
1h3 , ~40e!

h152d, h25a2d14~V22d2!, ~40f!

h35~a228d!~V22d2!2a2d2. ~40g!
g-
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Numerical analysis shows that the rootsu1,3 are real (u1 is
positive butu2 is negative!, and the rootsu2,4 are complex
conjugates of each other with a negative real part (u2 andu4
lie in the third and second quadrants, respectively!. The am-
plitude bj (t) is found by inverting expression~36a! for
b̃ j (s1 id) using the complex inversion formula which in
volves a contour integration in the complex s plane as sho
in Appendix B. This gives

b3~ t !5(
j 51

2

PjQ3 je
i (uj

2
1d)t1

aeip/4

p E
0

`g3~x!e2(x2 id)t

Z~x!
dx,

~41a!

b2~ t !5(
j 51

2

PjQ2 je
i (uj

2
1d)t

1
aVei (fc1p/4)

p E
0

`g2~x!e2(x2 id)t

Z~x!
dx, ~41b!

where

Pj5
2uj

~uj2ul !~uj2um!~uj2un!

~ l ,m,n51, . . . ,4,j Þ lÞmÞn!, ~42a!

Q3 j5~uj
21d!cosu1 iVeifsinu, ~42b!

Q2 j5~uj
21auj1d!eifpsinu2 iVeifccosu, ~42c!

g3~x!5@~2x1 id!cosu2Veifsinu#~2x1 id!Ax,
~42d!

g2~x!5@~2x1 id!cosu2Veifsinu#Ax, ~42e!

Z~x!5@~2x1 id!21V2#21 ia2~2x1 id!2x. ~42f!

Sinceu1 is real andu2 is complex with negative real an
imaginary parts, the first term in Eq.~41a! for the amplitude
b3(t) is a nondecaying oscillatory term whereas the sec
term is also oscillatory but decays exponentially to zero
t→`. The last term containing the integral represents
branch cut contribution~arising from the deformation of the
contour of integration around a branch point in the comp
inversion formula!. This also decays to zero ast→`, faster
than the second term.

Equation~41a! shows that, as a result of the strong inte
action between the atom and its own localized radiation fie
level u3& splits into dressed-states. This dressed state split
is the combined effect of vacuum-field Rabi splitting by t
gap@51# and the Autler-Townes splitting@52# by the external
field. The dressed states occur at frequenciesvc2Im$ iu1

2%
5vc2u1

2 ~since u1 is real! and vc2Im$ iu2
2%5vc

2Re$u2
2%. The dressed state at frequencyvc2u1

2 lies inside
the gap and is responsible for the the fractional steady-s
population on the excited state. It corresponds the pho
atom bound dressed state with no decay in time. A pho
emitted by an atom in such a dressed state will exhibit t
neling on a length scale given by the localization length
fore being Bragg reflected back to the emitting atom a
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re-exciting it. The photon-atom bound dressed state ins
the gap was predicted in Ref.@8#. The dressed state at th
frequencyvc2Re$u2

2% lies outside the gap~since Re$u2
2%

,0 for all d.0) and decays at a rate of Im$u2
2%. It results in

a highly non-Markovian decay of the atomic populati
n3(t). As v31 is detuned further into the gap~i.e., asd be-
comes more negative!, a greater fraction of the light is local
ized in the gap dressed state. Conversely asv31 is moved out
of the gap, total emission intensity from the decaying dres
state is increased@10,49#.

As a result of interference between the three terms in
~41a!, the spontaneous emission dynamics displays osc
tory behavior @10#. As can be seen from Eqs.~41a! and
~41b!, the dynamics of spontaneous emission strongly
pends on the detuningd5v312va of level u3& from the
upper band edge, the initial coherent superposition stat
defined by the parameteru, the intensityV of the control
laser driving the transition between the upper levels, and
relative phasef5fp2fc between the cw control laser fiel
and the pumping laser pulse. In Fig. 3 we plot the atom
populationn3(t) as a function of the scaled timea2t for
various values of the relative phasef. This figure shows
that, all other conditions being equal, the fractionaliz
steady-state population on the excited states is maximum
minimum when the relative phase isf52p/2 or f5p/2,
respectively. Figure 3 and the next three figures apply to
leading approximation of our model system whereby spon
neous emissions on the transitionsu3&→u2& and u2&→u1&
are neglected either because of symmetry or because
transition is deep within the band gap. All figures which a
based on the leading approximation are relevant for bothL
andV configurations.

Figure 4 depicts the populationn3(t) for various values of
V. From this figure we note that, asV is increased,n3(t)

FIG. 3. Atomic populationn3(t) in a PBG material as a function
of the scaled timea2t for V/a252, d/a251, andu5p/4, and for
the relative phasef52p/2 ~solid curve!, f50 ~dotted curve!, and
f5p/2 ~dashed curve!. The photon dispersion is described by t
anisotropic effective-mass approximation. The steady-state pop
tion of level u3& is largest for the relative phasef52p/2. Here we
have assumed that spontaneous emissions on the transitionu3&
→u2& and u2&→u1& are neglected~the leading approximation! ei-
ther because of symmetry or because the transition is deep w
the band gap. The figure is relevant to bothL andV configurations.
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oscillates faster and reaches its steady-state value m
quickly. Moreover, the steady-state valuen3s increases with
V. In the leading approximation considered in this secti
single-photon spontaneous emission for the transitionu2&
→u1& is neglected for both theL andV configurations. This
means that the population of levelu2& cannot decay directly
to level u1&, and its only decay mechanism is indirect
through levelu3& via the couplingV. When the upper levels
u3& and u2& are not coupled by a control laser field (V
50), the only decay channel of levelu2& will be closed and
the amplitudeb2(t) will remain constant at its initial value
b2(0) @see Eq.~17a!#. It follows that, whenV50, our model
system in the leading approximation reduces to a two-le
system consisting of levelsu3& and u1& with the transition
frequencyv31 near the edge of a PBG. The dynamics
spontaneous emission by such an undriven two-level a
near the edge of an isotropic PBG was considered in deta
Ref. @10#. The effect of the anisotropy of the band edge
such an undriven two-level atom is briefly discussed in A
pendix D. In Sec. V, we will show that the neglect of spo
taneous emissionu2&→u1& is a good approximation in the
presence of a strong control laser field amplitudeV. How-
ever, in the absence of the control laser field (V50), the
spontaneous emission of a localized photon of frequencyv21
~inside the gap! can interfere quantum mechanically with th
spontaneous emissionu3&→u1&. For aV system, this results
in a nonzero steady-state population on levelu3& even when
v31 is slightly above the anisotropic PBG.

In the long-time limit, only the first terms in Eqs.~41a!
and ~41b! remain dominant, sinceu1 is real whereasu2 is
complex with a negative real part. The steady-state pop
tions njs on the upper levelsu3& and u2&, are thus given by

njs[ lim
t→`

ubj~ t !u25uP1Qj 1u2 ~ j 52,3!. ~43!

la-

in

FIG. 4. Atomic populationn3(t) as a function of the scaled tim
a2t for d50 ~i.e., when the transitionu3&→u1& coincides with the
anisotropic band edge!, for the relative phasef52p/2, for u
5p/4 and V50.5a2 ~solid curve!, V52a2 ~dotted curve!, and
V255a2 ~dashed curve!. Note that asV is increased,n3(t) oscil-
lates faster, and reaches its steady-state value quicker. More
the steady-state valuen3s increases withV. The results are ob-
tained in the leading approximation, making them applicable
both theL andV configurations.



e
It

-

-
o
e
dy

th
ar
hi
e
es
it
m

f
m

s
tio

in
ta

-

e

er

nt

p-

n-

ive
hs
the

of

tical

an-
in
sy
ity
a-
rm

d
e

PRA 60 5055COHERENT CONTROL OF SPONTANEOUS EMISSION . . .
This phenomenon of population trapping is due to the pr
ence of a PBG material and is absent in free space.
apparent from Eqs.~40b!–~40f! and ~42a!–~42d! that the
steady-state populationsnjs depend strongly on the param
etersu, f5fp2fc , d5v312vc , andV. Figure 5 shows
the variation of the steady-state populationn3s of level u3&
with respect to the detuningd. We see that asd increases
from zero~that is, as levelu3& is pushed further away from
the band edge into the continuum! the steady-state popula
tion n3s initially increases and attains its maximum value
about 0.295 at aboutd50.5a2 before it begins to decreas
vary rapidly. In other words there is a fractionalized stea
state atomic population on the excited stateu3& even when
the bare excitation frequency of this level lies outside of
photonic band gap, but not far from the band edge. Rem
ably, spontaneous emission is partially inhibited even wit
the allowed electromagnetic continuum as a consequenc
quantum interference with the driving field which coupl
level u3& to the photon-atom bound state associated w
level u2&. When there is no driving field, our model syste
can be viewed as a two-level system consisting of levelsu3&
and u1&, with the transitions frequencyv31 near the edge o
a PBG. As shown in Appendix D, for such a two-level ato
and the anisotropic dispersion relation~31!, the steady-state
population on the excited levelu3& vanishes when the level i
at the band edge or outside the gap. However, popula
trapping in aV system, on levelu3& outside the PBG, in the
absence of a control laser field, may be recaptured by go
beyond the leading approximation and including the spon
neous emission channelu2&→u1&.

