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Numerical study of multisoliton configurations in a doped antiferromagnetic Mott insulator
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We evaluate from first principles the self-consistent Hartree-Fock energies for multisoliton configurations in
a doped, spin-12 , antiferromagnetic Mott insulator on a two-dimensional square lattice. The microscopic Hamil-
tonian for this system involves a nearest-neighbor electron hopping matrix elementt, an on-site Coulomb
repulsionU, and a nearest-neighbor Coulomb repulsionV. We find that nearest-neighbor Coulomb repulsion
on the energy scale oft stabilizes a regime of charged meron-antimeron vortex soliton pairs over a region of
doping fromd50.05 to 0.4 holes per site for intermediate coupling 3<U/t<8. This stabilization is mediated
through the generation of ‘‘spin flux’’ in the mean-field antiferromagnetic~AFM! background. Spin flux is a
form of spontaneous symmetry breaking in a strongly correlated electron system in which the Hamiltonian
acquires a term with the symmetry of spin-orbit coupling at the mean-field level. Spin flux modifies the single
quasiparticle dispersion relations from that of a conventional AFM. The modified dispersion is consistent with

angle-resolved photoemission studies and has a local minimum at wave vectorkW5p/2a(1,1), wherea is the
lattice constant. Holes cloaked by a meron vortex in the spin-flux AFM background are charged bosons. Our
static Hartree-Fock calculations provide an upper bound on the energy of a finite density of charged vortices.
This upper bound is lower than the energy of the corresponding charged spin-polaron configurations. A finite
density of charge carrying vortices is shown to produce a large number of unoccupied electronic levels in the
Mott-Hubbard charge transfer gap. These levels lead to significant band tailing and a broad midinfrared band
in the optical absorption spectrum as observed experimentally. In the presence of a finite density of charged

meron-antimeron pairs, the peak in the magnetic structure atQW 5p/a(1,1), corresponding to the undoped
AFM, splits into four satellite peaks that evolve with charge carrier concentration as observed experimentally.
At very low doping (d,0.05) the doping charges create extremely tightly bound meron-antimeron pairs or
even isolated conventional spin polarons, whereas for very high doping (d.0.4) the spin background itself
becomes unstable to formation of a conventional Fermi liquid and the spin-flux mean field is energetically
unfavorable. Our results point to the predominance of a quantum liquid of charged, bosonic, vortex solitons at
intermediate coupling and intermediate doping concentrations.@S0163-1829~99!06923-4#
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I. INTRODUCTION

A microscopic description of doped, spin-1
2 , Mott

insulators1,2 is a central issue in the understanding
strongly correlated electrons and high-temperat
superconductivity.3 Of particular interest is the intermedia
doping regime ofd50.0520.30 charge carriers per lattic
site on a two-dimensional square lattice. In this regime it
been observed, in a variety of cuprate superconducting
terials, that long-range antiferromagnetic~AFM! order is de-
stroyed by the presence of charge carriers and that t
charge carriers lead to a variety of non-Fermi-liquid char
teristics in the transport and electromagnetic response.
electrical,4 magnetic,5 and optical properties6 of the doped
parent compound, from which superconductivity emerg
are among the most glaring and profound mysteries in s
state physics today.7,8

In most theoretical studies of the doped Mott insulator
has been assumed that the Coulomb repulsion between
trons can be described by a Hubbard model in which
interaction is replaced by a pointlike on-site interactio
Moreover, it has been assumed that the on-site Hubbard
rameterU is an order of magnitude larger than the neare
neighbor electron hopping energy scalet. This picture is
PRB 590163-1829/99/59~23!/15143~17!/$15.00
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based on the Fermi-liquid theory notion of screening of
effective electron-electron interaction. However, it is th
same Fermi-liquid picture that studies of the Hubbard mo
seek to supplant. In some recent papers9–12 we have shown
that the nearest-neighbor Coulomb interaction is a hig
relevant perturbation that can lead to an entirely differ
type of broken symmetry in the many-electron system.
the mean-field level we showed that Coulomb effects m
give rise to a mean-field~Hartree-Fock! state in which the
Hamiltonian acquires a term with the symmetry of a sp
orbit interaction. In this state, which we refer to as a sp
flux phase, the internal wave function of the electron~in spin
space! undergoes a 2p rotation as the electron encircles an
elementary plaquette of the two-dimensional~2D! square lat-
tice. It was shown that spin flux itself is a dynamical variab
that appears in quantized units and is carried by neutral s
mion textures even within the undoped AFM. It was show10

that in the presence of a mean field of such spin flux,
mean-field ground-state energy is lower than in the abse
of the spin flux~i.e., in the conventional AFM phase! for a
large range of doping concentrations and on-site repuls
strengthU.

