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We demonstrate the coherent control of spontaneous emission for a three-level atom located within a
photonic band-gap structure with one resonant frequency near the edge of the photonic band gap. Spontaneous
emission from the three-level atom can be totally suppressed or strongly enhanced depending on the relative
phase between the steady-state control laser coupling the two upper levels and the pump laser pulse used to
create an excited state of the atom in the form of a coherent superposition of the two upper levels. Unlike the
free-space case, the steady-state inversion of the atomic system is strongly dependent on the externally pre-
scribed initial conditions. This nonzero steady-state population is achieved by virtue of the localization of light
in the vicinity of the emitting atom. It is robust to decoherence effects provided that the Rabi frequency of the
control laser field-atom interaction exceeds the rate of dephasing interactions. As a result, such a system may
be relevant for a single-atom, phase-sensitive, optical memory device on the atomic scale. The protected
electric dipole within the photonic band gap provides a basis for a qubit to encode information for quantum
computations[S1050-294709)08412-7

PACS numbeps): 42.50.Gy, 42.70.Qs

[. INTRODUCTION classical light localizatior{6], a photon-atom bound state

Spontaneous emission is a fundamental process resultiig], fractionalized single-atom inversion, and anomalously
from the interaction between radiation and matter. It dependi&rge vacuum Rabi splittingB—10]. In the presence of many
not only on the properties of the excited atomic system buatoms, it also leads to anomalously fast collective spontane-
also on the nature of the environment to which that system isus emission rates near the band e and photon hop-
optically coupled[1,2]. It is possible to control the rate of ping conduction deeper within the gap2].
spontaneous from an excited atom by altering the density of The suppression of spontaneous emission combined with
electromagnetic modes in the neighborhood of the resonaihe coherent localization of light within a PBG leads to in-
frequency, i.e., by modifying the accessible modes intaeresting phenomena in quantum optics as well as important
which the excited atom can radiate. If the modal density intechnological applications. In the visible and near-infrared
the vicinity of the frequency of interest is less than that ofwavelength regimes, PBG materials have numerous applica-
free space, the atomic decay will be retarded, if it is greater itions in the telecommunications industry. These applications
will be accelerated3]. include the design of zero-threshold, highly efficient micro-

When the density of electromagnetic modes is a smoothaserd11], light-emitting diodes that exhibit coherence prop-
function of frequency over the spectral range of the atomicerties at the single-photon levgl3], low-threshold optical
transition, the rate of spontaneous emission is described kgwitches, and all optical transistors.
Fermi’s golden rule. On the other hand, abrupt changes in The localized mode associated with a defect site in an
the photon density of statdgolored vacuumand photon otherwise perfect photonic crystal, acts as a h@lmicro-
localization effect§4] may drastically modify the spontane- cavity. They are also useful for filters, single-mode masers
ous emission dynamics. This modification takes the form ofand lasers. On a more fundamental level, they provide an
long time memory effects and non-Markovian behavior inexperimental realization of the Jaynes-Cummings model for
the atom-reservoir interaction. Strong modification in the lo-cavity quantum electrodynamidQED) at optical frequen-
cal density of electromagnetic modes can be effected bygies[14]. Unlike ordinary highQ microcavity resonators,
means of photonic crystals. These are dielectric materials itocalized states in a PBG may extend over many optical
which the refractive index exhibits strong three dimensioniavelengths. These localized states facilitate coherent en-
ally periodic modulation and which in special circumstancesergy transport and cooperative effects on a scale much larger
may exhibit a photonic band gaPBG) [5,6]. In carefully  than the optical wavelength. This leads to a host of funda-
engineered semiconductor photonic crystals such as Si, GaRentally new effects in quantum optics. The ability to selec-
or Ge, this PBG is centered at roughly twice the index modutively control spontaneous emission, while at the same time
lation wavelength and extends over a range of frequenciegreserving propagative effects over many wavelengths, is a
that is approximately 10% of the center frequency of the gaunique feature of PBG systems.
[7]. For the frequency range spanned by a PBG there is no Just as point defects in a photonic crystal are used to trap
propagating electromagnetic wave in any direction in spacdight, extended defects can be used to guide light from one
In other words a PBG is a# Steradian stop band for some location to another. Extended defe¢ssich as a line of point
frequency range. Within a PBG the photonic mode density iglefect$ can be engineered for the purpose of wave guiding
zero. It has been suggested that this would be accompani¢drough the otherwise impenetrable PB®5,16. In large-
by the inhibition of single-photon spontaneous emisg®ln  scale PBG materials made from self-assembly methods, re-
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gions of crystalline order are separated by grain boundarieseads to such interesting effects as the enhancement of the
These planar defects may likewise act as waveguiding pathadex of refraction with greatly reduced absorptip87],
within the PBG. Engineered line defects and planar defectg|ectromagnetically induced transpareri@g] and optical

can be used to guide light between individual microcavityampiification without population inversiof89]. The coher-
devices, thereby allowing the PBG material to act as & hosly¢ control of molecular chemical reactig] is an emerg-

for integrated optical circuits. ing frontier in chemical physic§41]. Using the coherence

Small-scale photonic crystals with complete three- . . : : . .
dimensional(3D) gaps at microwave frequencies have al_propertles of an external laser-field-driven interaction, radia-

ready been realizedi17] by direct driling methods, and tively controlled chemical pgthvyays can be enhanced or re-
|arge_sca|e two_dimensiona| PBG Systems have been préarded by quantum'mechan|cal Interfel’ence effectS. SeleCUVe
duced in the near infrardd 8] using electrochemical etching Photodissociation of molecules mediated by the interference
methods. The outstanding problem in the field is the microbetween two two-photon excitation processes has been re-
fabrication of large-scale photonic crystals with full three- ported[42]. Coherent control of current in a semiconductor
dimensional band gaps at infrared and optical frequenciedias also been demonstratetB]. Here the direction of the
To achieve band gaps for the infrared and visible spectralectrical current, formed by interband transitions in a bulk
several challenges exist. The periodicity of the crystal shoulégemiconductor via coherent one- and two-photon absorption,
be on the scale of the wavelength of liglatbout 500 nmy is controlled by simply adjusting the relative phase of the
both constituent materials of the crystal should be topologitwo beams that are optically generating carriers across the
cally interconnected19], and the ratio of their refractive gap. In view of these achievements, it is of great interest to
indices n should be close to 3.07]. Two approaches are consider the combined effects of coherent control by means
currently being employed to create photonic crystals. Thef external laser fields and the coherent localization effects
first one is engineering by microlithograpig0,21]. How-  facilitated by a photonic band gap.
ever, it is very cumbersome and expensive to extend this In this paper we study the combined effects of coherent
microengineering method to produce large-scale 3D struceontrol and photon localization on spontaneous emission
tures with periodicity on the scale of the wavelength of vis-from a three-level atom with one resonant frequency at or
ible light[22]. The second approach involves self-organizingnear the edge of a PBG. We demonstrate that storage of
systems such as colloidal crystf®8—25 and artificial opals quantum information in a single atom is facilitated by the
[26-28 as templates for PBG microfabrication. Monodis- localization of light in the vicinity of the atom when one of
perse colloidal suspensions of latex microspheres and SiGhe atomic transitions lies within a photonic band gap. The
sphereqopalg can sediment into crystalline structures with nature of this information is controlled by the combination of
excellent long-range periodicity at optical length scg®s.  quantum interference between different radiative pathways
Colloidal crystal growth produces inherently three- within the atom mediated by the external laser field and pho-
dimensional structures, a significant advantage over lithoton localization effects mediated by the PBG. In our model
graphic techniques which primarily produce two- system, a pump laser pulse is used to create an excited state
dimensional patterns. However, neither colloids nor opal®f the atom as a coherent superposition of the two upper
(close-packed fcc lattice of SiOspherep achieve the high levels. A control, cw, laser field with a specific phase relation
refractive index ratios and interconnectedness necessary ftw the pump laser pulse stimulates radiative transitions be-
photonic band-gap formation. Therefore, it is necessary ttween the upper two excited states. It is shown that sponta-
invert the structure by infiltrating the template with a high neous emission can be totally suppressed or strongly en-
refractive index semiconductor such as GaP, Si, or Ge. Theanced by changing the relative phase between the control
original template may be finally removed by chemical orlaser field and the initial atomic Bloch vector determined by
heat treatment. It has been demonstrated theoreticdlthat ~ the pump laser pulse. Unlike the free-space case, the steady-
such structures exhibit near-visible photonic band gaps ostate inversion of the atomic system is strongly dependent on
the scale of 10% of of the gap frequency. This type of “in- the externally prescribed initial conditions. As a result, such
verted” opal structure was experimentally realized in Ref.a system may be relevant for a single-atom, phase-sensitive,
[29], where a closed-packed fcc lattice of air spheres in, TiO optical memory device on the atomic scale.
(refractive indexn=2.8) is reported. A similar structure Provided that coherence can be maintained between the
made of carbon was reportd80] using an artificial opal atomic levelsg2) and|3), our model system can also act as
template. Most recently, an inverse opal consisting of CdSe qubit (two-state systeinto encode information for quan-
was realized[31]. Such macroporous crystals suggest thetum computation. In our scheme, coherence is forced on the
feasibility of producing a new class of 3D photonic crystalsatomic system by means of the control laser field. Two or
for the optical spectrum. Structures of this type made out ofnore such systems can be used to construct quantum logic
GaP or Si would be relevant to quantum optical experimentgates[44]. At the heart of quantum computation is the en-
in which atoms, dye molecules, or other active materials aréanglement of many qubits which form the register of the
inserted into specific locations within the photonic crystal. quantum computer. To create and maintain such a highly
The absence of single-photon spontaneous emission f@ntangled state, the qubits must be strongly coupled to one
an isolated atom in a PBG guarantees that the emitted phot@nother and to an external field. Yet coupling to other exter-
remains partially localized in the vicinity of the emitting nal influences must be minimized since it leads to decoher-
atom leading to the formation of a photon-atom bound statence. Random perturbations from the environment cause a
[8]. On the other hand, driving an atom with a sufficiently pure quantum state to evolve to a mixture of states and
strong resonant field alters the radiative dynamics in a funthereby lose its key properties of interference and entangle-
damental way{ 32,33, even in ordinary vacuurf84—34. It  ment. The PBG material provides an ideal environment to
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V - configuration A - configuration

Laij o] = 8jioik— Sikayj - 1

13>

_______________________________

Phoron o We choose to work in Schdinger picture of quantum me-
chanics, where operators are treated as time independent.
2> The upper atomic level3) is dipole coupled to the ground
level |1) by radiation modegphoton reservojrin a three-
dimensional periodic dielectric structure. The transition fre-
o o guencyws, is assumed to be near the edge of the gap in the
Driving field at frequency ., /2 Driving field at frequency my; =w; - @, . .
@ h ®) density of the reservoir photon modes. Each mode of the
photon reservoir is characterized by a wave ve&t@nd a
o - polarization index (= 1,2), and can be treated as a quantum
oscillator with frequencyw, . Transitions between photon
Driving field occupation number statén,,) are described by the radia-
tion field annihilation &,,) and creation4,,) operators sat-
15> isfying the standard Bose aIgeb[’akk,al,x,]zékkléw.
12> All atomic operatorsoj; commute with all operatorsag,
and af:)\) for the quantized electromagnetic oscillator.
In our model system we assume that the transit®n

/ photon-atom fw,
bound state /

vy
(23] N

1> o >

photon-atom bound state

o, Ay > —|2) between the two upper levels is driven by a resonant
V- configuration for closely spaced levels 13> and 12> with dipole transition to level 14>. COntrOl Iaser fleld Of angular frequen&% s Rab| frequency
. Driving fields at w,, and @, . .
T IS O Y Q, and phasep, . The Rabi frequency) characterizes the

strength of the driving field, and is given by the product of
FIG. 1. Schematic representations of a driven three-level systeffha transition dipole moment and the driving field amplitude
(a) in the V configuration andb) in the A configuration. The tran- (i.e., the square root of the field intensityVe also assume
sition frequencyws; is near the band-edge frequensy of a PBG. that,spontaneous emission on the transitits) |2> and