Figure 6 depicts the variation ofn3s with respect of the
strengthV of the driving field for various values of the rela
tive phasef. This figure shows thatn3s can be an increasing
or decreasing function ofV depending on the value of th
relative phasef. For a very strong control laser field~that is,
when V@a2,d) the steady-state populationsnjs are given
approximately~see Appendix B! by

n3s'n2s'
1
4 ~12sin 2u sinf!. ~44!

FIG. 5. Steady-state populationn3s of level u3& as a function of
the detuningd from the anisotropic 3-d band edge forV/a2

53, u5p/4 and for the relative phasef52p/2 @which, as seen
in Fig. ~3!, leads to a large steady-state population#. Note thatn3s is
nonzero outside that gap~i.e., for d.0).
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Equation~44! shows that, whenu50 or u5p/2 ~i.e., when
the atom is initially on levelu3& or on level u2&), we have
n3s5n2s51/4. In other words, for the case of a strong las
field, the steady-state atomic populationsn3s and n2s are
independent of the initial relative phasef when u50 or u
5p/2 ~if the system is not initially prepared as a cohere
superposition of the upper states!. However, if the atom is
initially prepared in a coherent superposition of the two u
per statesu3& and u2&, so that sin(2u)Þ0 in Eq. ~44!, the
steady-state atomic populations will also depend onf . For
instance whenu5p/4, spontaneous emission is strongly e
hanced (n3s1n2s'0) for f5p/2, whereas it is totally sup-
pressed (n3s1n2s'1) for f52p/2. Clearly, the steady-
state atomic population keeps a memory of the initial relat
phasef. It can be controlled by changing the optical pat
of the pumping and controlling lasers. Moreover, due to
effects of photon localization, the atom keeps a memory
the intensity and phase of the pump~input! laser pulse. This
suggests that our model system can serve as an op
memory device on the atomic scale.

An important consideration in applications such as qu
tum computing is the coherence of the atomic amplitudes
the steady-state limit. In the leading approximation, it is ea
to verify that the off-diagonal elements of the atomic dens
matrix retain their coherence in the long-time limit. Equ
tions ~41a! shows that in the steady-state limit the cross-te
b3(t)b2* (t) is given by

lim
t→`

b3~ t !b2* ~ t !5uP1u2Q31Q21* , ~45!

and for a very strong control laser field (V@a2,d) this re-
duces to~see Appendix B!

lim
t→`

b3~ t !b2* ~ t !'
ie2 ifc

4
~12sin 2u sinf!. ~46!

FIG. 6. Steady-state populationn3s of level u3& as a function of
V when the transitionu3&→u1& coincides with the anisotropic ban
edge (d50). The atom is initially in a coherent superposition of th
upper statesu3& and u2& with u5p/4 and for f52p/2 ~solid
curve!, f50 ~dotted curve!, andf5p/2 ~dashed curve!. n3s can
be an increasing or decreasing function ofV depending on the
relative phasef. Results for theL and V configurations are the
same in the leading approximation.
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Thus not only do the upper levelsu3& and u2& have nonzero
populations (n2s and n3s) in the steady-state limit, as re
quired for a classical memory device, but the coherences
nonzero in the steady-state limit as required for quant
memory. In essence, coherence is forced on the atomic
tem by means of the external laser field. Like the populati
n2,3(t), the coherencenc(t)5ub3(t)b2* (t)u depends strongly
on the parametersu, f5fp2fc , d5v312va and V.
Equation~46! shows that for largeV, and when the system
is initially prepared in a coherent superposition of the up
states~i.e., whenuÞ0 and p/2), the coherencenc(t) be-
tween levelsu3& and u2& can be controlled by the relativ
phasef, and attains its maximum value whenf52p/2. In
Fig. 7 we plot the coherencenc(t) as a function of the scale
time a2t for different values ofV. We see that, for the
chosen conditions,nc(t) increases with increasingV. In
Secs. V and VI, we discuss how the coherencenc(t) is in-
fluenced by other spontaneous emission and nonradiativ
fects that are not considered within the leading approxim
tion.

All the above results for the anisotropic model~31! are
qualitatively similar to those derived for the isotropic mod
~30!. In particular, exactly the same relation as Eq.~44! holds
for the isotropic model~30! @53#. The major difference be
tween the two dispersion models is that the time-scale fa
for the transient radiative dynamics isa22 @wherea is given
by Eq. ~33!# for the anisotropic model, whereas it isb21

@whereb is given by Eq.~A19!# for the isotropic model.
The above considerations suggest that quantum infor

tion can be ‘‘written’’ onto a single three-level atom b
choosing the ‘‘area’’ of the incident laser pulse, the intens
of the cw laser, and the relative optical path lengths of the
and pulse-laser beams. In other words, the precise natu
the information written onto the quantum bit or ‘‘qubit’’ ca
be controllably altered by varying these external paramet
Furthermore, the phase and intensity of the control laser fi
can be adjusted so that spontaneous emission can be to

FIG. 7. The coherencenc(t)5ub3(t)b2* (t)u between levelsu3&
and u2& in the leading approximation forv31 tuned to the aniso-
tropic band edge (d50) as a function of the scaled timea2t for
V50.1a2 ~solid curve!, V5a2 ~dotted curve!, and V55a2

~dashed curve!. The atom is initially in a coherent superposition
the upper statesu3& and u2& with u5p/4 andf52p/2. Results
apply to bothL andV systems.
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suppressed in our model system. That is to say, at ste
state, the system can be in a coherent superposition of
upper statesu3& and u2& as uf&5a3u3&1a2u2& with ua3u2
1ua2u251, the amplitudesa2 anda3 being dependent on th
phase and intensity of the pump laser pulse. Since this
perposition state is immune to single-photon radiative dec
it is a promising candidate for a two-level quantum bit
encode information in quantum computations. In Secs. V
VI we discuss some possible decoherence mechanisms.
is the greatest obstacle to quantum computation sinc
causes a pure quantum state to evolve into a mixture
states, and to thereby lose two of its key properties: inter
ence and entanglement@54#.

V. EFFECTS OF OTHER SPONTANEOUS EMISSION
TERMS

In the leading approximation for our model system of F
1, we have assumed that spontaneous emission on the
sitionsu3&→u2& andu2&→u1& is inhibited, either by symme-
try consideration or by the presence of the PBG. We n
relax this assumption to see its effects on the system dyn
ics. To this end we consider theV configuration of Fig. 1~b!
where the upper levelsu2& andu3& are of the same symmetr
and are both coupled by dipole transitions to the ground le
u1&. In this case the unperturbed HamiltonianH0 is still the
same as that of Eq.~7! whereasHI has an additional term
due to the allowedu2&→u1& transition. It is given by

HI5 i\V@ei (vLt1fc)s232e2 i (vLt1fc)s32#

1 i\(
kl

@gkl
31~akl

† s132s31akl!

1gkl
21~akl

† s122s21akl!#, ~47!

where

gkl
i1 5

v i1di1

\ S \

2eovkV
D 1/2

êkl•d̂i1 ~ i 52,3!, ~48!

the coupling constant between the atomic transitionu i &
→u1& and the mode$kl% of the radiation field. With this
interaction Hamiltonian, Eqs.~14! are replaced by

ḃ1kl~ t !5gkl
31b3~ t !eimk

31
1gkl

21b2~ t !eimk
21

, ~49a!

ḃ2~ t !5Veifcb3~ t !2(
kl

gkl
21b1kl~ t !e2 imk

21t, ~49b!

ḃ3~ t !52Ve2 ifcb2~ t !2(
kl

gkl
31b1kl~ t !e2 imk

31t, ~49c!

where mk
i j 5vk2v i j is the detuning of the radiation mod

frequencyvk from the atomic transition frequencyv i j .
Formal integration~in time! of Eq. ~49a! with the initial

conditionb1kl(0)50 yields

b1kl~ t !5gkl
31E

0

t

b3~ t8!eimk
31t8dt81gkl

21E
0

t

b2~ t8!eimk
21t8dt8.

~50!
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Substituting this expression in Eqs.~49b! and ~49c! gives

ḃ2~ t !5Veifcb3~ t !2E
0

t

G22~ t2t8!b2~ t8!dt8

2e2 iv32tE
0

t

G23~ t2t8!b3~ t8!dt8, ~51a!

ḃ3~ t !52Ve2 ifcb2~ t !2E
0

t

G33~ t2t8!b3~ t8!dt8

2eiv32tE
0

t

G32~ t2t8!b2~ t8!dt8, ~51b!

where

Gi j ~ t2t8!5(
kl

gk
i1gkl

j 1 e2 imkl
j 1 (t2t8) ~ i , j 52,3! ~52!

are the delay Green’s functions. Equations~51a! and ~51b!
are the generalized versions of Eqs.~17a! and ~17b! for a V
system including spontaneous emission on the transi
u2&→u1&. We will next solve these generalized equations
the amplitudesb3(t) andb2(t). In order to explicitly see the
effects of the control laser driving the transitionu3&→u2& on
the system dynamics, we consider the casesV50 and V
Þ0 separately. TheV50 ~quantum beats! case is a valuable
reference case for interpreting the results of theVÞ0 ~co-
herent control! case. For each of the above cases, we c
sider both the system in vacuum and the system in a PB

A. System in vacuum

For the free space dispersion relationvk5ck, the Green’s
functions~52! take the form~see Appendix A!

Gi j ~ t2t8!5h i jAg i1g j 1d~ t2t8! ~ i , j 52,3!, ~53!

wheregm1 is the spontaneous emission rate for the transit
um&→u1& given by Eq.~23!, d(t2t8) is the Dirac delta func-
tion, and

h i j 5d i j 1h~12d i j ! ~ i , j 52,3!. ~54!

Hered i j is the Krönecker delta function andh is a constant
~defined in Appendix A!, which satisfiesuhu<1, the equality
sign holding when the dipoles associated with the transiti
u i &→u1& and u j &→u1& are parallel or antiparallel~when d̂i1

56d̂j 1). With the free-space forms@Eq. ~53!# of the
Green’s functions, the general equations~51a! and ~51b! re-
duce to

ḃ2~ t !52g21b2~ t !1@Veifc2hḡe2 iv32t#b3~ t !, ~55a!

ḃ3~ t !52g31b3~ t !2@Ve2 ifc1hḡeiv32t#b2~ t !, ~55b!

where

ḡ5Ag21g31. ~56!
n
r

-
.

n

s

If we neglect spontaneous emission on the transitionu2&
→u1& so that bothg21 and h are zero, Eqs.~55a!–~55b!
reduce to Eqs.~17a! and ~17b!, when we use Eq.~53!.

1. Quantum beats in vacuum

The problem of quantum beats in vacuum correspond
the case whenV50 in Eqs.~55a! and ~55b!. This problem
was considered in detail by Zhuet al. @55# for the caseh
51, i.e., when the dipole moments of the two allowed tra
sitions are parallel~or antiparallel!. Our general model recap
tures these specialized results. WhenV50, Eqs.~55a! and
~55b! are easily solved to give

b3~ t !5e2g31t(
j 51

2

Aje
qj t, ~57a!

b2~ t !5e2(g311 iv32)t(
j 51

2

Bje
qj t, ~57b!

where

q1,25
l

2
6AS l

2D 2

1~hḡ!2, ~58a!

l5g312g211 iv32, ~58b!

Aj5
qkb3~0!1hḡb2~0!

qk2qj
~kÞ j !, ~58c!

Bj52
qjAj

hḡ
. ~58d!

Whenh50 ~andV50), Eqs.~55a! and ~55b! have simple
exponentially decaying solutionsb3(t)5b3(0)e2g31t and
b2(t)5b2(0)e2g31t. Comparing these solutions with th
general solutions Eqs.~57a! and ~57b! we see that, forh
50, A150, A25b3(0), B15b2(0), andB250.

It can easily be shown that the amplitudesbj (t) given by
Eq. ~57a! satisfy limt→`bj (t)50. As a result of quantum
interference between the two decay channels (u3&→u1& and
u2&→u1&) which are coupled by the same vacuum mod
the decays of the populationsn2(t) andn3(t) are not purely
exponential and may display oscillatory behavior depend
on the initial coherent superposition state defined byb3(0)
andb2(0), on thedecay ratesg21 andg31, and on the fre-
quency separationv32 between the two upper levels@55#. If,
for instance, the system is initially prepared in the st
uC(0)&5u3&, then, in the course of time, the population
level u2& increases from zero to a maximum and then d
creases to zero, while that of levelu3& monotonically de-
creases to zero.

The detected signal resulting from spontaneous emis
from the three-level system is proportional to

J~ t !5U(
kl

b1kl~ t !exp$ i @k•r2~vk1v1!t#%U2

, ~59!

where r is the the position of the detector relative to th
emitting atom@48#. According to Eq.~50!, this has contribu-
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tions from b2(t8) and b3(t8)(0<t8<t) which will, in gen-
eral, interfere with each other. The temporal interference
the two possible transitionsu3&→u1& andu2&→u1& gives rise
to a fluorescence signal that has a component modulate
the difference frequencyv32. This is the phenomenon o
quantum beats and is the basis of a spectroscopic techn
used to determine the difference in frequency between
atomic levels@48#. When h50, no quantum beats are ob
served@48# if either b2(0) or b3(0) vanishes~i.e., if the
system is not initially prepared in a coherent superposition
the upper states!. However quantum beats do indeed occ
whenhÞ0, even if eitherb2(0) or b3(0) is zero. The inter-
ference between the two possible transitions accounts fo
dark line in the spontaneous emission spectrum of a th
level atom in theV configuration observed in Ref.@55#. In
the absence of interference between the two spontan
emission decay processes, one expects the spectrum o
three-level atom to consist of two Lorentzian distributio
peaked at the two transitions frequencies. Instead wha
obtained is a single distribution with a dark band, who
width depends on the decay ratesg21 andg31.

A coherently excited three level atom in theV configura-
tion can decay via the emission of a photon of frequencyv31

or v21. However, since both transitions lead to the sa
final atomic state, one cannot determine along which ra
tive paths (u3&→u1& or u2&→u1&! the atom decay. This un
certainty in the radiative trajectory leads to interference
transition amplitudes which can be observed as quan
beats. This process is analogous to Young’s double-slit
periment, where interference takes place because we ar
able to distinguish between the different photon paths
lead to the detector. On the other hand, a coherently exc
atom in theL configuration will also decay along the radi
tive pathv31 or v32. However, since the two emission pa
ways lead to different final states, a measurement of the fi
state of the atom would tell us which decay channel w
taken. Consequently, no beats are expected in this case@48#.
The situation would, of course, be different in the prese
of a driving field coupling levelsu3& and u2&.

2. Coherent control in vacuum

WhenVÞ0, Eqs.~55a! and~55b! correspond to the prob
lem of coherent control in ordinary vacuum. In this case
equations must, in general, be solved numerically. In
special case when bothg21 andh are set to zero, Eqs.~55a!
and~55b! reduce to Eqs.~17a! and~17b!, which, in turn, can
be solved analytically, as shown in Sec. III. In both the c
herent control case and the quantum beat case, the po
tion dynamics depends on the initial coherent superposi
state~i.e., onu and fp) as well as on the parametersg21,
g31, andv32. In the coherent control case, the atomic pop
lation has an additional dependence on the intensityV and
phasefc of the control laser field. Just as in the case wh
g2150, the driving field causes transfer of populations fro
u3& to u2&. The stronger the driving field, the higher th
frequency of oscillation of the populationsn2,3(t). For free
space, the steady-state atomic populations on the upper
els are zero, irrespective of the control laser field amplitu
V.
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B. System in a PBG material

For the anisotropic effective-mass dispersion relat
~31!, the Green’s functions~52! take the form~see Appendix
A!

Gi j ~ t2t8!52h i j a
ei [d j 1(t2t8)1p/4]

Ap~ t2t8!3
va~ t2t8!@1,

~60!

whereh i j and a2 are given, respectively, by Eqs.~54! and
~33!; and

d i j 5v i j 2va ~61!

is the detuning of the atomic transition frequencyv i j from
the upper band-edge frequencyva . Substituting Eqs.~60!
into Eqs.~49a! and~49b!, we can find the coupled equation
for the amplitudesb2,3(t) appropriate for a PBG analogou
to Eqs.~55a! and ~55b! for vacuum. However, in the PBG
case, it is convenient to introduce the new amplitudesh2,3(t):

bj~ t !5hj~ t !eid j 1t ~ j 52,3! ~62!