Lines with arrows at both ends denote the control laser field of Rabr is inhibited either b id .
frequency) driving the transitior|3)«|2). Double-arrowed lines 2>_’|1> Is inhibited either by symmetry considerations or

denote two-photon transitions. Dot-dashed lines denote dipole afy the presence of the ph_otpnlc band gap. . .
lowed transitions. In th&/ configuration leveld3) and|2) are of If the three level atom is in the so-call@tconfiguration
the same symmetry, ang,, is deep inside the PBG so that there [Fig. 1(@)], the upper leveld3) and|2) are of the same
are no single-photon spontaneous emissions on the transi8pns symmetry, and single-photon spontaneous emisgi®n
—|2) and|2)—|1). Similarly in theA configuration level$2) and ~ —|2) is not dipole allowed. If we further assume that tran-
|1) are of the same symmetry, ang, is deep inside the PBG so  sjtion frequencyw,, is deep inside the gap, then single-
that there are no single-photon spontaneous emissions on the traﬁhoton spontaneous emission for the transitb)n—>|1) will
sitions|3)—|2) and|2)—|1). The control laser field drives a two- lead to a photon-atom bound st4fe0,45. In such aV sys-
photon transition (& = ws) in the V' configuration and a single- tem, the external control laser field,of frequensy which

single photon ftransition ¢, = w3,) in the A configuration. (c) . i,
shows indirect coupling of level2) and|3) in a V system via couples leve|§3> and |2> drives a two-photon transition

another level4). Such a scheme will allow as to strongly couple (20 = w3y, since the levels are of the same symmetry.
levels|2) and|3) even when the transitiomg, lies in the infrared ~ From a practical point of view, we want the transition fre-
or far infrared. quencyws, to be as large as possible, as it may be difficult to
generate microwave fields of sufficient amplitude to drive
satisfy these seemingly contradictory requirements by prege required two-photon transition. However, the magnitude
serving the resonance dipole-dipole interaction betweepy s, is restricted by the width of the photonic band gap.
neighboring qubit412.§| wh.ile at the same time shielding For a gap centered at frequensy and with a gap-to-midgap
them from the external environmefradiation reservojr ratio of r=Aw/w,, conditions thatws; be near the edge of
the gap and thatw,; be deep inside the gap require that
W30= w31~ W<l w,. Thus to makews, large we need a
A. Description of the model gap with as high a central frequency as possible and as large

The physical system we consider consists of a singlé@ width as possible. For a gap centered gt an opt|.cal fre-
three-level atom placed inside a photonic crystal which iUeNcy wo~10"° Hz and with a gap-to-midgap ratio of
then driven by a laser field, see Fig. 1. We|tE} denote the  10%, the frequency separatian, between level$3) and
ground level of the atom, an®) and|3) the two excited |2) must be approximately $10** Hz.
levels with orthonormality conditionéi|j)= &;;, where§; Another means of overcoming the above practical limita-
is the Kranecker delta function. We designate the energy ofion associated with th¥ system is to couple leve|2) and
level |i) by #w; and the frequency separation between level3) indirectly by way of a transition to a higher levit)
liy and|j) by wjj=w;—w;. The transition between levels which lies far above leve]3). This will allow us to both
can be described using the atomic operatays-|i)(j|. Us-  strongly couple level§2) and|3) and use a narrow-band
ing the propertyo;;|k)= 8;4/i), it follows that gap, even when the transition frequeney, lies in the near

Il. MODEL
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or far infrared. Level4) is dipole coupled to levgl?) (and 3
hence to level3), since they are of the same symmeiand HA=E hwioj (2
the transitionsw,, and w,3 are both in the visible and both =1
lie outside the gap, as shown in Figcll The transitionws, o the field Hamiltonian(neglecting the zero-point enengy
is then pumped by a resonant laggy= w4, followed by a
stimulated emission into level3) using a laser which
couples level$4) and|3) [46]. szgl ; fio@a ()
On the other hand, for a three level system in theon-

figuration[Fig. 1(b)], levels|2) and|1) have the same sym- the total interaction Hamiltonian between the atom and the
metry and there is no dipole-allowed single-photon spontaphoton reservoirwhich is responsible for spontaneous as
neous emission between these levels. If we further assumeell as stimulated emission
that the transition frequencys, is far inside the gap, the
dipole-allowed transition3)—|2) will create a photon-atom :
bound state whose rag‘?a)tive| I>ifetime is given by the two- HAF:'ﬁgl ; 9 (30713~ 03130 @)
photon spontaneous emission time for {B¢—|1) transi-
tion. To reconcile the conditions thats; is near the band and the interaction Hamiltonian between the atom and the
edge and thatvs, is deep in the gap, we require that,  coherent monochromatic laser fie(treated as a classical
= w3~ w3p=<lw,. Given the practical fact that<0.1, it field):
follows that levels2) and|1) should be close to each other . (o e
but both far fromjlei/el?,)', ;s shown in Fig. (b). This, in Ha =i Qe dgpg—e ooy, )
turn, will reduce the decay rate of the photon-atom bounq_|eregkk is the frequency-dependent coupling constarst
state due to two-photon spontaneous emission fil@Nn  symed to be reabetween the atomic transitid@)—|1) and
—]1). However, sincews, is within the gap, the control he mode{k\} of the radiation field:
laser driving the single-photon transiti¢8)—|2) must be
injected by means of engineered or naturally occurring defect w3103, h ve o

= 260—wk\/) &\~ das. (6)

2

2

or waveguide modes within the band-gap material. Jin f
Our model system may be realized by trapping cold atoms
in the void regions of a photonic crystal, using the propertiesAlso, d;; and 631 are the magnitude and unit vector of the
of the electromagnetic eigenmodes of @ 3BG material. If ~ atomic dipole moments; for the transition|3)—|1), V is
the PBG material is illuminated by an intense laser field Wlththe Samp]e V0|umé()\ are the two transvers(@o]arizatior)
frequency near the bottom of the “air” band, a nearly unit vectors, anc, is the Coulomb constant. The coupling
standing-wave electromagnetic field will arise with strongconstantg,, fully characterizes the density of modes in the
electric-field gradients and peak intensities that lie in thephoton reservoir. In the framework of perturbation theory,
void fraction of the material. This field distribution will act which is usually employed in quantum electrodynamics, the
as an optical trapping potential for a cold atom vap®r|. sumH,=H+Hr is regarded as the Hamiltonian of the un-
This will trap atoms in the void regions of the photonic crys- perturbed system whereas the sHi=Hc+H 4, describes
tal where the field is most intense, and prevent the atomthe perturbation. The total Hamiltonian of the system is then
from colliding with the dielectric backbone of the PBG ma-
terial. In a typical 3d PBG material, the void fraction forms
a connected network that accou_nts for nearly 75% of t.hel'he interaction Hamiltoniansl,r and H,, are written in
volume of the material. Atoms which are optically trapped iNglectric dipole approximatiort ,- andH ,, are also written

this extensive void network will be Immune to 00”'5'0”?" in the rotating-wave approximation, which neglects virtual
dephasing and decoherence phenomena arising form d|re§|[OCesses of excitatiofde-excitation of the atom with si-

interaction with atpms in the solid dielectri; backbor_ne. An'multaneous creatiofannihilation of a photon.
oth.er way of realizing our mod(_al sy§tem IS by d_oplng the We refer to the model HamiltoniafY) as describing the
solid fraction of the PBG material with an impurity three- “leading approximation” to our physical model system. In

leve| atom such as a rare-earth atom or by means of a quatkis leading approximation a number of spontaneous emis-

:jurgt-gmégg&ilea;??]éncﬁg?g;feg mtzl|de'ttr?eth2eglcq?é dsion effects and nonradiative interactions are neglected. In
ucting P Ic crystal wi qUIr€Cy articular, the spontaneous emission chanf@s-|2) and

electronic transitions near the photonic band edge. Howeve 2)—|1) are absent in E¢(7). We demonstrate in what fol-

in either .Of the;e latter cases, decoherence effects ansing\vs that for coherent control in a PBG material, this leading
from the interaction of the three-level system with phonons

: . . : : approximation describes the essential physics. In Sec. V and
in the d|electr_|c fraction of the PBG material need to beVI we consider the corrections to this leading approximation.
carefully considered.

We assume that the radiation-field reservoir is initially in
the vacuum state. At=0, an ultrashort pumping laser pulse
is used to prepare the atom in a coherent superposition of its
two upper leveld2) and|3) in the form

B. Model Hamiltonian

The total HamiltoniarH of our model system can be writ- .
ten as the sum of the atomic Hamiltonian |W(0))=cos6|3,{0})+ € ?rsing|2,{0}). (8)
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Here the state vectdj,{0})=|j)|{0}) represents the atomin as the initial values for the amplitudds (t) and by, (t)

the upper state$j) and the vacuum electromagnetic field corresponding to the initial stat®). Conservation of prob-

(that is no photons presentThe state|j,{0}) is a direct ability requires that

product of the atomic staté) and the radiation staté0}),

since the atomic operators are assumed to commute with the . 2 2 2

radiation field operators. (WO ()= [ba(D)2+]ba(D]*+ 2 [bya(1)]?=1.
With the above initial condition, the system evolution (13

may be described using the basis states of the unperturbed

HamiltonianH, listed below together with their correspond- C. Equations of motion

ing eigenvalues: i ) o .
Using Egs.(7) and (11) in the Schrdinger equation

13{0}), fws, (98  if(d/dt)|W(t))=H|W¥(t)), and projecting the result onto
|1{k\}), |240}), and|3,{0}), respectively, we obtain the
[2{0}), fw,, (9b)  following (infinite) set of coupled equations for the ampli-
tudesb, i(t) andby, (t):
11{lia}),  filwrt+ o). (99) . _
b1 (1) = giaba(t) €'k, (143

Here the state vectdril{1,,}) represents the atom in the

ground statg1) and a single photon in a modé&\}. The ; — O aide

vectors|2,{1kx}?) are assumed to be inaccessible in the ba(t) =€ Tebs(1), (14b)
system, since there is no single-photon spontaneous emission

on the transition3)—|2). Two-photon spontaneous emis- ba(t)=— Qe %eh,(t) — >, grbra(t)e K, (140
sion is considered to be negligible compared to the two- K
photon stimulated emission frof8) to |2), induced by the : L . L
classical control laser field. Thigﬁlzatter| e>ffect is described b>yvhere the dot over an amplitude signifies the time derivative,
the classical Rabi fieldtwo-photon transition amplitude and
7.Qe (@40 Similarly, in the A system, single-photon
spontaneous emission frof8) to |2), although allowed, is
assumed to be negl|g|b|e Compared to stimulated emiSSiO@ the detuning Of the radiation mode frequewfrom the
driven by the control laser field. For the system, the effects  atomic transition frequencys,. Equation(14a can be in-

of stimulated emission are described by the classical Ralpgrated(in time), using the initial conditiorby, (0)=0, to
field (one-photon transitionamplitudes Qe'°t'* U it fol-  gjve

lows that the excitation number

M= 0~ W31 (15

t
2 bui (1) =i | bs(t')edt". (16)
N=|3{0})(3{0}|+|2,{0})(2,{0}| + > ; al, a. 1kn k)\fo 3

A=1
(100  Substituting this expression fdy,,(t) in Egs. (14b and
. ) o (1409 then yields the following two coupled integrodifferen-
is a constant of the motion of the total Hamiltoni&in tial equations:

In the course of time, the initial state vectol (0)) de-
velops according to the Schiimger equation into some lin- bz(t)zgewcbg(t), (179
ear combination of the statég{0}) with the accompanying

spontaneous emission of a photon into the statgk\}). ) _ t
Accordingly, the state vector will be written as ba(t)=—Qe '¢ch,(t)— fOG(t—t’)bg(t’)dt’,
W (1)) =bs(t)e'“#[3{0}) +by(t)e'“2[2{0}) (179
4 where
+ 2 b (e et e 1{k\}), (1D
K
G(t—t")= 2 a=ip(t=t") (18
with the amplitudesh, «(t) and by, (t) determined by the (t=t) %: Jir

Schralinger equation. In writing the general state vector

(12), the time dependences of the amplitudes due to the urds the delay Green’s function of the problem. In writing
perturbed HamiltoniaH, are explicitly factored out in the down Egs.(17a and(17b), we have exchanged the order of
form of exponentia|s_ Comparing qu_]_) and (8), we ob- summation ovekA and integration over time. The resulting

tain Green'’s function depends very strongly on the photon den-
sity of states of the reservoir. In essenGéf—t') is a mea-
b5(0)=cos8, (129 sure of the photon reservoir's memory of its previous state
on the time scale for the evolution of the atomic system, i.e.,
b,(0)=e¢'?rsin 6, (12b G(t—t") is the memory kernel.