In terms of these new amplitudes and the Green’s functi
~60!, Eqs.~49a! and ~49b! can be rewritten as

d

dt
h2~ t !52 id21h2~ t !1Vei (v32t1fc)h3~ t !

2E
0

t

G~ t2t8!@h2~ t8!1hh3~ t8!#dt8, ~63a!

d

dt
h3~ t !52 id31h3~ t !2Ve2 i (v32t1fc)h2~ t !

2E
0

t

G~ t2t8!@h3~ t8!1hh2~ t8!#dt8, ~63b!

where

G~ t2t8!52aeip/4/A4p~ t2t8!3. ~64!

We now discuss Eqs.~63! for the casesV50 and VÞ0
separately.

1. Quantum beats near the edge of a PBG

The problem of quantum beats near the edge of a phot
band gap corresponds to the case whenV50 in Eqs.~63a!
and~63b!. This case has also been investigated in Ref.@56#,
using the ‘‘effective-mass’’ isotropic dispersion model~30!.
In this paper we will discuss the problem using the mo
realistic anisotropic dispersion model~31!.

WhenV50, Eqs.~63a! and ~63b! can be solved to give
closed analytic expressions for the amplitudesh2,3(t). These
expressions take particularly simple forms when the ba
edgeva is midway between the two upper of levels of theV
system so thatd3152d215d ~thus d>0), and when the
atomic dipoles associated with the transitionsu3&→u1& and
u2&→u1& are parallel~or antiparallel! so thath51. In this
special case the solutions to Eqs.~63a! and ~63b! are given
by ~see Appendix C!
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b3~ t !5(
j 51

2

EjF3 je
i (v j

2
1d)t1

eip/4

p E
0

` f 3~x!e2(x2 id)tdx

W~x!
,

~65a!

b2~ t !5(
j 51

2

EjF2 je
i (v j

2
2d)t1

eip/4

p E
0

` f 2~x!e2(x1 id)tdx

W~x!
,

~65b!

whereEj ,v j ( j 51,2) are constants which depend ona2 and
the detuning parameterd. The constantsFi j depend on the
initial coherent superposition state@as defined by the initia
valuesb2(0) andb3(0)# and on botha2 andd. The constant
v1 is real, whilev2 is a complex number with negative re
and imaginary parts.

Solutions~65a! and~65b! for the amplitudesb2,3(t) show
that ~a! the spontaneous emission is oscillatory and~b! each
of the upper levels splits into dressed states analogou
vacuum-field Rabi splitting in a high-Q cavity @51#. The
splitting is solely due to the interaction of the atom with t
photon reservoir, since there is no driving field. Furthermo
~c! there is a fractionalized steady-state population on e
of the upper levels as a result of the localization of light
the vicinity of the emitting atom and~d! quantum interfer-
ence leads to nonzero steady state population on levelu3&
even when it lies outside the PBG~but not far from the band
edge!. This reveals an important distinction between the
alistic anisotropic PBG model and the isotropic dispers
model @56#. In the anisotropic model, spontaneous emiss
from level u3& ~outside of the PBG! can be inhibited by
quantum interference with levelu2& ~inside the PBG!. This
inhibition does not occur in the absence of the coupling
level u2&. In the isotropic model, inhibition of spontaneou
emission from levelu3& occurs even in the absence of co
pling to level u2&.

In Fig. 8 we plot, using expressions~65a! and ~65b!, the
atomic populationsn2,3(t) as functions of the scaled tim
a2t assuming that, initially, the atom was on levelu3& ~i.e.,
u50). As a result of quantum interference between the t
allowed transitions, the population of levelu2& ~which was
initially zero! increases form zero to a maximum before
settles down to a steady-state value. Similar oscillations
cur in free space quantum beats@Eqs.~57a! and ~57b!#. The
major difference is the nonzero steady state population
the PBG case. These steady-state populations are given

njs5 lim
t→`

ubj~ t !u25uE1F j 1u2 ~ j 52,3!, ~66!

and depend on the parametersu, f, andd.
In order to see the detailed differences between the

tropic and anisotropic model dispersion relations@Eqs. ~30!
and ~31!, respectively#, we investigated the dynamics of th
populationsn2,3(t) in the PBG quantum beats problem f
the isotropic dispersion model, assuming that the atom
initially on level u3&. Apart from the difference in time
scales, the main distinction between the two models is
interference of spontaneous emission between the two
lowed transitions and the localization effects of the photo
band gap are considerably enhanced for the isotropic m
relative to the anisotropic model. In the isotropic model,
populations oscillate for hundreds of cycles before decay
to
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to their final larger steady-state values. The amplitudes
these oscillations depend on the initial valuesb3(0) and
b2(0). As mentioned in Sec. IV, this enhancement is
artifact of the singular photon density of states at the iso
pic band edge.

2. Coherent control near the edge of a PBG

WhenVÞ0, Eqs.~63a! and~63b! correspond to the prob
lem of coherent control near the edge of a PBG. In this c
the equations do not have simple analytic solutions. Th
must be solved numerically. For illustration purpose it
simpler to use the isotropic rather than the anisotropic mo
The Green’s functionGlm(t2t8) of the isotropic model@Eq.
~A18!# exhibits an integrable square root singularity@57# at
t5t8 whereas the complete Green’s function in the ani
tropic model, which also has an integrable square-root
gularity at t5t8, is rather cumbersome@49#.

Figure 9 depicts the PBG coherent control problem for
isotropic dispersion model@Eq. ~30!#, with the additional
spontaneous emission effects included. Note that, forV
Þ0, n3(t) displays rapid oscillations within a relativel
slowly varying envelope. WhenVÞ0, there are two cause
for the oscillations ofn3(t). The first one~slow oscillations!
is the quantum interference between the two allowed tra
tions (u3&→u1& and u2&→u1&) as in the quantum beat prob
lem. Superimposed on this is the exchange of populati
between levelsu3& andu2& caused by the driving field~rapid
oscillations!. As V increases the amplitude of the envelo
oscillations decreases but the frequency of the oscillati
within the envelope increases. Moreover, the steady-s
value n3s increases withV. In fact for large V, n3(t)
changes little from its initial valuen3(0) even thoughv31
lies slightly outside the gap (d3150.5b). This is because

FIG. 8. V-system atomic populationsn3(t) ~solid curve!, n2(t)
~dotted curve!, and the total excited-state populationne(t)5n2(t)
1n3(t) ~dashed curve! as functions of the scaled timea2t in the
PBG quantum beats problem (V50) for the initial conditionu
50 ~i.e., the atom initially on levelu3&) and forf52p/2 andh
51. The anisotropic band edge is midway between the two up
levels with detuningd3152d2150.5a2. Note that, as a result o
quantum interference between the two allowed transitions,
population of levelu2& ~which was initially zero! increases form
zero to a maximum before it settles down to a steady-state valu
about 0.05 unlike ordinary vacuum.
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whenV is large, levelu3& will be strongly coupled to leve
u2& which lies inside the gap (d21520.5b).

Just as in the case of the populationsn2,3(t), the sponta-
neous emission channelu2&→u1& introduces further oscilla-
tions to the coherencenc(t) over and above those induced b
the driving field. Nevertheless we obtain nonzero stea
state coherences~and populations! as long as levelu3& is not
detuned far outside the gap. These results are qualitati
similar to those in Sec. IV, where spontaneous emission
the transitionu2&→u1& is neglected. The incorporation of th
decay channelu2&→u1&, together with the use of the isotro
pic dispersion relation, leads to additional oscillations in
transient dynamics. However, it does not alter the prese
of nonzero steady-state populations and coherences on
upper levels, nor does it alter the ability to control the
steady-state populations and coherences by the intensity
phase of the driving field.

VI. HIGHER-ORDER RADIATIVE AND NONRADIATIVE
INTERACTIONS

As discussed in Sec. IV, an excited atom in a PBG int
acts strongly with its own radiation field, leading to the fo
mation of the photon-atom bound state@8# in which the pho-
ton emitted by the excited atom can tunnel through
dielectric host on a length scale given by the localizat
lengthj loc before being Bragg reflected back to the emitti
atom. The result is a stationary state superposition of a
calized photon and a partially excited atom as manifested
the nonzero fractionalized steady state population given
Eqs.~43! and ~66!.