We now solve Eqs(17a8 and (17b) for the amplitudes
b1 (0)=0 (120 b, 4(t) which determine the dynamical evolution of the sys-
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tem. Upon taking the Laplace transforms of E(/a and
(17b), and using the initial conditionl2g and (12b), we
find that

. scosf— Qe ?sing
s?+sG(s) + 0?2

, (193

- e'?rsin 6] s+ G(s)]+ Qe *ecosd
bZ(S): 2 -~ 2 '
s°+sG(s)+Q

(19b

whereb, {s) andG(s) are the Laplace transforms bf Jt)
and G(t), respectively, as defined H}(s)zfge*“f(t)dt,
and

P= ¢p_ o (20

is determined by the relative phase between the control a

pump lasers. For a given dispersion relatiop, we can

calculateG(t—t') from Eq.(18) which, in turn, can be used

to calculateG(s). This G(s) can then be used in Eq&l9a
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FIG. 2. Atomic populatioms(t) in ordinary vacuum as a func-

ntg']on of the scaled timey4t for the initial conditionsd= /4 (that is

equal superposition of the upper level®or ¢=— /2 and for dif-
ferent values of}, the driving field strength)=0 (solid curve,
=0.35y3; (dotted curvg, 2=0.75y;, (dashed curve and Q
=21v3, (dot-dashed curye When Q=0 there is no transfer of

and(19b), and the resulting expressions inverted to find anapopulation between leve|8) and|2), and therefora(t) exhibits

lytical expressions for the amplitudés, i(t). The atomic
populationn;(t) of level|j) (j=2,3)(i.e., the probability of
finding the atom in levelj)), and its steady-state value
are then given by

n;(t)=|b;(t)|?, n,-sEtlinllbj(Ul2 (i=23. (21

—

Ill. MODEL SYSTEM IN VACUUM

For comparison and interpretation purposes, it is instruc-
tive to first consider the case when our model system is in
free space. For the free-space case, the spontaneous emis

|2)—|1) for the V system can be ignored if,;<y3;; and

the spontaneous emissi¢d)— |2) for the A system can be
ignored if y3»<vy3,. Free space is characterized by the iso-
tropic dispersion relatiom,=ck. For such a dispersion re-

lation the Green’s functioil8) takes the form(see Appen-
dix A)

G(t_t,)=7315(t_tl), (22)
where
1 4wd,d?,

:47760 3%c® @3

Ymi1

is the spontaneous emission rate for the transition

—]1), and 8(t—t’) is the Dirac delta function. Since free

space is an infinitely broad photon reserv@iat spectrum

simple exponential decay. Here we have assumed that spontaneous
emissions on the transitio}8)—|2) and|2)—|1) are neglected
either because of symmetry or because the corresponding decay rate
is very small compared te;;. These results apply to both the

andV configurations.

. scosf— Qe ?sing

~ €' ?psin (s + y31) + Qe Pccos
b,(s)= D(s) , (24D
S\}ﬂﬂereD(s)=szvL Y315+ Q2= (s—r,)(s—Tr5,), with
2
Y31 Y31
M=~ 7 s 7) —Qz. (25)

Equations(243@ and(24b) are easily inverted to give

2 2
bs(t)=2, Cjel', by(t)=>, D;e't,
=1 i=1

(26)
where
ricoso—Qe'’sing
= (j#K), (279
i k
I+ ya)€ rsin 0+ Qe ¢ccosd
SRURREY (1#K). (27b)

r—rg

its response should be instantaneous and the memory effeetom Eq.(25) we see that both roots are(a) negative when
associated with spontaneous emission dynamics is infinitesia < y,/2; and(b) complex with a negative real part equal to
mally short compared to all times of interest for the system.— y,,/2 whenQ > v,,/2. Thus the time evolution of ampli-
Interactions governed by such a delta function memory kertudes b, o(t) [and hence of the upper level populations
nel are said to be Markovig8]. n,(t)] can be divided into two regimes of different behav-
From Eq.(22) we obtainG(s) = ys; for the Laplace trans- ior. For Q> y3,/2, the populations display pronounced oscil-
form of the Green'’s function, and using this in Eq$99  lations before decaying to zero, as shown in Fig. 2, where we
and(19b) we obtain have plotted the atomic population(t) as a function of the
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scaled timeyzt. On the other hand, whefd <vy4,/2, the  wave vector with a sphere kspace|k|=k,. By associating
populations barely complete an oscillation before decayinghe band edge with the entire sphéké=k, (spherical Bril-
to zero. WhenQ =vy3,/2, D(s)=0 has a double root, louin zone, the isotropic mode(30) artificially increases the
=r,= — y34/2 and inversion of Eq924g and(24b) gives true phase space available for photon propagation near the
3 oy a2t band edge. This results in a photonic density of states)
bs(t) ={cosf—[(ys/2)cosf+ Qe ’sing]t}e”73r, which, near the band edge,, behaves asd— w,) *2 0
(289 >w,, the square-root singularity being characteristic of a
i . . g _ one-dimensional phase spd@&d.
by(t)=e'%e{sin6+[(ysy/2)sin 6+ Qe ’sind]t}e (731/22225 In a real three-dimensional PBG material with an allowed
(28D point-group symmetry the gap is highly anisotropic and the
Thus the driving field induces oscillations on the populationg?@nd edge is associated with a padkst ko (or a finite col-

of the upper levels. The stronger the driving figie., the  lection of symmetry related pointsn k space, rather than
larger theQ)), the faster the oscillations. with the entire sphergk|=kg. In other words, the magnitude

Equation (25) shows that both roots;(j=1,2) have a of the band-edge wave vector varieskas rotated through-

negative real part, irrespective of the valugbf This means  0ut the Brillouin zone. Thus a more realistic picture of the
that the amplitudes, t) decay in time and tend to zero as band-edge behavior requires the incorporation of the

t—o so that steady state populations, and ns are both Brillouin—zone anisotropy. In the. effective-mass approxima-
zero: tion, the photon-dispersion relation takes the vector form

nis=lim|b;()[?=0 (j=2,3). (29 o= watAk—Ko)2, A=w,/K3. (31)
t—oo
Jhis anisotropic effective-mass dispersion relation leads to a

photonic density of states at a band edggewhich behaves
)1/2

In other words, in free space, the populations of the excite
states|3) and|2) eventually decay to the ground levdl)
(there is no population trapped on the upper levétslepen-
dent of the strengtk) of the driving field. The only effect of

the driving field is to cause transfer of populations fr{h tively correct physics. However, the anisotropic mo&s)

B e o roduces mporant cuaniatve coreci, Th most
y 9 ' 9 significant difference between the anisotropic and isotropic

3';']2? i?étgtrgsdg?‘n?h:rgfhoérl%ax‘gry\'lcﬁeslfﬁg%rgigi?etg: odels comes out more explicitly when considering an un-
Y ' ’ Y Rriven two-level atom with frequency near the edge of a

eIectr_qmagnetic modes vanishe; in the vicinity of an atomicphotonic band gap. In this case the isotropic model leads to
transition(such as near a photonic band erigioton local- nonzero steady population on the upper level even when the

ization leads to nonzero steady-state atomic populations o o S :
. s Pansition frequency is slightly outside the gd®], whereas
the excited level§10]. The extent of localization depends the anisotropic model leads to fractionalized steady-state

sensitively on() and the initial atomic state, as will be seen population on the upper level only when the transition fre-

in Sec. IV. guency is inside the gagsee Appendix €
As shown in Appendix A, under the effective-mass aniso-
tropic dispersion relation31), the Green’s functiong18)

We now consider the case where our three-level system i@ke the form
placed within a PBG structure in such a way that the transi-
tion frequencyws; is near the edge of a photonic band gap gl[ot=t')+la]
[8-10]. In a PBG one finds a modified dispersion relation for G(t—t')=~— QW’ wa(t=t)>1, (32
the photons in the radiation reservoir. We begin by consid- 7
ering an isotropic “effective-mass” approximatidi@] for
the photon dispersion relation in a PBG material:

as p(o)~(v—w,) " 0>w,, characteristic of a three-
dimensional phase spafg.
The isotropic dispersion relatiof80) leads to qualita-

IV. MODEL SYSTEM IN A PBG MATERIAL

where

o=watAk—Kg)?, A~w,/kKi~cYw;, (30 1 w33
a= (33
dme, 3fc3

wherew, is the upper band-edge frequency dpds a con-
stant characteristic of the dielectric material. This dispersion 5 ] ]
relation is valid for frequencies close to the upper photonid@” has the dimension of frequencyand
band edge. If the photonic band gap is large and if the rel-

evant atomic transitions are near the upper band edge, it is a 0= w31~ Wy (34)
very good approximation to completely neglect the effects of
the lower(dielectrig band. represents the detuning of the atomic transition frequency

The dispersion relation (30) is isotropic since it dependsws; from the upper band edge frequeney. Equation(32)
only on the magnitud& of the wave vectok. While there is is valid only whenw,(t—t")>1. The full expression for
no physical PBG material with an isotropic gap, this pro-G(t—t’), including its short-time behavior, was given in
vides an instructive toy model for studying quantum opticalRef. [49]. This rather complicated general expression for
effects. Such a dispersion relation associates the band-ed@{t—t') differs from the approximate expressi¢B2) only
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in the region {—t')— 0., which is not of much interest to Numerical analysis shows that the roaig; are real (1, is
us [49], as we are mainly interested in long-time memorypositive butu, is negative, and the rootsi, 4 are complex
effects. conjugates of each other with a negative real pagtgndu,
Equation (32) shows that the memory kern&(t—t’) lie in the third and second quadrants, respectiveljne am-
decays with time as a power-law decay, and describes longlitude b;(t) is found by inverting expressioii36a for
time memory effects in spontaneous emission dynamics dugj(sﬂfg) using the complex inversion formula which in-

to the presence of the photonic band gap. In other words, thglves a contour integration in the complex s plane as shown
atom-reservoir interaction within a PBG is highly non-in Appendix B. This gives

Markovian[49]. For the isotropic dispersion relati¢80) the

memory kernelG(t—t') decays in times as¢t') 2 (see o, ael ™ [ega(x)e” X1
Appendix A). This enhanced memory for the isotropic model ba(t)= >, P;Qge!(“ "+ f 700 dx,

is an artifact of the singular phase space occupied by the =1 ™ Jo ( a1
band-edge photons of vanishing group velocity. (419

2

For the anisotropic band edge in the effective-mass ap- 2
proximation, the Laplace transform of E@2) is given by by(t) = E Pjszei(uj2+ ot
=1
G(s)=ae'™s—is. 35 . .
(s)=ae S—I ( ) aQe|(¢C+w/4)J~wgz(X)e(x|5)tdx (41b)
Using this in Eqs(19a and(19b), we obtain T 0 Z(X) '
~ . (s+id)cosh— Qe ?sing where
bs(s+id)= b (s) : (363
p— 2Ul
b,(s+id)=[(s+ ae ™/s+is)e Pesing I 0= U (U — ) (U — Uy)
+0Qe'?ecos]/D(s), (36b) (ILmn=1,... 4] #l#m#n), (42
where Qs = (uf+ &)coso+iNe ?sing, (42b)
D(s)=(s+18)%+ ae'™*(s+i8) s+ Q? _ _
(s (4 )"+ ae s Qzl:(uj2+ au;+ 5)e' %rsinf—iQe'*ecosh, (420
:jﬂl (Vs—e'™u)). (37) 9s(X) =[(—x+18)coso— Qe ?sin 6](—x-+i ) VX,
(420
Hereu;(j=1, ... ,4) are theoots of the quartic equation

go(X)=[(—x+i8)cosd— Qe *sind]\Xx, (429
x4+ ax3+26x%+ adx— (02— 6%)=0 (39
Z(X)=[(—x+i8)2+Q?%°+ia’(—x+id)>x. (42f)
given by[50]
Sinceu; is real andu, is complex with negative real and

Ups=— o1+ [A=r2+05]"? (398 imaginary parts, the first term in E¢419 for the amplitude
bs(t) is a nondecaying oscillatory term whereas the second
Up=U}=—0,—i[A+r/2—05]"? (39D term is also oscillatory but decays exponentially to zero as
t—o. The last term containing the integral represents the
where branch cut contributiorfarising from the deformation of the
A= (r2/4+ Q02— 5212, (408 contour of integration around a branch point in the complex

inversion formula. This also decays to zero &s», faster
1 than the second term.
o1 ,=(a+\a?—86+4r), (40b) Equation(41a shows that, as a result of the strong inter-
c 4 action between the atom and its own localized radiation field,
level |3) splits into dressed-states. This dressed state splitting
_ 113 13
r=(B—0/2)""=(B+a/2)"*+ n/3, (400 s the combined effect of vacuum-field Rabi splitting by the
gap[51] and the Autler-Townes splittinip 2] by the external
|
77 AN

3
(409  field. The dressed states occur at frequencigs Im{iu?}
P=—3 "t n, q=—2(?