Inside a PBG, single-photon spontaneous emission is
hibited. Thus the photon-atom bound state can decay onl
other relaxation mechanisms. One such a mechanism
spontaneous two photon emission. This may be relevan

FIG. 9. V-system atomic populationn3(t) as a function of the
scaled timebt in the PBG~including spontaneous emission cha
nels which go beyond the leading approximation! for u5p/4 and
f52p/2, andV50 ~dashed curve!, V50.5b ~dotted curve!, and
V55b ~solid curve!. The isotropic band edge is midway betwe
the two upper levels with detuningd3152d2150.5b and h51.
For VÞ0, n3(t) displays rapid oscillations within a slowly varyin
envelope—the frequency of the oscillations within the envelope
creasing withV.
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the case of a cold atom which has been optically trappe
the void regions of the PBG material, and which is not
mechanical contact with the vibrational degrees of freed
of the dielectric host. For a dipole allowed transition such
the u2&→u1& transition in aV system@Fig. 1~a!#, two-photon
decay yields a lifetime for the photon-atom bound state
the scale of days@8# if the transition lies in the visible spec
trum. On the other hand, for a dipole-forbidden transiti
such as the theu2&→u1& in the L configuration@Fig. 1~b!#,
two-photon emission may occur by means of a pair of dip
transitions which occurs considerably faster. For instance
2s→1s transition in hydrogen occurs in 1/7 seconds.

For a vapor of cold atoms trapped in a PBG, the prese
of many atoms within a cubic wavelength may significan
alter the simple picture, described above, of a single pho
atom bound state. An important alteration arises fro
photon-hopping conduction@12,8# between impurity atoms
inside a PBG via resonant dipole-dipole interaction~RDDI!.
For a band gap to center frequency ratio ofDv/vo;5%, the
localization lengthj loc associated with a photonic boun
state is on the scale of several optical wavelengths@8#. Thus
the photon can tunnel through the dielectric host and be
sorbed by another atom located withinj loc . For atoms sepa-
rated by a distance less than the optical wavelength, the p
ton hopping conduction occurs by means of the exchang
a high-energy virtual photons between the atoms. In t
manner a single excitation can hop from one impurity at
to another. Unlike an ordinary vacuum, where RDDI effe
are commonly associated with van der Waals dephasing,
PBG material RDDI may lead to coherent transfer of exci
tion energy from one atom to the next. The dynamical pro
erties of coherent RDDI-mediated photon-hopping cond
tion between impurity atoms inside a PBG were conside
in detail in Ref.@12#. When many photons are injected into
system of atoms interacting by RDDI in a photonic band g
highly entangled and nonclassical states of light can
formed@58#. These quantum many-body states differ sign
cantly from the well-known symmetrical~Dicke! super-
radiant states in which cooperative light emission occurs
an enhanced rate in ordinary vacuum. For certain non-Dic
type states, cooperative emission can be significantly
tarded rather than enhanced. These entangled states w
arise from photon-hopping conduction between impurity
oms may exhibit considerable immunity from convention
radiative or nonradiative decay mechanisms.

The effect of a photonic band gap is to simply elimina
the amplitude for single-photon, single-atom spontane
emission. This does not exclude nonlinear decay proces
An excited impurity atom within a PBG may decay to th
ground state if there is another excited impurity atom near
through a higher-order process involving the localized p
tons of both excited atoms. The localized photon of one
the excited atoms can under go virtual hop to the other
cited atom, through RDDI, as discussed earlier. Such
photon-photon interaction gives rise to second-harmo
generation when a pair of excited atoms experience a c
encounter and the propagation of the resulting high-ene
photon out of the band gap. The lifetime for the decay of t
neighboring excited atoms by such a spontaneous sec
harmonic generation decreases inversely with the eig
power of the interatomic separation@8#, and is estimated to

-
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be on the order of milliseconds, when the distance betw
the atoms is 5 Å . This is still a very long lifetime for mo
practical purposes.

For an impurity atom embedded in a solid dielectric ho
the vibrational modes of the host can provide an alterna
relaxation mechanism for the photon-atom bound state
altering the electronic spectrum of the impurity@8#. We next
give a simple semiquantitative discussion of phonon rel
ation for theV system depicted Fig. 1~a!. In a semiclassica
picture, phonon interactions cause the energy levels o
atom to experience small, random, time-varying, Stark sh
In our simplified picture, we assume that this phenomen
can be modeled by adding random shiftsdv j 1(t) to the en-
ergy differences v j 1 , j 5(2,3). The random functions
dv j 1(t) are as often positive as negative, and hence the
semble averages@^dv j 1(t)&# are zero. Thus we can simula
phonon interaction by Gaussian random variablesdv i j of
zero mean and varianceg whose value depends on th
strength of these interactions. Furthermore we assume
the phonon reservoir is Markovian@48# so that the average
of the productŝdv j 1(t)dv j 1(t8)& are zero unlesst't8. As-
suming that variations indv j 1(t) are very rapid compared t
other changes in the system, which occur on the time s
1/g j 1, we take

^dv j 1~ t !dv j 1~ t8!&5g j 1dd~ t2t8! ~ j 52,3!, ~67!

whereg j 1d are the dephasing rates. Thus when phonon
teractions are taken into account, Eqs.~63a! and ~63b! have
to be rewritten withd j 1 replaced byd j 11dv j 1(t) andv32 by
v321dv31(t)2dv21(t), whered j 1, and v32 are the corre-
sponding quantities in the absence of random stark sh
For example ifd31 is set to zero, it means that, in the absen
of stark shifts, the transition frequencyv31 coincides with
the photonic band edgeva , and therefore the shiftsdv31(t)
slightly tune levelu3& in and out of the band gap in a rando
fashion.

Figure 10 depicts the excited-state populationn3(t) on
level u3& as a function of the scaled timebt for d50 and for
different values ofV, whendv31(t) anddv21(t) are taken
as Gaussian random variables of zero mean and 0.5b vari-
ance. These and other numerical simulations show that, e
when the dephasing rateg31d is comparable tob, the phase
sensitive memory effects which we obtained without inclu
ing dephasing effects, can be recaptured provided that
external Rabi frequencyV is large compared to the depha
ing rate. In other words, dephasing effects simply determ
the minimum required intensity of the external laser field
achieving coherent control of radiative dynamics. The eff
of the random shifts of the atomic levelsu2& and u3& on the
coherencenc(t) between the levels is shown in Fig. 11. W
see that, just in the case of populations, these effects ca
offset by intense driving fields.

VII. DISCUSSION AND CONCLUSIONS

In this paper we have investigated the coherent contro
spontaneous emission from a three-level atom in a phot
band-gap structure with one resonance frequency near
edge of a photonic band gap. We have shown that spont
ous emission from the three-level atom can be totally s
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pressed or strongly enhanced depending on the relative p
between the control laser driving the two upper transitio
and the pump laser used to create an excited state of the
in the form of a coherent superposition of the two upp

FIG. 10. V-system excited-state populationn3(t) on level u3&
near the isotropic photonic band edge as a function of the sc
time bt for u5p/4 and for the relative phasef52p/2 in the
presence of dipolar dephasing Gaussian random stark shiftsdv31(t)
anddv21(t) ~each of zero mean and 0.5b variance! of the transition
frequenciesv31 andv21. The different choices of the control lase
amplitude are dashed curve (V50), dot-dashed curve (V
50.5b), and solid curve (V55b). In the absence of the random
Stark shifts, the band edge is assumed to be midway between
two upper levels with detuningd3152d2150.5b. Compare this
figure with the corresponding figure@Fig. ~9!# in the absence of
phonon mediated dephasing.

FIG. 11. V-system coherencenc(t)5ub3(t)b2* (t)u between lev-
els u3& and u2& near the isotropic photonic band edge as a funct
of the scaled timebt for u5p/4 andf52p/2 in the presence of
dipolar dephasing Gaussian random Stark shiftsdv31(t) and
dv21(t) ~each of zero mean and 0.5b variance! of the transition
frequenciesv31 andv21. The different choices of the control lase
amplitude are dashed curve (V50), dot-dashed curve (V
50.5b), and solid curve (V55b). In the absence of the random
Stark shifts, the band edge is assumed to be midway between
two upper levels with detuningd3152d2150.5b. Compare this
figure with the corresponding figure@Fig. ~7!# in the absence of
phonon-mediated dephasing.
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levels. The steady-state atomic population on the upper
els of the three-level atom depends sensitively on the in
coherence as well as on the phase and intensity of the co
laser field. This provides the basis for a quantum opti
memory device on the atomic scale. For instance the
upper levels of the three-level system can be used as q
to encode information for quantum computation. This mo
system may be realized by optically trapping cold atoms
the void fraction of a three-dimensional photonic band-g
material.