Py

3

q

2

2} 12

=w,—U? (since u; is rea) and w.—Im{iud}=w,
—Re{u3}. The dressed state at frequensy—u? lies inside
n 7172 " the gap and is responsible for the the fractional steady-state
73, (406 . :
3 population on the excited state. It corresponds the photon-
atom bound dressed state with no decay in time. A photon
Mm=268, np=a’s+4(Q%—8%), (40f)  emitted by an atom in such a dressed state will exhibit tun-
neling on a length scale given by the localization length be-
73=(a?—86)(02— 5% — a?6°. (4099  fore being Bragg reflected back to the emitting atom and
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FIG. 3. Atomic populatioms(t) in a PBG material as a function FIG. 4. Atomic populatioms(t) as a function of the scaled time
of the scaled timer’t for Q/a?=2, 6/a®=1, and6=m/4, and for 42t for 5=0 (i.e., when the transitiot8)—|1) coincides with the
the relative phasey= — /2 (solid curve, ¢=0 (dotted curvg and  anisotropic band edgefor the relative phasep=— /2, for 6
¢=m/2 (dashed curve The photon dispersion is described by the = /4 and Q=0.5¢2 (solid curve, Q=2a? (dotted curvg and
anisotropic effective-mass approximation. The steady-state populay?=542 (dashed curve Note that ad) is increasedns(t) oscil-
tion of level|3) is largest for the relative phage= — 7/2. Here we  |ates faster, and reaches its steady-state value quicker. Moreover,
have assumed that spontaneous emissions on the trandi@pns the steady-state values increases withQ). The results are ob-

—|2) and[2)—|1) are neglectedthe leading approximatiorei-  tained in the leading approximation, making them applicable to
ther because of symmetry or because the transition is deep withigoth theA andV configurations.

the band gap. The figure is relevant to batlandV configurations.

oscillates faster and reaches its steady-state value more

re-exciting it. The photon-atom bound dressed state insidguickly. Moreover, the steady-state valog, increases with
the gap was predicted in Rdi8]. The dressed state at the (). In the leading approximation considered in this section,
frequency w.— Re{u3} lies outside the gaggsince Réu3}  single-photon spontaneous emission for the transifin
<0 for all 5>0) and decays at a rate of {ug}. It results in ~ —[1) is neglected for both thd andV configurations. This
a highly non-Markovian decay of the atomic population means that the population of lev@) cannot decay directly
na(t). As wa, is detuned further into the gajpe., ass be-  to level [1), and its only decay mechanism is indirectly
comes more negatiyga greater fraction of the light is local- through level3) via the coupling®. When the upper levels
ized in the gap dressed state. Converselyass moved out  |3) and |2) are not coupled by a control laser field)(
of the gap, total emission intensity from the decaying dressedr 0), the only decay channel of levid) will be closed and
state is increasefdL0,49. the amplitudeb,(t) will remain constant at its initial value

As a result of interference between the three terms in Eq02(0) [see Eq(173]. It follows that, when(=0, our model
(41a, the spontaneous emission dynamics displays oscillasystem in the leading approximation reduces to a two-level
tory behavior[10]. As can be seen from Eq$41a and system consisting of level8) and|1) with the transition
(41b), the dynamics of spontaneous emission strongly defrequencyws; near the edge of a PBG. The dynamics of
pends on the detuning=wz,— w, of level [3) from the  spontaneous emission by such an undriven two-level atom
upper band edge, the initial coherent superposition state aar the edge of an isotropic PBG was considered in detail in
defined by the parametet, the intensityQ) of the control ~ Ref.[10]. The effect of the anisotropy of the band edge on
laser driving the transition between the upper levels, and théuch an undriven two-level atom is briefly discussed in Ap-
relative phasep= ¢, — ¢ between the cw control laser field pendix D. In Sec. V, we will show that the neglect of spon-
and the pumping laser pulse. In Fig. 3 we plot the atomidaneous emissiof2)—|1) is a good approximation in the
populationn,(t) as a function of the scaled time®t for ~ presence of a strong control laser field amplitédle How-
various values of the relative phage This figure shows ever, in the absence of the control laser fiefd=0), the
that, all other conditions being equal, the fractionalizedspontaneous emission of a localized photon of frequengy
steady-state population on the excited states is maximum dinside the gapcan interfere quantum mechanically with the
minimum when the relative phase = — m/2 or ¢=m/2,  Spontaneous emissigB)—|1). For aV system, this results
respectively. Figure 3 and the next three figures apply to thén a nonzero steady-state population on lg@leven when
leading approximation of our model system whereby spontaws, is slightly above the anisotropic PBG.
neous emissions on the transitiof® —|2) and |2)—|1) In the long-time limit, only the first terms in Eq$41a
are neglected either because of symmetry or because tlaad (41b) remain dominant, since, is real whereasi, is
transition is deep within the band gap. All figures which arecomplex with a negative real part. The steady-state popula-
based on the leading approximation are relevant for oth tionsnjs on the upper level§3) and|2), are thus given by
andV configurations.

Figure 4 depicts the population(t) for various values of nie=lim[b;(t)|?=|P1Q;11? (j=2,3. (43)
Q. From this figure we note that, &3 is increasedns(t) oo
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FIG. 5. Steady-state population, of level |3) as a function of FIG. 6. Steady-state population of level |3) as a function of
the detuningd from the anisotropic & band edge forQ)/a? Q when the transitiond)—|1) coincides with the anisotropic band
=3, 6=m/4 and for the relative phas¢=— w/2 [which, as seen edge ¢=0). The atom is initially in a coherent superposition of the
in Fig. (3), leads to a large steady-state populafidiote thatngis  upper state§3) and |2) with §=n/4 and for ¢=— /2 (solid
nonzero outside that gape., for 5>0). curve, ¢=0 (dotted curvg and ¢= /2 (dashed curve nzs can

be an increasing or decreasing function (f depending on the
This phenomenon of popu|ation trapping is due to the preste|a'[ive phasep. Results for theA and V configurations are the
ence of a PBG material and is absent in free space. It i§ame in the leading approximation.
apparent from Eqgs(40b—(40f) and (42a9—(42d) that the ) .
steady-state populationss depend strongly on the param- Equation(44) shows that, whe=0 or 6= /2 (i.e., when
etersf, ¢=d,— be, 6=ws—w,, and(). Figure 5 shows the atom is initially on leve|3) or on level|2)), we have
the variation of the steady-state populatiog of level |3)  Nas=nN2s=1/4. In other words, for the case of a strong laser
with respect to the detuning. We see that a$ increases field, the steady-state atomic populationg and n, are
from zero(that is, as leve|3) is pushed further away from independent of the initial relative phagewhen =0 or ¢
the band edge into the continulihe steady-state popula- = 7/2 (if the system is not initially prepared as a coherent
tion ng initially increases and attains its maximum value of Superposition of the upper statesiowever, if the atom is
about 0.295 at abous=0.5a2 before it begins to decrease initially prepared in a coherent superposition of the two up-
vary rapidly. In other words there is a fractionalized steady-Per stateg3) and|2), so that sin(2)#0 in Eq. (44), the
state atomic population on the excited sti8® even when  Steady-state atomic populations will also dependfonFor
the bare excitation frequency of this level lies outside of thdnstance wherd=7/4, spontaneous emission is strongly en-
photonic band gap, but not far from the band edge. Remari?anced Q3s+n,s~0) for ¢= /2, whereas it is totally sup-
ably, spontaneous emission is partially inhibited even withinPressed ifss+nys~1) for ¢=—m/2. Clearly, the steady-
the allowed electromagnetic continuum as a consequence &fate atomic population keeps a memory of the initial relative
quantum interference with the driving field which couplesphaseé. It can be controlled by changing the optical paths
level |3) to the photon-atom bound state associated wittPf the pumping and controlling lasers. Moreover, due to the
level |2). When there is no driving field, our model system effects of photon localization, the atom keeps a memory of
can be viewed as a two-level system consisting of le\@s the intensity and phase of the puripput) laser pulse. This
and|1), with the transitions frequency,; near the edge of Suggests that our model system can serve as an optical
a PBG. As shown in Appendix D, for such a two-level atommemory device on the atomic scale.
and the anisotropic dispersion relati(8l), the steady-state ~ An important consideration in applications such as quan-
population on the excited levi8) vanishes when the level is tum computing is the coherence of the atomic amplitudes in
at the band edge or outside the gap. However, populatiofl€ steady-state limit. In the leading approximation, it is easy
trapping in aV system, on level3) outside the PBG, in the O vgrn‘y tha}t the fo—dlagonal el_ements of th'e atomic density
absence of a control laser field, may be recaptured by goin§atrix retain their coherence in the long-time limit. Equa-
beyond the leading approximation and including the Spontatlons(41a) shows that in the steady-state limit the cross-term
neous emission channg)— |1). bs(t)b3 (t) is given by

Figure 6 depicts the variation af;s with respect of the
strength(Q) of the driving field for various values of the rela- lim b(t)b3 (t)=|P+1|*Q4:Q3, (45
tive phasep. This figure shows that;, can be an increasing e
or decreasing function of) depending on the value of the
relative phaseb. For a very strong control laser fie{that is,
when Q> a?,8) the steady-state populatiomss are given
approximately(see Appendix B by

and for a very strong control laser fiel@& «?, ) this re-
duces to(see Appendix B

ie*iﬁbc

lim ba(t)b (1)~

(1—sin26sing). (46)
Nas~N,e~3(1—sin 20sin¢). (44) tos 4
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05 - ' ; ‘ suppressed in our model system. That is to say, at steady
state, the system can be in a coherent superposition of the
upper stateg3) and|2) as|¢)=as|3)+a,|2) with |ag|?
+|ay|?=1, the amplitudes, anda; being dependent on the
phase and intensity of the pump laser pulse. Since this su-
perposition state is immune to single-photon radiative decay,
it is a promising candidate for a two-level quantum bit to
encode information in quantum computations. In Secs. V and
VI we discuss some possible decoherence mechanisms. This
is the greatest obstacle to quantum computation since it
causes a pure quantum state to evolve into a mixture of
oty 1 states, and to thereby lose two of its key properties: interfer-
ence and entanglemefg4].

n(

° 2 4 & 6 8 10 V. EFFECTS OF OTHER SPONTANEOUS EMISSION
TERMS

FIG. 7. The coherence.(t)=|bs(t)b3 (t)| between level$3 . L .
and |2) in the leading appcr(o>)<im|at?c(>n) ftz)ﬁ()3)1| tuned to the asflis>o- In the leading approximation for our modgl system of Fig.
tropic band edge §=0) as a function of the scaled timet for 1 We have assumed that spontaneous emission on the tran-
0=0.1a? (solid curved, Q=a? (dotted curvg and Q=5a? sitions|3)—|2) and|2)—|1) is inhibited, either by symme-
(dashed curve The atom is initially in a coherent superposition of try consideration or by the presence of the PBG. We next
the upper statef3) and|2) with 6= /4 and ¢=— /2. Results relax this assumption to see its effects on the system dynam-
apply to bothA andV systems. ics. To this end we consider théconfiguration of Fig. b)

where the upper level®) and|3) are of the same symmetry

Thus not only do the upper level8) and|2) have nonzero and are bpth coupled by dipole transitiqns t_o thg grqund level
populations fi,s and ns) in the steady-state limit, as re- |1). In this case the unperturbed Hamiltoniklg is still the
quired for a classical memory device, but the coherences a@Me as that of Eq7) whereasH, has an additional term
nonzero in the steady-state limit as required for quantunflué to the allowed2)—[1) transition. It is given by
memory. In essence, coherence is forced on the atomic sys- . i _i
tem by¥neans of the external laser field. Like the populatiorzls H =i Qe oy (e oy
n,5(t), the coherence,(t) =|bs(t)b3 (t)| depends strongly

on the parameter®), ¢=d¢,— ., 5=wz—w, and Q. +iﬁ% (g (@013~ o330)
Equation(46) shows that for largé€), and when the system
is initially prepared in a coherent superposition of the upper +g§i‘(al)\g’lz— o@) ], (47

states(i.e., when##0 and =/2), the coherence (t) be-
tween levels|3) and |2) can be controlled by the relative where
phasey, and attains its maximum value wheén= — /2. In
Fig. 7 we plot the coherenag,(t) as a function of the scaled i1 wi1di1 h vz, a i—23 48
time «?t for different values ofQ2. We see that, for the U0 TT7 | 2eqmev) G (i=23, (4§
chosen conditionsn(t) increases with increasin@. In
Secs. V and VI, we discuss how the coherenggt) is in-  the coupling constant between the atomic transitjon
fluenced by other spontaneous emission and nonradiative ef-|1) and the modgk\} of the radiation field. With this
fects that are not considered within the leading approximaiteraction Hamiltonian, Eqg14) are replaced by
tion.