In determining the effects of the PBG on the emiss
dynamics of our model system, we employed the effect
mass dispersion relation~31!. Strictly speaking, such a dis
persion relation is valid only near the edge of the gap. The
fore, the quantitative results derived from it cannot, in pr
ciple, be extrapolated to the whole gap. However, o
expects that the effective-mass approximation gives qua
tively correct physics@8# and that a full dispersion relatio
may only introduce quantitative corrections. Even so, inv
tigation of our model system using a full anisotropic disp
sion relation of a realistic band structure@7,59# is a worthy
undertaking. This would involve a realistic evaluation of t
Green’s-function@see, for instance, Eq.~A5!# using the full
dispersion relationvk appropriate to a real photonic crysta
The resulting equations of motion for radiative dynam
would then need to be solved numerically.

In our model system we assumed that single-photon sp
taneous emission~on the transitionu2&→u1& for the V con-
figuration or on the transitionu3&→u2& for the L configura-
tion! is either forbidden~leading approximation! or leads to a
photon-atom bound state in the presence of a complete
tonic band gap. However, many of the effects we have
scribed may be observable even in the absence of an
PBG. A complete 3D gap requires rather stringent mate
parameters. In many photonic crystals which do not hav
complete gap, what one obtains more easily is a pseudo
where the density of states is significantly reduced from t
of free space but is not absolutely zero. In such a pseudo
single-photon spontaneous decay will not be strictly forb
den but the decay rate will be significantly smaller than t
in free space. If the depression in the local density of sta
@7# in the vicinity of the impurity atom is large enough as
make the spontaneous emission lifetime of an excited s
inside the pseudogap longer than all other relevant t
scales in the system, such a pseudogap, with the impu
atom suitably located, may lead to memory and coher
control effects that are qualitatively similar to those p
dicted in this paper.

Finally there is the question of how to place the act
elements~the three-level atoms in our case! inside the pho-
tonic crystal. From a materials standpoint, it is possible
dope an existing PBG material using ion beam implantat
methods. For example, it was recently shown that@60# er-
bium atoms implanted into bulk silicon exhibit sharp fre
atom-like spectra. Intense photoluminescence at 1.54mm is
observed in the system at low temperatures. The radia
transition of this system arises from the atomic 4f shell
which is effectively screened by outer shells from the crys
fields of the silicon background. It would be of considerab
interest to study the radiative properties of erbium ato
implanted into a 3D silicon PBG material in which a ph
v-
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tonic band gap is engineered to occur at 1.54mm. For an
inverse opal structure, composed of pure silicon, it is e
mated@7# that such a PBG would occur for a fcc lattice
overlapping air spheres of diameter in the ran
850–900 nm. In spite of the screening of the atomic tran
tion by the outer shells, it is likely that thermal phonons
the silicon host would cause significant dephasing of
quantum degrees of freedom within the erbium 4f shell.
Consequently such a system must be cooled to liquid-hel
temperatures.

As discussed earlier, an alternative to ion implantation
that the active elements be incorporated inside a photo
crystal by pumping a dilute atomic vapor into the void regi
of the crystal. If such atoms are optically trapped in the vo
regions, they are not in mechanical contact with the vib
tional degrees of freedom of the dielectric host and theref
do not experience phonon dephasing effects as in the ca
erbium-doped silicon. Doppler broadening due to the rand
motion of the gas molecules may be partially alleviated
laser-cooling techniques@61#.

A third approach to realize our model system is by mea
of an ‘‘artificial atom’’ or quantum dot structure embedde
in the solid fraction of the PBG material. Semiconduct
quantum dots~QD’s! are nanoscale quantum structures th
allow electronic properties to be tailored through quant
confinement. They exhibit distinctive features similar to
oms such as atomiclike excitation spectra with discrete
extremely sharp spectral lines@62#. With their well-defined
localized states, QD’s offer the possibility of coherent m
nipulation of a single localized quantum system in a w
similar to that achieved in atoms but with the technologi
advantages of a solid-state system. The coherent optical
trol of an exciton wave function in a QD and, in particula
the manipulation of the relative phases of the eigenstates
quantum superposition of states, was demonstrated in
@63#. QD structures with stronger confinement are expec
to have reduced coupling to phonons@64# and reduced spon
taneous radiative emission@65#, and may well have much
longer intrinsic coherence times. These properties of QD
which are necessary for the implementation of vario
schemes for quantum computation and coherent informa
processing, will be further enhanced by incorporating
QD’s within a PBG material.
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APPENDIX A: NON-MARKOVIAN MEMORY KERNELS

In this appendix we will derive the various expressio
for the Green’s functions used in the text. We start from E
~52!,

Glm~ t2t8!5(
kl

gkl
l1 gkl

m1e2 imk
m1(t2t8) ~ l ,m52,3!,

~A1!
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wheremk
m15vk2vm1. Whenl 5m, Eq. ~A1! reduces to Eq.

~18!. Substituting forgkl
l1 andgkl

m1 from Eq. ~48!, we obtain

Glm~ t2t8!5
z

V (
kl

~ êkl•d̂l1!~ êkl•d̂m1!
1

vk
e2 imk

m1(t2t8),

~A2!

where

z5AS v l1
2 dl1

2

2\eo
D S vm1

2 dm1
2

2\eo
D . ~A3!

Assuming that the modes of the field are closely space
frequency, we make the continuum approximation for
field modes and replace the summation overk by an integral,

(
k

→ V

~2p!3E d3k, ~A4!

where d3k[k2dkdV, dV being the space angle elemen
Thus

Glm~ t2t8!5
z

~2p!3

8p

3 E F 3

8p (
l

~ êkl•d̂l1!

3~ êkl•d̂m1!G 1

vk
e2 i (vk2vm1)(t2t8)d3k.

~A5!

This is a general result valid for any dispersion relationvk .
When the dispersion relation is isotropic~i.e., whenvk de-
pends only on the magnitudek of k), Eq. ~A5! reduces to

Glm~ t2t8!5
z

~2p!3

8p

3
h lmE

0

L 1

vk
e2 i (vk2vm1)(t2t8)k2dk,

~A6!

where

h lm5
3

8pE (
l

~ êkl•d̂l1!~ êkl•d̂m1!dV, ~A7!

andL5mc/\ is the Compton wave number of the electro
We have introduced the cutoffL in the photon wave vecto
@66# as the contributions of extremely high-energy photo
cannot be important. The the nonrelativistic approximat
for the electron is not be valid for photons of energy\v
;mc2. Consider a coordinate system defined by the u
vectors$êk1 ,êk2 ,k̂%. Defining$a j 1 ,b j 1 ,u j 1% as the direction
angles of the dipole moment unit vectord̂j 1 ( j 5 l ,m),

h lm5
3

8pE ~cosa l1cosam11cosb l1cosbm1!dV.

~A8!

If the dipolesd̂l1 andd̂m1 are parallel or antiparallel~so that
a l156am15a, b l156bm15b, andu l156um15u), the
law of direction cosines gives
in
e

.

s
n

it

cosa l1cosam11cosb l1cosbm1

5cos2a1cos2b512cos2u. ~A9!

Using this in Eq.~A8! we obtainh lm51. It follows that

h lm5d lm1h~12d lm!, ~A10!

whered lm is the Kröonecker delta function, and

h5
3

8pE ~cosa31cosa211cosb31cosb21!dV.

~A11!

Thush51, whend̂l156d̂m1.
For vacuum we use the isotropic dispersion relationvk

5ck. The emitted radiation is centered about the atom
transition frequencyvk5vm1; the quantityvk varies very
little aroundvk5vm1. We can, therefore, replacek2/vk in
Eq. ~A6! by vm1 /c2 and extend the limits of integration t
6` to obtain

Glm~ t2t8!5
zvm1

~2pc!3

8p

3
h lmE

2`

`

e2 i (vk2vm1)(t2t8)dvk .

~A12!

In other words,

Glm~ t2t8!5h lmAg l1gm1~vm1 /v l1!d~ t2t8!, ~A13!

where

g j 15
1

4peo

4v j 1
3 dj 1

2

3\c3
~ j 53,2! ~A14!

is the vacuum spontaneous emission rate for the trans
u j &→u1&. Assuming that the upper levelsu3& and u2& are
close together so thatvm1 /v l1'1, we finally obtain

Glm~ t2t8!5h lmAg l1gm1d~ t2t8!. ~A15!

For a PBG material described by the isotropic effectiv
mass dispersion relation~30!, Eq. ~A5! takes the form

Glm~ t2t8!5
z

~2p!3

8p

3
h lmeidm1(t2t8)

3E
k0

L k2e2 iA(k2k0)2(t2t8)

vc1A~k2k0!2
dk, ~A16!

wheredm15vm12va is the detuning of the atomic trans
tion frequencyvm1 from the band-edge frequencyva . The
integral in Eq.~A16! can be approximated by replacingk by
k0 outside of the exponential and extending the wave-vec
integration to infinity, which then reduces to a compl
Fresnel integral given by@67#

E
0

`

e2 iAu2(t2t8)du5
e2 ip/4

2AA
A p

t2t8
. ~A17!

Using Eq.~A3! and the fact thatA'vc /k0
2, we obtain
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Glm~ t2t8!5h lmAb l1
3/2bm1

3/2e
i [dm1(t2t8)2p/4]

Ap~ t2t8!
, ~A18!

where

b j 1
3/25

1

4peo

v j 1
2 vc

3/2dj 1
2

3\c3
. ~A19!

This expression may be further simplified by assuming t
the upper levelsu3& and u2& are close together so thatv31
'v21'va . We then have

Ab21
3/2b31

3/2'b3/2[
1

4peo

v31
7/2d31

2

3\c3
. ~A20!

As shown previously@10#, for a two-level atom placed insid
a photonic crystal of band-edge frequency nearly reson
with the atomic transition frequency, the upper level sp
into a doublet because of the strong interaction between
atom and its own localized radiation.b gives the magnitude
of this frequency splitting for the isotropic dispersion re
tion ~30!. The dipole moment of a hydrogenic~that is, one
electron! atom can be approximated byd31;ea0, wheree is
the magnitude of the electronic charge anda0;0.5 Å is the
Bohr radius. Moreover for optical transition frequenci
v31;1015 Hz. Using these in Eq.~A19! we obtain b
;1027va . Thus when the band edgeva is in the optical
regime,b will be comparable to the ordinary Lamb shift o
the 2S1/2 level of hydrogen@8#.

For a PBG material described by the anisotropic effecti
mass dispersion relation~31!, the general expression~A2!
takes the form

Glm~ t2t8!5
z

~2p!3

8p

3
eidm1(t2t8)E F 3

8p (
l

~ êkl•d̂l1!

3~ êkl•d̂m1!Ge2 iA(k2k0)2(t2t8)

vc1A~k2k0!2
d3k. ~A21!

Making the substitutionq5k2k0, so thatd3q5q2dqdV,
performing the angular integration, and extending the wa
vector integration to infinity, we obtain

Glm~ t2t8!5
z

~2p!3

8p

3
h lmeidm1(t2t8)

1

A

3E
0

` e2 iAq2(t2t8)

vc /A1q2
q2dq, ~A22!

whereh lm is given by Eq.~A8!. For larget2t8, the integral
in Eq. ~A22! is dominated by the stationary phase pointq

50. This yields~using*0
`x2e2ax2

dx5Apa23/2/4)

Glm~ t2t8!52h lmAa l1am1

ei [dm1(t2t8)1p/4]

A4p~ t2t8!3
vc~ t2t8!

@1, ~A23!

where
t

nt
s
he

-

-

a j 15
1

4peo

v j 1
2 vc

1/2dj 1
2

3\c3
. ~A24!

Equation~A23! may be further simplified by assuming tha
the upper levelsu3& and u2& are close together so thatv31
'v21'va . We then have

Aa21a31'a[
1

4peo

v31
5/2d31

2

3\c3
. ~A25!

The full expression ofGlm(t2t8), including its short-time
behavior, is given elsewhere@49#.

APPENDIX B: TIME DEPENDENCE OF THE ATOMIC
AMPLITUDES AND THE STRONG-FIELD LIMIT

The amplitudesb2,3(t) are found from the inverse Laplac
transform of the expressions forb̃2,3(s1 id) given by Eqs.
~36a! and ~36b! through the complex inversion formula

e2 idtbj~ t !5
1

2p i Ee2 i`

e1 i`

estb̃j~s1 id!ds. ~B1!

Here the real numbere is chosen so thats5e lies to the right
of all the singularities~poles and branch points! of the func-
tions b̃2,3(s1 id). It is apparent from Eq.~37! that s50 is a
branch point of bothb̃2,3(s1 id). In order to evaluate Eq.
~B1!, we consider the contourC shown in Fig. 12, where the
branch cut of the integrand is chosen to lie along the nega
real axis. According to the residue theorem,

1

2p i RC
estb̃j~s1 id!ds5Rsum, ~B2!

FIG. 12. The contour used in the complex inversion formu
~B1!.
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whereRsum is the sum of the residues of the integrand at
poles enclosed by the contourC. Omitting the integrand, we
have

Rsum5
1

2p i RC
5

1

2p i

3S E
AB

1E
BDE

1E
EH

1E
HJK

1E
KL

1E
LNA

D .

~B3!

In the limit r→0 and R→` ~so thatT→`), the second,
fourth, and sixth integrals on the right-hand side of Eq.~B3!
approach zero and, according to Eq.~B1!, the first integral
givese2 idtb3(t). Thus

e2 idtbj~ t !5Rsum2 lim
R→`,r→0

1

2p i S EEH
1E

KL
D . ~B4!

We first calculateb3(t). Along EH, s5xeip52x. Using
this in Eq.~36a!, we obtain

lim
R→`,r→0

E
EH

estb̃3~s1 id!ds

5E
0

` @~2x1 id!cosu2Veifsinu#e2xt

~2x1 id!22ae2 ip/4~2x1 id!Ax1V2
dx. ~B5!

Similarly, along KL, s5xe2 ip52x. Using this in Eq.
~36a!, we obtain

lim
R→`,r→0

E
KL

estb̃3~s1 id!ds

52E
0

` @~2x1 id!cosu2Veifsinu#e2xt

~2x1 id!21ae2 ip/4~2x1 id!Ax1V2
dx.

~B6!

Using Eqs.~B5! and ~B6! in Eq. ~B4!, we then obtain

e2 idtb3~ t !5Rsum1
aeip/4

p E
0

`g3~x!e2(x2 id)t

Z~x!
dx, ~B7!

where

g3~x!5@~2x1 id!cosu2Veifsinu#~2x1 id!Ax,
~B8a!

Z~x!5@~2x1 id!21V2#21 ia2~2x1 id!2x. ~B8b!

Next we evaluate the total residueRsum. From Eqs.~36a!
and ~37!, we have

estb̃3~s1 id!5@~s1 id!cosu2Veifsinu#est

3)
j 51

4 As1eip/4uj

s2 iu j
2

. ~B9!

Clearly, the functionestb̃3(s1 id) has simple poles ats
5 iu j

2 ,( j 51, . . . ,4). TheresidueRk at s5 iuk
2 is then
e Rk[ lim
s→ iuk

2

~s2 iuk
2!estb̃3~s1 id!5@~uk

21d!cosu

1 iVeifsinu#eiuk
2t

~Auk
21u1!•••~Auk

21u4!

~uk
22ul

2!~uk
22um

2 !~uk
22un

2!

~kÞ lÞmÞn!. ~B10!

Numerical examinations show that the rootsu1,3 are real (u1
is positive butu3 is negative!. The rootsu2,4 are complex
conjugates of each other with a negative real part (u2 andu4
lie in the third and second quadrants, respectively!. Thus the
negative rootu3 lies outside the contourC, so that the resi-
due atu3 is R350. For the complex rootu4 ~which has a

positive imaginary part!, the factoreiu4
2t increases exponen

tially in time and therefore is unphysical. Thus for this ro
we choose the negative branch of the square root func
and setAu4

21u450 so that the residue atu4 is R450. On
the other hand, for the positive rootu1 and the complex root
u2 we choose the positive branch of the square root func
and setAuj

25uj , ( j 51,2). The residues atu1 andu2 are

Rj5PjQ3 je
iu j

2t ~ j 51,2!, ~B11!

where

Pj5
2uj

~uj2ul !~uj2um!~uj2un!

~ l ,m,n51, . . . ,4,j Þ lÞmÞn!, ~B12a!

Q3 j5~uj
21d!cosu1 iVeifsinu. ~B12b!