All the above results for the anisotropic mod8ll) are buo () =g3tba(t)el# +g2lby(t)elsk, (498
qualitatively similar to those derived for the isotropic model
(30). In particular, exactly the same relation as Egl) holds . _ 2
for the isotropic mode(30) [53]. The major difference be- bz(t)zﬂe'%ba(t)—%: g2ty (e #t,  (49b)
tween the two dispersion models is that the time-scale factor
for the transient radiative dynamicsds 2 [wherea is given
by Eq. (3_3)] for the anisotropic model_, Whergas it Bt bg(t)=—Qe“¢Cb2(t)—2 gﬁ}l\blk)\(t)e_i“a%. (490
[where g is given by Eq.(A19)] for the isotropic model. kx

The above considerations suggest that quantum informa- i ] ] o
tion can be “written” onto a single three-level atom by Where uy=w—wj; is the detuning of the radiation mode
choosing the “area” of the incident laser pulse, the intensityfreduencyw, from the atomic transition frequenay;; .
of the cw laser, and the relative optical path lengths of the cw Fo_r_mal lntegrat|or(|_n time) of Eq. (493 with the initial
and pulse-laser beams. In other words, the precise nature 6enditionby, (0)=0 yields
the information written onto the quantum bit or “qubit” can . .
be controllably altered by varying these external paramet_ers.blkx(t):gﬁif b3(t’)e”‘ilt/dt’ + g2t bz(t’)e”‘i%'dt’.
Furthermore, the phase and intensity of the control laser field 0 0
can be adjusted so that spontaneous emission can be totally (50
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Substituting this expression in Eqgl9b) and (490 gives

. X t
bz(t)zﬂe'¢cb3(t)—fOGZZ(t—t')bz(t’)dt’

i t
_eflwgztf Goft—t)bs(t)dt!, (513
0
. ) t
bs(t):_ﬂeﬂd’cbz(t)_f G33(t_t')b3(t’)dtr
0
. t
—gload f Gaat—t)by(t")dt’, (51b
0

where
Gy(t-t)=3 glgle M) (ij=23 (52

are the delay Green'’s functions. Equatiqbdag and (51b)
are the generalized versions of E¢s7a and(17b) for aV

system including spontaneous emission on the transition
[2)—|1). We will next solve these generalized equations for

the amplituded;(t) andb,(t). In order to explicitly see the
effects of the control laser driving the transitif8) —|2) on
the system dynamics, we consider the caQes0 and ()
#0 separately. Th€l =0 (quantum beajscase is a valuable
reference case for interpreting the results of ¢h& 0 (co-
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If we neglect spontaneous emission on the transitidn
—1) so that bothy,; and » are zero, Eqs(553—(55h)
reduce to Eqs(17g and(17b), when we use Eq53).

1. Quantum beats in vacuum

The problem of quantum beats in vacuum corresponds to
the case whelfl=0 in Egs.(558 and (55b). This problem
was considered in detail by Zhet al. [55] for the caser
=1, i.e., when the dipole moments of the two allowed tran-
sitions are parallglor antiparallel. Our general model recap-
tures these specialized results. WHer-0, Egs.(559 and
(55b) are easily solved to give

2

herent controdl case. For each of the above cases, we con-

sider both the system in vacuum and the system in a PBG.

A. System in vacuum
For the free space dispersion relatiog= ck, the Green’s
functions(52) take the form(see Appendix A

Gij(t=t")=mjVyiryj16(t—t") (i,j=2,3), (53

ba(t)=e 731>, A, (573
=1
2
by(t)=e~ (artiend' > Bed, (57b)
=1
where
A A2 —,
qu:Ei > +(77)%, (58a
N=1vy31— Y1 tiwsy, (58b)
b4(0)+ 7yb,(0
Aquk 3(0)+ 7yb,(0) (K£]), (580
ak—q;
A
sz—q‘—_J. (580)

ny

When »=0 (andQ=0), Egs.(55a8 and(55b) have simple
exponentially decaying solutionb;(t)=bs(0)e 73 and
b,(t)=b,(0)e 73, Comparing these solutions with the
general solutions Eqg57a and (57b) we see that, fory
=0, A;=0, A,=b3(0), B;=b,(0), andB,=0.

whereyp,, is the spontaneous emission rate for the transition |t can easily be shown that the amplitudggt) given by

|m)—|1) given by Eq.(23), 8(t—t’) is the Dirac delta func-
tion, and

7ij= 6+ n(1=6;) (i,j=2,3). (54
Here &; is the Kraecker delta function ang is a constant
(defined in Appendix A which satisfie$n|<1, the equality

Eqg. (579 satisfy lim__..b;(t)=0. As a result of quantum
interference between the two decay channgs-¢|1) and
|2)—|1)) which are coupled by the same vacuum modes,
the decays of the populatioms(t) andns(t) are not purely
exponential and may display oscillatory behavior depending
on the initial coherent superposition state definedoh§0)
andb,(0), on thedecay ratesy,;, and y3;, and on the fre-

sign holding when the dipoles associated with the transitionguency separatioms, between the two upper levels5]. If,

li)—|1) and|j)—|1) are parallel or antiparallgwhend;;
= iaj 1). With the free-space forms$Eq. (53)] of the
Green’s functions, the general equati@gb&a and(51b) re-
duce to

b,(t)=— ya1b,(t) +[ Qe Pe— ﬂ;efiwﬂt]bs(t), (558
ba(t)=— yaibs(t) —[ Qe ?e+ pyel@sd]b,(t), (55b)
where

;= VY21Y31

(56)

for instance, the system is initially prepared in the state
|W(0))=|3), then, in the course of time, the population of
level |2) increases from zero to a maximum and then de-
creases to zero, while that of levg8) monotonically de-
creases to zero.

The detected signal resulting from spontaneous emission
from the three-level system is proportional to

2

J(t)= % by (texp(ilk-r— (o +w)t]} , (59

wherer is the the position of the detector relative to the
emitting atom[48]. According to Eq.(50), this has contribu-
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tions fromb,(t") andbs(t’)(0=<t’<t) which will, in gen- B. System in a PBG material

eral, interfere with each other. The temporal interference of o the anisotropic effective-mass dispersion relation
the two possible transitior}8)—[1) and|2)—|1) gives rise  (31), the Green’s functionés2) take the form(see Appendix

to a fluorescence signal that has a component modulated A}

the difference frequencws,. This is the phenomenon of

quantum beats and is the basis of a spectroscopic technique , glloja(t—t)+ /] ,
used to determine the difference in frequency between two ~ Cij(t—t")=— (s wq(t=t")>1,
atomic levels[48]. When =0, no quantum beats are ob- (60)

served[48] if either b,(0) or bs(0) vanishes(i.e., if the

system is not initially prepared in a coherent superposition ofvhere »;; and «? are given, respectively, by Eq&4) and

the upper states However quantum beats do indeed occur(33); and

whenn+#0, even if eithetb,(0) orbz(0) is zero. The inter-

ference between the two possible transitions accounts for the 5ij = wij ~ wa (61)

dark line in the spontaneous emission spectrum of a threg . . .

level atom in theV configuration observed in Reff55]. In IS the detuning of the atomic transition f_req_uen;o,y from
' the upper band-edge frequeney,. Substituting Eqs(60)

the_ at_>sence of interference between the two spontaneo 0 Eqs.(493 and(49b), we can find the coupled equations
emission decay processes, one expects the spectrum of

h level st of . S the amplitudes, (t) appropriate for a PBG analogous
three-level atom to consist of two Lorentzian dlStI’IbUtIOﬂS.tO Egs. (558 and (55b) for vacuum. However, in the PBG

peaked at the two transitions frequencies. Instead what is;se it is convenient to introduce the new amplitutegt):
obtained is a single distribution with a dark band, whose ’ ’

width depends on the decay rates and ya;. bj(t)zhj(t)ei it (j=2,3 (62
A coherently excited three level atom in tieconfigura-

tion can decay via the emission of a photon of frequengy  In terms of these new amplitudes and the Green’s functions

or wy,. However, since both transitions lead to the same60), Egs.(49a and(49b) can be rewritten as

final atomic state, one cannot determine along which radia-

tive paths (3)—11) _or_|2>—>|_1>) the atom decay. This un- giha(0= — i Sy, (1) + Q el (@3t T SIp (1)

certainty in the radiative trajectory leads to interference of t

transition amplitudes which can be observed as quantum t

beats. This process is analogous to Young's double-slit ex- —f G(t—t")[hy(t")+ nhy(t")]dt", (633

periment, where interference takes place because we are un- 0

able to distinguish between the different photon paths that

lead tp the detectt_)r. On_ the (_)ther hand, a coherently ex_cited —hy(t)= —i8yhs(t) — Qe (@t h (1)

atom in theA configuration will also decay along the radia- d

tive pathws; or wz,. However, since the two emission path .

ways lead to different final states, a measurement of the final _J G(t—t")[hs(t’)+ 7hy(t")]dt’, (63b)

state of the atom would tell us which decay channel was 0

taken. Consequently, no beats are expected in this[d&e

The situation would, of course, be different in the presencévhere

of a driving field coupling level$3) and|2). :
g pling levelss) and|2) Gt-t)=—ad ™ Fx (TP, (64
2. Coherent control in vacuum We now discuss Eq963) for the cased)=0 and Q+#0

WhenQ #0, Eqs.(558 and(55h) correspond to the prob- Separately.
lem of coherent control in ordinary vacuum. In this case the

equations must, in general, be solved numerically. In the 1. Quantum beats near the edge of a PBG

special case when botp,, and 5 are set to zero, Eq$559 The problem of quantum beats near the edge of a photonic
and(55b) reduce to Eqs(17g and(17b), which, in turn, can  band gap corresponds to the case whien0 in Eqs.(639
be solved analytically, as shown in Sec. Ill. In both the co-and(63b). This case has also been investigated in 8],

herent control case and the quantum beat case, the populasing the “effective-mass” isotropic dispersion modaD).
tion dynamics depends on the initial coherent superpositioin this paper we will discuss the problem using the more
state(i.e., on# and ¢,) as well as on the parameteys;, realistic anisotropic dispersion mod@l).

v31, andws,. In the coherent control case, the atomic popu- WhenQ =0, Eqgs.(638 and(63b) can be solved to give
lation has an additional dependence on the interf@itgnd  closed analytic expressions for the amplitutigg(t). These
phased¢, of the control laser field. Just as in the case wherexpressions take particularly simple forms when the band
v21=0, the driving field causes transfer of populations fromedgew, is midway between the two upper of levels of tte
|3) to |2). The stronger the driving field, the higher the system so thais;;= — 8,,= 6 (thus 6=0), and when the
frequency of oscillation of the populatioms «t). For free  atomic dipoles associated with the transitig8%— |1) and
space, the steady-state atomic populations on the upper lej2)—|1) are parallel(or antiparallel so that»=1. In this

els are zero, irrespective of the control laser field amplitudespecial case the solutions to E¢83a and (63b) are given

Q. by (see Appendix €
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2
L2
ba(t)= D, EjFgeVitdt+
=1

ei 7/4f°°f3(X)e(Xi§)th
aa

0 W(X) '
(653 o8 |
2 iTld o —(x+idt
_ fa(x)e dx
_ o o, © J 2 .
o= 2, By =] e )

(65b)

(), n,{t). n(t)

o
~
T

whereE;,v;(j=1,2) are constants which depend ehand
the detuning parametef. The constant$;; depend on the
initial coherent superposition staftas defined by the initial 02|
valuesb,(0) andbz(0)] and on bothx? and 8. The constant
v, is real, whilev, is a complex number with negative real ,
and imaginary parts. 0
Solutions(65a and(65b) for the amplitudes, t) show
that (a) the spontaneous emission is oscillatory éndeach

of the upper Ieve!s SP“t_S |nlt0 dre_ssed stqtes analogous t((aotted curvg and the total excited-state populatiog(t) =n,(t)
vacuum-field Rabi splitting in a higly cavity [51]. The .\, ) (dashed curveas functions of the scaled time’t in the
splitting is solely due to the interaction of the atom with the pgg guantum beats problenf2=0) for the initial condition 8
photon reservoir, since there is no driving field. Furthermore— (.e., the atom initially on level3)) and for ¢=— /2 and

(c) there is a fractionalized steady-state population on each 1. The anisotropic band edge is midway between the two upper
of the upper levels as a result of the localization of light injevels with detuningds;= — 5,,=0.5¢2. Note that, as a result of
the vicinity of the emitting atom andd) quantum interfer-  quantum interference between the two allowed transitions, the
ence leads to nonzero steady state population on [8yel population of level|2) (which was initially zerd increases form
even when it lies outside the PBBut not far from the band zero to a maximum before it settles down to a steady-state value of
edge. This reveals an important distinction between the re-about 0.05 unlike ordinary vacuum.

alistic anisotropic PBG model and the isotropic dispersion

model[56]. In the anisotropic model, spontaneous emissiorto their final larger steady-state values. The amplitudes of
from level |3) (outside of the PB@&can be inhibited by these oscillations depend on the initial values{0) and
quantum interference with levé®) (inside the PBG This  b,(0). As mentioned in Sec. IV, this enhancement is an
inhibition does not occur in the absence of the coupling taartifact of the singular photon density of states at the isotro-
level |2). In the isotropic model, inhibition of spontaneous pic band edge.

emission from leve|3) occurs even in the absence of cou-

pling to level|2). 2. Coherent control near the edge of a PBG

In _Fig. 8 We.DIOt’ using expressiorﬁéSa) and (65b), th_e WhenQ # 0, Egs.(639 and(63b) correspond to the prob-
atzomlc populations, (t) as functions of the scaled time 1oy of coherent control near the edge of a PBG. In this case
a“t assuming that, initially, the_ atom was on leys) (i.e., the equations do not have simple analytic solutions. They
0=0). As a result of quantum interference between the Wy st he solved numerically. For illustration purpose it is
allowed transitions, the population of levid) (which was  gjmpler to use the isotropic rather than the anisotropic model.
initially zero) increases form zero to a maximum before it o Green's functior®,(t—t') of the isotropic modelEq.

settl_es down to a steady-state value. Similar oscillations 0CrA18)] exhibits an integrable square root singulafi6f] at
cur in free space quantum begEqs. (578 and(57b)]. The  y_t+ \yhereas the complete Green's function in the aniso-

major difference is the nonzero steady state populations ifonic model, which also has an integrable square-root sin-
the PBG case. These steady-state populations are given b}ﬁjularity att=t’, is rather cumbersonj@]

FIG. 8. V-system atomic populations;(t) (solid curve, ny(t)

5 (+)]2— 12 i Figure 9 depicts the PBG coherent control problem for the
Nis t'[‘l'bj(t)' [BaFjul® (=29, €6 isotropic dispersion moddlEq. (30)], with the additional
spontaneous emission effects included. Note that, Qor
and depend on the paramet&se, and 5. #0, ns(t) displays rapid oscillations within a relatively

In order to see the detailed differences between the iscslowly varying envelope. Whef2 #0, there are two causes
tropic and anisotropic model dispersion relati¢isgis. (30)  for the oscillations oh(t). The first onegslow oscillationg
and (31), respectively, we investigated the dynamics of the is the quantum interference between the two allowed transi-
populationsn, i(t) in the PBG quantum beats problem for tions (3)—|1) and|2)—|1)) as in the quantum beat prob-
the isotropic dispersion model, assuming that the atom walem. Superimposed on this is the exchange of populations
initially on level |3). Apart from the difference in time between level$3) and|2) caused by the driving fiel¢rapid
scales, the main distinction between the two models is thabscillations. As () increases the amplitude of the envelope
interference of spontaneous emission between the two abscillations decreases but the frequency of the oscillations
lowed transitions and the localization effects of the photoniowithin the envelope increases. Moreover, the steady-state
band gap are considerably enhanced for the isotropic modehlue n; increases withQ). In fact for large Q, nj(t)
relative to the anisotropic model. In the isotropic model, thechanges little from its initial valueé3(0) even thoughws;
populations oscillate for hundreds of cycles before decayingies slightly outside the gapdg;=0.58). This is because,
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0.8 - < - the case of a cold atom which has been optically trapped in
the void regions of the PBG material, and which is not in
mechanical contact with the vibrational degrees of freedom
of the dielectric host. For a dipole allowed transition such as
the|2)—|1) transition in aV system[Fig. 1(a)], two-photon
decay yields a lifetime for the photon-atom bound state on
the scale of dayg3] if the transition lies in the visible spec-
trum. On the other hand, for a dipole-forbidden transition
such as the th€2)—|1) in the A configuration[Fig. 1(b)],
two-photon emission may occur by means of a pair of dipole
transitions which occurs considerably faster. For instance the
2s— 1s transition in hydrogen occurs in 1/7 seconds.
; For a vapor of cold atoms trapped in a PBG, the presence
oL MY . » of many atoms within a cubic wavelength may significantly
Bt alter the simple picture, described above, of a single photon-
atom bound state. An important alteration arises from
FIG. 9. V-system atomic populations(t) as a function of the  photon-hopping conductiofil2,8] between impurity atoms
scaled timegt in the PBG(including spontaneous emission chan- inside a PBG via resonant dipole-dipole interacti&DDI).
nels which go beyond the Ieading approxima}id!m’ 6= /4 and For a band gap to center frequency ratimj/wows%’ the
¢=—ml2, and)=0 (dashed curve 1=0.58 (dotted curvg and  |gcalization lengthé,,. associated with a photonic bound
(=58 (solid curvg. The isotropic band edge is midway between giata is on the scale of several optical wavelenf@isThus
the two upper levels with detuningy,=—5,,=0.56 and 7=1. 0 shoton can tunnel through the dielectric host and be ab-
For Q#0, nj(t) displays rapid oscillations within a slowly varying sorbed by another atom located withd, . For atoms sepa-
envelppe—.the frequency of the oscillations within the envelope in_rated by a distance less than the opticz;l wavelength, the pho-
creasing with(2. ton hopping conduction occurs by means of the exchange of
a high-energy virtual photons between the atoms. In this
manner a single excitation can hop from one impurity atom
' : to another. Unlike an ordinary vacuum, where RDDI effects
Just as in the case of the populations(t), the sponta-  5re commonly associated with van der Waals dephasing, in a
neous emission channg?)—|1) introduces further oscilla-  pgG material RDDI may lead to coherent transfer of excita-
tions to the coherenag(t) over and above those induced by tjon energy from one atom to the next. The dynamical prop-
the driving field. Nevertheless we obtain nonzero steadygriies of coherent RDDI-mediated photon-hopping conduc-
state coherence@nd populationsas long as levell3) is not  tion between impurity atoms inside a PBG were considered
detuned far outside the gap. These results are qualitativeky getail in Ref[12]. When many photons are injected into a
similar to those in Sec. IV, where spontaneous emission OBystem of atoms interacting by RDDI in a photonic band gap,
the transition2)—|1) is neglected. The incorporation of the highly entangled and nonclassical states of light can be
decay channgl2)—|1), together with the use of the isotro- formed[58]. These quantum many-body states differ signifi-
pic dispersion relation, leads to additional oscillations in thecanﬂy from the well-known symmetricaiDicke) super-
transient dynamics. However, it does not alter the presencgyiant states in which cooperative light emission occurs at
of nonzero steady-state populations and coherences on tB@ enhanced rate in ordinary vacuum. For certain non-Dicke-
upper levels, nor does it alter the ability to control theserype states, cooperative emission can be significantly re-
steady-state populations and coherences by the intensity aMEded rather than enhanced. These entangled states which

nG(‘)

when () is large, level|3) will be strongly coupled to level
|2) which lies inside the gapdy;= —0.58).

phase of the driving field. arise from photon-hopping conduction between impurity at-
oms may exhibit considerable immunity from conventional

VI. HIGHER-ORDER RADIATIVE AND NONRADIATIVE radiative or nonradiative decay mechanisms. o
INTERACTIONS The effect of a photonic band gap is to simply eliminate

the amplitude for single-photon, single-atom spontaneous

As discussed in Sec. 1V, an excited atom in a PBG interemission. This does not exclude nonlinear decay processes.
acts strongly with its own radiation field, leading to the for- An excited impurity atom within a PBG may decay to the
mation of the photon-atom bound st§8 in which the pho-  ground state if there is another excited impurity atom nearby,
ton emitted by the excited atom can tunnel through thehrough a higher-order process involving the localized pho-
dielectric host on a length scale given by the localizationtons of both excited atoms. The localized photon of one of
length ¢, before being Bragg reflected back to the emittingthe excited atoms can under go virtual hop to the other ex-
atom. The result is a stationary state superposition of a loeited atom, through RDDI, as discussed earlier. Such a
calized photon and a partially excited atom as manifested bphoton-photon interaction gives rise to second-harmonic
the nonzero fractionalized steady state population given bgeneration when a pair of excited atoms experience a close
Egs.(43) and (66). encounter and the propagation of the resulting high-energy

Inside a PBG, single-photon spontaneous emission is inphoton out of the band gap. The lifetime for the decay of two
hibited. Thus the photon-atom bound state can decay only bgeighboring excited atoms by such a spontaneous second-
other relaxation mechanisms. One such a mechanism isarmonic generation decreases inversely with the eighth
spontaneous two photon emission. This may be relevant fqsower of the interatomic separati¢8], and is estimated to
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be on the order of milliseconds, when the distance between 05
the atoms is 5 A . This is still a very long lifetime for most
practical purposes.

For an impurity atom embedded in a solid dielectric host, o4
the vibrational modes of the host can provide an alternative
relaxation mechanism for the photon-atom bound state by
altering the electronic spectrum of the impuijig]. We next _
give a simple semiquantitative discussion of phonon relax-
ation for theV system depicted Fig.(4). In a semiclassical 02t
picture, phonon interactions cause the energy levels of an
atom to experience small, random, time-varying, Stark shifts.
In our simplified picture, we assume that this phenomenon o1
can be modeled by adding random shifis;4(t) to the en-
ergy differencesw;,, j=(2,3). The random functions
dwj4(t) are as often positive as negative, and hence the en-
semble averagdg dwj,(t))] are zero. Thus we can simulate

phonon interaction by Gaussian random variabfes; of FIG. 10. V-system excited-state populationy(t) on level|3)
zero mean and variancg whose value depends on the near the isotropic photonic band edge as a function of the scaled
strength of these interactions. Furthermore we assume thaine gt for 6==/4 and for the relative phas¢=— /2 in the
the phonon reservoir is Markovidd8] so that the averages presence of dipolar dephasing Gaussian random stark shifgt)
of the productg dw;,(t) Sw;4(t")) are zero unless~t’. As-  anddw,y(t) (each of zero mean and @¥ariancg of the transition
suming that variations idw;(t) are very rapid compared to frequenciesvs, andw,;. The different choices of the control laser
other changes in the system, which occur on the time scalemplitude are dashed curveQQ&0), dot-dashed curve (X
1/y;1, we take =0.58), and solid curve  =5p). In the absence of the random
Stark shifts, the band edge is assumed to be midway between the
. (")) = —t! - two upper levels with detunings;,= — d,,=0.58. Compare this
<5w11(t)5w]1(t ) Yadt=t) (1=2.3, (€ figureva\)/ith the corresponding g:iglu@ig.ﬂ(g)] ir'?the abpsence of
where y;,4 are the dephasing rates. Thus when phonon inPhonon mediated dephasing.
:grggtlrzcvsrift‘; t;j}il:ﬁ; '?;Oplzi(;%ugtwé;ﬁj a(r:;j g?]%bi)hak;/; pressed or strongly enhanceo_l qlepending on the relative_ phase
03yt Sery(t) — b (Jtl) Where 8. Jelmdwjlare the gi)rre- between the control laser driving the two upper transitions
S Béndin 31 uantiticzels i the abs]elﬁce of ?;ndom atark shift and the pump laser used to create an excited state of the atom
P g quantiti . : 3h the form of a coherent superposition of the two upper
For example ifé5; is set to zero, it means that, in the absence
of stark shifts, the transition frequeneys; coincides with
the photonic band edge,, and therefore the shiftdws,(t)
slightly tune level3) in and out of the band gap in a random
fashion.