The sum of the residues of the functionestb̃3(s1 id) is then

Rsum5 (
k51

4

Rk5(
j 51

2

PjQ3 je
iu j

2t. ~B13!

Using this in Eq.~B7!, we finally arrive at the desired resu
~41a!. Following exactly the same procedure, we also fi
that

b2~ t !5(
j 51

2

PjQ2 je
i (uj

2
1d)t

1
aVei (fc2p/4)

p E
0

`g2~x!e2(x2 id)t

Z~x!
dx, ~B14!

wherePj andZ(x) are the same as those forb3(t) and

Q2 j5~uj
21auj1d!eifpsinu2 iVeifccosu, ~B15a!

g2~x!5@~2x1 id!cosu2Veifsinu#Ax. ~B15b!

For a very strong control laser field~whenV@a2,d) the
roots given by Eqs.~39a! and ~39b! satisfy u1;AV, u2;
2AV andu25u4* ;2s22 iAV so thatP1;1/2V ,

Q31;V@cosu1 ieifsinu#, ~B16a!
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Q21;2 iVeifc@cosu1 ieifsinu#. ~B16b!

Using these in Eqs.~43! and ~45!, we obtain

n3s'n2s'
1

4
~12sin 2u sinf!, ~B17a!

b3~ t !b2* ~ t !'
ie2 ifc

4
~12sin 2u sinf! ~B17b!

for the steady-state values of populations and coherence
the limit of a strong driving field.

APPENDIX C: QUANTUM BEAT CASE

When V50, Eqs. ~63a! and ~63b! can be solved by
means of Laplace transformations to give closed analytic
pressions for the amplitudesh2,3(t). These expressions tak
particularly simple forms when the band edgeva is midway
between the two upper of levels of theV system~so that
d3152d215d>0) and when the atomic dipoles associat
with the transitionsu3&→u1& and u2&→u1& are parallel or
antiparallel~so thath51). In this special case Eqs.~63a!
and ~63b! reduce to

ḣ2~ t !5 idh2~ t !2E
0

t

G~ t2t8!@h2~ t8!1h3~ t8!#dt8,

~C1a!

ḣ3~ t !52 idh3~ t !2E
0

t

G~ t2t8!@h2~ t8!1h3~ t8!#dt8.

~C1b!

Upon taking the Laplace transforms of these equations,
find that

h̃2~s!5
~s1 id!b2~0!2reip/4As

D~s!
, ~C2a!

h̃3~s!5
~s2 id!b3~0!1reip/4As

D~s!
, ~C2b!

where

r5a@b3~0!2b2~0!#, ~C3a!

D~s!5s212aeip/4sAs2d25)
j 51

4

~As2eip/4v j !,

~C3b!

and a is defined in Eq.~33!. Here v j ( j 51, . . . ,4) are the
roots of the quarticx412ax32d250 and are given by@50#

v1,352s1/26A~s1/2!22j2, ~C4a!

v25v4* 52s2/22 iAj12~s2/2!2, ~C4b!

s1,25a6Aa21u, ~C4c!

j1,25u/26A~u/2!21d2, ~C4d!
in

x-

e

u52~2a2d2!1/3 @~A11!1/32~A21!1/3#, ~C4e!

A5@11~4/27!~2d/a2!6#1/2. ~C4f!

Equation~C4e! shows that the quantityu is always nega-
tive. Thusj1 ands1,2 are positive whereasj2 is negative. It
follows that the roots

v1,352us1u/26A~s1/2!21uj2u ~C5!

are both real. Moreover, numerical analysis shows thatj1
2(s1/2)2>0 for all d. The equality sign holds ford50
~i.e., when the upper levelsu3& andu2& are degenerate!. Thus

v25v4* 52s2/22 iAuj12~s2/2!2u, ~C6!

so that the rootsv2 andv4 are complex conjugates of eac
other. Equations~C2a! and ~C2b! can now be inverted~fol-
lowing the procedure described in Appendix B!, to give

b3~ t !5(
j 51

2

EjF3 je
i (v j

2
1d)t1

eip/4

p E
0

` f 3~x!e2(x2 id)tdx

W~x!
,

~C7a!

b2~ t !5(
j 51

2

EjF2 je
i (v j

2
2d)t1

eip/4

p E
0

` f 2~x!e2(x1 id)tdx

W~x!
,

~C7b!

where

Ej5
2v j

~v j2v l !~v j2vm!~v j2vn!

~ l ,m,n51, . . . ,4,j Þ lÞmÞn!, ~C8a!

F3 j5~v j
22d!b3~0!1v jr

5~v j
21av j2d!b3~0!2av jb2~0!, ~C8b!

F2 j5~v j
21d!b3~0!2v jr

5~v j
21av j1d!b2~0!2av jb3~0!, ~C8c!

f 3~x!5@2r~x21d2!12ab3~0!~x1 id!x#Ax,
~C8d!

f 2~x!5@r~x21d2!12ab2~0!~x2 id!x#Ax, ~C8e!

W~x!5~x21d2!21 i4a2x3. ~C8f!

APPENDIX D: TWO-LEVEL ATOM

Consider the special case of our model system whenV
50, i.e., when the upper levelsu3& andu2& are not driven by
a control laser field and single-photon spontaneous emis
for the transitionu2&→u1& is assumed to be forbidden. Th
means that the population of levelu2& cannot decay directly
to level u1&. Its only decay mechanism is indirectly throug
level u3& via the couplingV. If V50, level u2& will be
completely decoupled from the rest of the system, and
model system of Fig. 1 is effectively a two-level syste
consisting of levelsu3& and u1&. In this case Eqs.~19a! and
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~19b! reduce~assuming that the atom is initially on the upp
level u3& so thatu50) to b̃2(s)50 and

b̃3~s!5
1

s1G̃~s!
. ~D1!

Using Eq.~35!, this can be written as

b̃3~s1 id!51/D~s!, ~D2!

where

D~s!5s1aeip/4As1 id5)
j 51

2

~As2eip/4v j !. ~D3!

Herev j ( j 51,2) are the roots of the quadratic equationx2

1ax1d50, and are given by

v1,252
a

2
6AS a

2 D 2

2d. ~D4!

The amplitudeb3(t) is found from the inverse Laplace tran
form of b̃3(s1 id) through the inversion integral of Eq.~B1!.
Following the method of Appendix B and using the conto
of Fig. 12 yields the results listed below:

~a! If d,0 ~upper levelu3& is inside the gap!, roots~D4!
are given by

r 1,252
a

2
6AS a

2 D 2

1udu. ~D5!

Thus r 1 is positive, whereasr 2 is negative and lies outsid
the contour of integration. In this case we obtain

b3~ t !5c1ei (r 1
2
1d)t1I ~d,t ! d,0, ~D6!

wherec152r 1 /(r 12r 2), and the branch cut contribution

I ~d,t !5
aeip/4

p E
0

` Axe(2x1 id)t

~2x1 id!21 ia2x
dx ~D7!
s

hy
r

tends to zero ast→`.
~b! If 0<d<(a/2)2, both rootsv1,2 are negative and lie

outside the contour of integration. In this case we obtain

b3~ t !5I ~d,t !, 0<d<~a/2!2 ~D8!

whereI (d,t) is given by Eq.~D7!.
~c! If d.(a/2)2, roots ~D4! are complex conjugates o

each other given by

w15w2* 52
a

2
2 iAudu2S a

2 D 2

. ~D9!

In this case the residue corresponding tow2 is zero and we
obtain

b3~ t !5d1ei (w1
2
1d)t1I ~d,t !, d.~a/2!2 ~D10!

whered152w1cosu/(w12w2).
Since the rootr 1 is positive while the rootw1 is complex

with a negative real part, the first term on the right-hand s
of Eq. ~D6! is a nondecaying oscillatory term while that o
Eq. ~D10! decays in time and tends to zero ast→`. The
term I (d,t) also decays in time and tends to zero ast→`.
The steady-state population on the upper levelu3& is then
given by

n3s[ lim
t→`

ub3~ t !u25H 4r 1
2/~r 12r 2!2 if d,0

0 if d>0.
~D11!

Thus for the two-level system~consisting of the ground leve
u1& and the excited levelu3&) placed inside a PBG structur
described by the effective mass anisotropic dispersion r
tion @Eq. ~31!#, fractionalized steady-state inversion occu
only for d,0 ~i.e., for v31,wa). On the other hand, for
such a two-level system in the isotropic model@Eq. ~30!#, it
was shown@10# that fractionalized inversion occurs eve
whenv31 is slightly greater thanva , that is, even when the
excited state liesoutside~but not far from! the band gap.
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