Figure 10 depicts the excited-state populatiojft) on
level |3) as a function of the scaled tingt for 5=0 and for
different values o), when Sws(t) and Swo;(t) are taken o3y
as Gaussian random variables of zero mean ang 0&5i- g
ance. These and other numerical simulations show that, even
when the dephasing ratg;q is comparable tg, the phase
sensitive memory effects which we obtained without includ- ",\
ing dephasing effects, can be recaptured provided that the o1} % VRN
external Rabi frequenc§ is large compared to the dephas- hd \\_
ing rate. In other words, dephasing effects simply determine N e
the minimum required intensity of the external laser field for o, s ST s
achieving coherent control of radiative dynamics. The effect Bt
of the random shifts of the atomic leve8) and|3) on the FIG. 11. V-system coherenca(t) = |by(t)b2 ()| between lev-
coherencen (t) between the levels is shown in Fig. 11. We : . ; _

. G\ ) els|3) and|2) near the isotropic photonic band edge as a function
see that, !USt n the.c.ase .Of populations, these effects can l3)‘?the scaled timg3t for = m/4 and¢= — 7/2 in the presence of
offset by intense driving fields. dipolar dephasing Gaussian random Stark shifis;;(t) and
Swy4(t) (each of zero mean and ®B5variance of the transition
frequenciesws; and w,,. The different choices of the control laser

) ) ) amplitude are dashed curveQQE&0), dot-dashed curve (X
In this paper we have investigated the coherent control ot g.58), and solid curve Q=58). In the absence of the random

spontaneous emission from a three-level atom in a photonigtark shifts, the band edge is assumed to be midway between the
band-gap structure with one resonance frequency near th&o upper levels with detunings;= — 8,,=0.58. Compare this
edge of a photonic band gap. We have shown that spontangigure with the corresponding figurfgsig. (7)] in the absence of
ous emission from the three-level atom can be totally supphonon-mediated dephasing.

03 -

05

0.4 '\

0.2

VII. DISCUSSION AND CONCLUSIONS
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levels. The steady-state atomic population on the upper levonic band gap is engineered to occur at 1,&. For an

els of the three-level atom depends sensitively on the initiainverse opal structure, composed of pure silicon, it is esti-
coherence as well as on the phase and intensity of the contrplated[7] that such a PBG would occur for a fcc lattice of
laser field. This provides the basis for a quantum opticabverlapping air spheres of diameter in the range
memory device on the atomic scale. For instance the tw&50—900 nm. In spite of the screening of the atomic transi-
upper levels of the three-level system can be used as qubit®n by the outer shells, it is likely that thermal phonons in
to encode information for quantum computation. This modethe silicon host would cause significant dephasing of the
system may be realized by optically trapping cold atoms irquantum degrees of freedom within the erbiurh ghell.

the void fraction of a three-dimensional photonic band-gagconsequently such a system must be cooled to liquid-helium
material. temperatures.

In determining the effects of the PBG on the emission As discussed earlier, an alternative to ion implantation is
dynamics of our model system, we employed the effectivéhat the active elements be incorporated inside a photonic
mass dispersion relatiof81). Strictly speaking, such a dis- crystal by pumping a dilute atomic vapor into the void region
persion relation is valid only near the edge of the gap. Thereof the crystal. If such atoms are optically trapped in the void
fore, the quantitative results derived from it cannot, in prin-regions, they are not in mechanical contact with the vibra-
ciple, be extrapolated to the whole gap. However, ondional degrees of freedom of the dielectric host and therefore
expects that the effective-mass approximation gives qualitad0 not experience phonon dephasing effects as in the case of
tively correct physicg8] and that a full dispersion relation €rbium-doped silicon. Doppler broadening due to the random
may only introduce quantitative corrections. Even so, invesmotion of the gas molecules may be partially alleviated by
tigation of our model system using a full anisotropic disper-laser-cooling technique$1].
sion relation of a realistic band struct|&59] is a worthy A third approach to realize our model system is by means
undertaking. This would involve a realistic evaluation of the Of an “artificial atom” or quantum dot structure embedded
Green's-functior{see, for instance, EGA5)] using the full  in the solid fraction of the PBG material. Semiconductor
dispersion relationw, appropriate to a real photonic crystal. quantum dotgQD’s) are nanoscale quantum structures that
The resulting equations of motion for radiative dynamicsallow electronic properties to be tailored through quantum
would then need to be solved numerically. confinement. They exhibit distinctive features similar to at-

In our model system we assumed that single-photon sporfMs such as atomiclike excitation spectra with discrete and
taneous emissiofon the transitior|2)—|1) for theV con-  extremely sharp spectral lin¢62]. With their well-defined
figuration or on the transitiof8)—|2) for the A configura- localized states, QD’s offer the possibility of coherent ma-
tion) is either forbidder(leading approximationor leads to a  Nipulation of a single localized quantum system in a way
photon-atom bound state in the presence of a complete ph&imilar to that achle_ved in atoms but with the technollog|cal
tonic band gap. However, many of the effects we have deddvantages of a solid-state system. The coherent optical con-
scribed may be observable even in the absence of an idelip! of an exciton wave function in a QD and, in particular,
PBG. A Comp|ete 3D gap requires rather Stringent materia‘he manipulation of the relative phases of the Eigenstates ina
parameters_ In many photonic Crysta|s which do not have guantum SUperpOSition of states, was demonstrated in Ref.
complete gap, what one obtains more easily is a pseudogaB??’]- QD structures wi.th stronger confinement are expected
where the density of states is significantly reduced from thato have reduced coupling to phondiéel] and reduced spon-
of free space but is not absolutely zero. In such a pseudogafﬂneous radiative emissidi65], and may well have much
single-photon spontaneous decay will not be strictly forbid-longer intrinsic coherence times. These properties of QD’s,
den but the decay rate will be significantly smaller than thafvhich are necessary for the implementation of various
in free space. If the depression in the local density of state§chemes for quantum computation and coherent information
[7] in the vicinity of the impurity atom is large enough as to Processing, will be further enhanced by incorporating the
make the spontaneous emission lifetime of an excited stat@D’s within a PBG material.
inside the pseudogap longer than all other relevant time
scales in the system, such a pseudogap, with the impurity ACKNOWLEDGMENTS
atom suitably located, may lead to memory and coherent
control effects that are qualitatively similar to those pre-
dicted in this paper.
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dope an existing PBG material using ion beam implantation

methods. For example, it was recently shown @i er-

bium atoms implanted into bulk silicon exhibit sharp free-

atom-like spectra. Intense photoluminescence at Jubd is In this appendix we will derive the various expressions

observed in the system at low temperatures. The radiativior the Green’s functions used in the text. We start from Eq.

transition of this system arises from the atomit ghell  (52),

which is effectively screened by outer shells from the crystal

fields of the silicon background. It would be of considerable Ciy— 11 mlo—inM(t—t") _

interest to study the radiative properties of erbium atoms Gim(t=t1) %:‘ iadia ® T (I.m=2.3,

implanted into a 3D silicon PBG material in which a pho- (A1)

APPENDIX A: NON-MARKOVIAN MEMORY KERNELS
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where,u‘knlzwk—wml. Whenl=m, Eq.(Al) reduces to Eq.
(18). Substituting forg)L andg{}* from Eq. (48), we obtain
g ~ ~ ~ ~ 1 _.oml.
Gin(t=t)= 2 (8- A1) (8o Ang)—e 14 1),
V K\ Wy
(A2)

where

(A3)

e

wlzldlzl) (

wrznldzml
2he, '

2he,
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COS|1COSa 1+ COSf311COSBm1
=coga+cogB=1-cosé. (A9)

Using this in Eq.(A8) we obtainz,=1. It follows that

Nm= Oim T 7(1= 6im), (A10)
where §,,, is the Kraonecker delta function, and
3
n= 5[ (COS31COS@,q+C0SB31C0SB,1)d).
(A11)

Assuming that the modes of the field are closely spaced in - -
frequency, we make the continuum approximation for theThus7=1, whend,;=*dp;.

field modes and replace the summation dvéry an integral,

f d3k,

where d*k=k?dkd(2, dQ being the space angle element.

Thus
{ 8w
(2m)% 3 f

X(ém\'aml)

2 V

K oo(2m®

(A4)

Gm(t—t")=

3 ~ A
87 > (8a-di)

ie*i(wk*wml)(t*t’)df%k_
W

(A5)

This is a general result valid for any dispersion relatign
When the dispersion relation is isotrogice., whenw, de-
pends only on the magnitudeof k), Eq. (A5) reduces to

. 8w Al ,
Gim(t—t')=——— —e (@ em) (- 2gk,
Im( ) (277)3 3 Mm 0 @k
(AB6)
where
3 N A A
ﬂlngf ; (8 di1) (6 - A1) dQ, (A7)

andA=mc/% is the Compton wave number of the electron.

We have introduced the cutoff in the photon wave vector

[66] as the contributions of extremely high-energy photons
cannot be important. The the nonrelativistic approximation

for the electron is not be valid for photons of enerkyy

For vacuum we use the isotropic dispersion relatign
=ck. The emitted radiation is centered about the atomic
transition frequencyw,= w,; the quantityw, varies very
little around w,=w,,;. We can, therefore, repladé/ w in
Eq. (A6) by w,;/c? and extend the limits of integration to
+ oo to obtain

[}

I

gwml 8

S e ok om) () g,
(2mc)® 3 "

Gm(t—t")=

(A12)

In other words,

G(t—t")= 77Im\/')’Il')’ml(‘J‘)ml/wll) o(t—t'), (A13)

where

3 42
1 4w]ldjl

B dme, 3ficd

Vi1 (j=32 (A14)

is the vacuum spontaneous emission rate for the transition
|i)—]1). Assuming that the upper leve|8) and|2) are
close together so thaé.,;/w;;~1, we finally obtain

Gim(t—=t") = mm Vi1 Ymio(t—t").

For a PBG material described by the isotropic effective-
mass dispersion relatiof30), Eq. (A5) takes the form

(A15)

8
?nlme

{
(2m)®

i S (t—t")

Gm(t—t")=

A kze—iA(k—k0)2(t—t’)

J|
ko wC+A(k_ko)2

dk, (A16)

~mc?. Consider a coordinate system defined by the unitvhere Sm = 01— w, is the detuning of the atomic transi-

vectors{&,, ,&,,k}. Defining{a;;,Bj1,6;,} as the direction
angles of the dipole moment unit vectyy (j=1,m),

3
Mm=g— f (COSa;1COSay; + C0SB1C0SBm1)d.
(A8)

If the dipolesd,; andd,,; are parallel or antiparalléko that
ap=*am=a, B1=*Pm=p, and 6;;=* 0, =0), the
law of direction cosines gives

tion frequencyw,,; from the band-edge frequenay,. The

integral in Eq.(A16) can be approximated by replacikdy

ko outside of the exponential and extending the wave-vector

integration to infinity, which then reduces to a complex
—iml4

Fresnel integral given bj67]
\/— (A7)
2JA V-t

Using Eq.(A3) and the fact thah~ w./k3, we obtain

fxe—iAuz(t—t’)du:
0
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ol [Omu(t—t") = /4] y

Gim(t—t")= i VBL ﬁii—,, (A18)
m(t—t")

where

e+ iT

1 wjlwslzd

e —3ﬁ03 (A19)

3/2_
Ai1 47e,

This expression may be further simplified by assuming tha E
the upper levelg3) and|2) are close together so thats;
~wy~w,. We then have L

1 o
32532, 32— 31
VB2 B3~ B Tre.

€ 3ﬁ03 '

(A20)

As shown previously10], for a two-level atom placed inside / et
a photonic crystal of band-edge frequency nearly resonar

with the atomic transition frequency, the upper level splits
into a doublet because of the strong interaction between th
atom and its own localized radiatioB. gives the magnitude
of this frequency splitting for the isotropic dispersion rela-
tion (30). The dipole moment of a hydrogenijthat is, one

FIG. 12. The contour used in the complex inversion formula

electron atom can be approximated log;~ea,, whereeis (B1).

the magnitude of the electronic charge ad-0.5 A is the 12

Bohr radius. Moreover for optical transition frequencies 1 ,10’ d

w3;~10' Hz. Using these in Eq(A19) we obtain 8 YT Ame,  3pc3 (A24)

~10 'w,. Thus when the band edge, is in the optical
regime, 8 will be comparable to the ordinary Lamb shift of
the 2S;,, level of hydrogern 8].

For a PBG material described by the anisotropic effective-
mass dispersion relatio(81), the general expressiof\2)
takes the form

Equation(A23) may be further simplified by assuming that
the upper level§3) and|2) are close together so thats;
~wy~w,. We then have

1 wg’fd
Va1 (31~ A= 47T60 3ﬁc (AZS)

{ 8w (5 (t— ,f 3 A~
—t") = P m1(t—t") J— .
Gim(t—t") (277 3 e 8 ; (&~ din)
The full expression of5,,(t—t’), including its short-time

—i - 20t —t! . . .
e~ Akt behavior, is given elsewhefd9].

X (8r+ A1) d3k. (A21)

we+ A(K—kg)?
APPENDIX B: TIME DEPENDENCE OF THE ATOMIC

Making the substitutiorg=k—ko, so thatd’q=gdqd®, AMPLITUDES AND THE STRONG-FIELD LIMIT
performing the angular integration, and extending the wave-
vector integration to infinity, we obtain The amplitude$, (t) are found from the inverse Laplace
transform of the expressions f&ynrz,3(s+i6) given by Egs.
Gy (t—t)— 4 8_7T7llmei sa(t-ty L (363 and(36b) through the complex inversion formula
(2m)® 3 1 .
X et+iw
- @ IAG(t-t) e"‘*‘bj(t)= Z_mJ _ eSfBj(s+i6)ds. (B1)
x f ——————q’dg, (A2
0 w./A+q

o ) ) Here the real numberis chosen so that= € lies to the right
wheren is given by Eq.(A8). For larget—t', the integral  of all the singularitiegpoles and branch pointsf the func-
in Eq. (A22) is dominated by the stationary phase paint yi,nsF, (s+i5). It is apparent from Eq37) thats=0 is a

- —ax -312 ~
=0. This yields(using fgx*e ™ dx= Jma~ 4 branch point of bothb, (s+i4). In order to evaluate Eq.

i[Oy (t—t')+ /4] (B1), we consider_ the conto_l@ shown in Eig. 12, where the.
(1= = s s o=t Banch Lol he tegrand s chosen o e alon the g
>1, (A23) 1
where o 3§Cesf5j(s+ i 8)ds=Reum, (B2)
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whereRg,is the sum of the residues of the integrand at the
poles enclosed by the contoGr Omitting the integrand, we

have
R _1 f‘ 1
S omi Jo 2w

g I R I g W

(B3)

X

In the limit r—0 andR—c (so thatT—«), the second,
fourth, and sixth integrals on the right-hand side of EBB)
approach zero and, according to EBJ1), the first integral

givese ''b,(t). Thus
e . (1) =Ry~ lim if +f (B4)
J sum Roor0 2 EH KL .

We first calculatebs(t). Along EH, s=xe'™=—x. Using
this in Eq. (363, we obtain

lim J eShy(s+id)ds
R—o,r—0 JEH

B f“ [(—x+i8)cosd— Qe ?single
0 (—x+i8)2—ae ™ —x+i8) X+ 2

dx. (B5)

Similarly, along KL, s=xe '"=—x. Using this in Eq.
(36a, we obtain

lim f eShy(s+id)ds
KL

R—o,r—0
foc [(—x+i8)cosd—Qe'?single
=— . . - dx.
0 (—Xx+i8)2+ ae” ™ —x+i )X+ Q2
(B6)

Using Eqgs.(B5) and(B6) in Eq. (B4), we then obtain

B aeiw/4 wgs(x)e—(x—iﬁ)t
€ I&ba(t):Rsum_" = jo

Z(X)

dx, (B7)

where

gs(X)=[(—x+i8)cosd— Qe *sin 0](—x+i8) VX,
(B8a)

Z(X)=[(—x+i8)?>+Q%]°+ia?(—x+id)>x. (B8h)

Next we evaluate the total residi,,,,. From Eqs.(363
and(37), we have

e (s+id)=[(s+id)coss— Qe ?sinh]es
4 iar
x [ ——.

2
i

(B9)

j=1  s—iu

Clearly, the functioneSfB3(s+i5) has simple poles as$
=iuf,(j=1,...,4). TheresidueR, ats=iuj is then
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Re= lim (s—iud)esby(s+id)=[(uZ+ 6)cosd
sﬂiui
(VuZ+uy) - - (Vui+uy)

+iQe *sin geluct
(Ug—uf) (ug—up) (Ug—up)

(k#l#m#n). (B10
Numerical examinations show that the roats; are real (I,
is positive butus is negative. The rootsu, , are complex
conjugates of each other with a negative real pagtgndu,
lie in the third and second quadrants, respectiveélfus the
negative rootus lies outside the contout, so that the resi-
due atug is R;=0. For the complex rooti, (which has a

positive imaginary pajt the factorei“‘ztt increases exponen-
tially in time and therefore is unphysical. Thus for this root
we choose the negative branch of the square root function
and set\/Ui+ u,=0 so that the residue at, is R,=0. On

the other hand, for the positive rooi and the complex root

u, we choose the positive branch of the square root function
and set\/ajz= uj, (j=1,2). The residues at; andu, are

— iu-2t H—-
where
2Uj
Pj:
(U;=u)(U;—Up) (uj—up)
(I,mn=1,...,4j#1#m#n), (B12a
Qs = (u’+ &) coso+iNe ?sing. (B12b)

The sum of the residues of the functietbs(s+i &) is then

4 2
L2
Rsun™ 2, R":,Zl P;Qse'uit. (B13)

k=1

Using this in Eq.(B7), we finally arrive at the desired result
(413. Following exactly the same procedure, we also find
that

2
Lo 2
by(t)= >, P;Qye'(ti* o
<1

+aQei(¢c—w/4) ocgz(x)e—(x—ia)tdx ©1)
o 0 Z(X) '

whereP; andZ(x) are the same as those fiog(t) and
Qy= (U’ + au;+ 8)e'*rsin 6—iQe'*ecoss, (B15a

0o(X)=[(—x+i8)cosd— Qe ?sind]\X. (B15b)

For a very strong control laser fieltvhenQ> a2, 8) the
roots given by Eqs(3939 and (39b) satisfyu;~+Q, u,~
—JQ andu,=u} ~—o,—iQ so thatP;~1/2Q,

Qaz~Q[cosh+ie *sind], (B16a
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Q,1~ —iQe ¥ cosh+ie'?sing]. (B16b u=—(2a26%)1 [(A+1)—(A-1)¥3], (Cde

Using these in Eq943) and(45), we obtain A=[1+(4127)(251a%)¢]Y>. (C4f)
1 ) . Equation(C4e shows that the quantity is always nega-
Ngs~Nas~ 7 (1=sin26sing), (B1738  fie. Thusé, ando, , are positive whereas, is negative. It

follows that the roots

(1-sin20sing)  (B17b Vig=—|og|l2= (01/2)2+| &, (C5)

for the steadv-stat | ¢ lati d coh are both real. Moreover, numerical analysis shows that
or the steady-state values of populations and coherences m(01/2)220 for all 6. The equality sign holds fo6=0

the limit of a strong driving field. (i.e., when the upper leve|8) and|2) are degenerateThus

e~

bs(t)b3 (1)~ —

APPENDIX C: QUANTUM BEAT CASE Vo=V = —0ol2—i[E1— (0212)7], (C6)

When 0=0, Egs.(63a and (63h can be solved by g4 that the roots, andv, are complex conjugates of each
means of Laplace transformations to give closed analytic ex5iar. Equation$C23 and (C2b) can now be invertedfol-
pressions for the amplitudés 5(t). These expressions take lowing the procedure described in Appendi, B give
particularly simple forms when the band edggis midway
between the two upper of levels of thé system(so that 2 ., g4 = fo(x)e” Tidgx
831= — 6= 6=0) and when the atomic dipoles associated bs(t)= >, E;F5e (i " It+ f W ,
with the transitiong3)—|1) and|2)—|1) are parallel or =1 ™ Jo ()
antiparallel(so thatn=1). In this special case Eq§3a (C73
and (63b) reduce to

2 il s
b,(t)= >, Ej|:2jei(vj2—6)t_{_eI j fo(x)e” X otdx
=1

I i ! ’ ’ ' ’ ™ 0 W(X) ’
hz(t)—léhz(t)—foG(t—t JLho(t")+hg(t")]dt’, (C7b
(€13 where
. t
ha(t)= —iahs(t)—f G(t—t")[hy(t')+hs(t)]dt". E_ 2v;
0 (C1b J (Vj_VI)(Vj_Vm)(Vj_Vn)
Upon taking the Laplace transforms of these equations, we (bmn=1,....4j#l#m=#n), (C8a
find that
Faj=(vi=8)bs(0)+vjp
H _ imla
Fi(s)= (S+'5)b2[()((’; pe™s (23 =(v2+ av;— 8)bs(0) — avjb,(0),  (C8b
. Faj=(vi+8)bs(0)—vjp
. (5—18)bs(0)+ pei ™5 L :
hs(s)= D(s) , (C2p =(vi+av;+8)by(0)—avjby(0),  (C89
where fa(x)=[— p(x*+ 5%) + 2ab,(0) (x+i 8)X] VX,
(C8d
p=a[b3(0)—b,(0)], (C339
T 1200 =[p(x+ 5) + 2ab,(0) (x—1 5)x]\X, (C8
4
D(s)=s?+2ae'™s\s— =[] (Vs—e'™)), W(X)=(x*+ &%) % +ida’x>. (C8f)
j=1
(C3b APPENDIX D: TWO-LEVEL ATOM
and « is defined _in4Eq.(33)3. ngevj(j =1,...,4) are the Consider the special case of our model system wfen
roots of the quartia®+2ax®—6°=0 and are given bJ50]  _ e when the upper level8) and|2) are not driven by
_ — e a control laser field and single-photon spontaneous emission
V13= ~01/2EN(01/2)"= &, (€48 for the transition2)—|1) is assumed to be forbidden. This
. means that the population of levi@) cannot decay directly
Vo=V = 0l2—ié — (0212)?, (C4D {0 level|1). Its only decay mechanism is indirectly through
level |3) via the couplingQ. If Q=0, level |2) will be
o1p=at Va?+u, (C40 completely decoupled from the rest of the system, and our

model system of Fig. 1 is effectively a two-level system
1= U2+ \[(u/2)%+ &2, (C4d  consisting of level§3) and|1). In this case Eqs(199 and
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(19b) reduce(assuming that the atom is initially on the upper tends to zero as— .
level |3) so thatd=0) tob,(s)=0 and (b) If 0<8=<(/2)?, both rootsv, , are negative and lie
outside the contour of integration. In this case we obtain
~ 1

ba(s)=———. (D1) ba(t)=1(8,t), 0=<6<(al2)? (D8)
s+ G(s)
wherel (8,t) is given by Eq.(D7).
(0) If 6>(al2)?, roots (D4) are complex conjugates of

each other given by

Using Eq.(35), this can be written as

ba(s+i8)=1/D(s), (D2)

where T T [ O
Wy =w; == 5 i |8 (2> (D9)

2
D(s)=s+ae' 7/4\/5“52 11;[1 (\/g_ emMVj)- (D3) In this case the residue correspondingmgis zero and we

obtain
Herev; (j=1,2) are the roots of the quadratic equaticn o
+ax+6=0, and are given by ba(t)=d,; M1t +1(5,t), 6>(al2)> (D10
a [[a\? whered; = 2w, cosé/(w; —Ww,).
Vig= ™ 5 = 2] S, (D4) Since the root, is positive while the rootv, is complex

with a negative real part, the first term on the right-hand side
The amplitudebs(t) is found from the inverse Laplace trans- of Eq. (D6) is a nondecaying oscillatory term while that of
form of by(s+i &) through the inversion integral of E(B1).  EQ. (D10) decays in time and tends to zero tas«. The
Following the method of Appendix B and using the contourterm1(4,t) also decays in time and tends to zerotas~.

of Fig. 12 yields the results listed below: The steady-state population on the upper &l is then
(@) If <0 (upper level 3) is inside the gap roots(D4) given by
are given by

Ar2[(ry—1,)? if <0
o a2 nae=lim[by()|2={ 11 2 _
ro=—5*\|5| +ld. (D5) tee 0 if 6=0.
he2 2 (D11)

Thusr, is positive, whereas, is negative and lies outside Thys for the two-level systerftonsisting of the ground level

the contour of integration. In this case we obtain |1) and the excited leveB)) placed inside a PBG structure
2+ 5yt described by the effective mass anisotropic dispersion rela-
by(t)=c17 ¥ +1(6t) <0, (D6)  tion [Eq. (31)], fractionalized steady-state inversion occurs

only for §<0 (i.e., for w3;<w,). On the other hand, for

wherec,=2r,/(r1—r5), and the branch cut contribution such a two-level system in the isotropic mofleh. (30)], it

B o L was shown[10] that fractionalized inversion occurs even
1(8,t)= € dx (D7)  Whenwg, is slightly greater tham,, that is, even when the
T Jo (—x+i8)%+ia’x excited state liegutside(but not far from the band gap.
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