These early comparisons of the spin-flux states with n
spin-flux states10 assumed that the doping electrons~holes!
formed extended states within the Mott-Hubbard bands le
15 143 ©1999 The American Physical Society
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15 144 PRB 59MONA BERCIU AND SAJEEV JOHN
ing to a global twist of the AFM background into a sing
wave-vector, incommensurate spiral state. More recently
have shown that the added charge carriers find it energ
cally favorable, in the majority of cases, to nucleate a po
defect in the AFM background~charged magnetic soliton!
rather than occupy a band state.11,12 The existence of thes
charged solitons provides a remarkable and clear mi
scopic mechanism for non-Fermi-liquid behavior in a dop
Mott insulator. Starting from the microscopic many-electr
Hamiltonian, we derived a simple continuum model for t
description of the magnetic soliton textures, such as skyr
ons and merons, which are generated by doping of the a
ferromagnetic parent compound. This continuum model
captures the Mott-Hubbard gap structure by retaining
exact electron dynamics and AFM spin correlations on
scale of the elementary lattice plaquette. It is approximat
the sense that it assumes that the local magnetic struc
varies slowly from one plaquette to the next and that
electron dispersion relations are linearized about the rele
Fermi points. The existence of magnetic textures leads to
appearance of bound levels deep inside the Mott-Hubb
charge-transfer gap. A doping hole can considerably lo
its energy by occupying such a bound level, with the eff
that the hole becomes trapped in the core of the magn
soliton, in turn stabilizing the soliton. This leads to a striki
analogy between the 2D AFM and the 1D polyacetylene.13 In
both cases, the mean-field ground state of the undoped
tem is degenerate as a result of broken symmetry. In b
cases, doping induces topological fluctuations~solitons! that
tend to restore the broken symmetry. In particular, we h
shown that skyrmions~magnetic spin polarons! are the 2D
analogs of 1D polarons in polyacetylene, while charg
meron vortices are the 2D analogs of the charged bos
domain-wall solitons in polyacetylene.14 At the topological
level a polaron in one dimension can be thought of a
tightly bound pair of domain walls, whereas a skyrmion
two dimensions is topologically equivalent to a bou
meron-antimeron pair.15 The analogy also holds at the lev
of the electronic structure. Both the 1D domain wall in po
acetylene and the 2D charged meron vortex in the AFM l
to the occurrence of mid-gap electron states in their resp
tive one-electron band structures. It is well known that
polyacetylene, the first charge carrier added to the undo
polymer creates a polaron around itself, while a seco
charge carrier causes this polaron to split into two indep
dent domain walls, each carrying one dopant. W
suggested12 that a similar picture holds in the 2D AFM: Th
first hole is cloaked by a magnetic spin polaron, while
second hole causes the polaron to split into a bound me
antimeron pair, each vortex carrying a doping charge.

Neutral vortex-antivortex bound pairs may appear with
doping in the layered AFM parent compound as the temp
ture is increased.16 At finite doping, similar charged pair
appear even atT50 since the increase in energy due to t
distortion in the AFM background is compensated for by
energy gained through trapping the holes in midgap st
near the vortex cores. If the doping reaches a critical va
these pairs may unbind even atT50, leading to the destruc
tion of long-range AFM order. For dopings smaller than th
critical doping, a finite temperature may also entropica
e
ti-
t

o-
d

i-
ti-
-
e
e
in
re

e
nt

he
rd
r
t
tic

ys-
th

e

d
ic

a

d
c-

ed
d
-

e

n-

t
a-

e
es
e,

drive the transition from the AFM ordered state to a dis
dered ‘‘spin liquid.’’

In this article we treat theT50 case and demonstrate th
a transition from a dilute gas of charged spin polarons t
liquid of charged meron-vortex solitons takes place for int
mediate doping and for intermediate values ofU/t in the
Hartree-Fock picture. The meron vortices are bosonic cha
carriers, with deep electronic gap levels localized in th
cores. The bosonic character may provide an explanation
the unusual non-Fermi-liquid properties of the metal o
served in the intermediate doping region, while the deep
electronic structure may be related to the doping-indu
band-tailing effects and the observed broad midinfrared
tical absorption band. At higher dopings, we show that
conventional phase with fermionic charge carriers has
lower Hartree-Fock energy. This is consistent with the o
served transition to a normal metal when the cuprates su
conductors are overdoped.

Consider a strongly interacting quasi-two-dimension
electron gas described by the tight-binding Hamiltonian

H52(̂
i j &
s

t i j ~ais
† aj s1H.c.!1(

i , j
Vi j ninj , ~1!

whereais
1 creates an electron at sitei with spin s, t i j is the

hopping amplitude from sitej to site i on the square lattice
ni[(s51

2 ais
† ais , and Vi j is the Coulomb interaction. Fo

nearest-neighbor hopping (t i j 5t0) and purely on-site Cou-
lomb repulsion (Vii [U), this reduces to the one-band Hu
bard model. In order to describe the possibility of spin ro
tion during the process of electron hopping, we retain
nearest-neighborCoulomb repulsion (Vi j 5V). Using the
Pauli spin-matrix identity1

2 sab
m (sa8b8

m )* 5daa8dbb8 , it is
possible to rewrite the electron-electron interaction terms
the exact formninj5(21d i j )ni2

1
2 L i j

m(L i j
m)1. HereL i j

m are
bilinear combinations of electron operators defined byL i j

m

[aia
† sab

m aj b , m50,1,2,3. s0 is the 232 identity matrix,

sW [(s1,s2,s3) are the usual Pauli spin matrices, and the
is implicit summation over the repeated indices. The qu
tum expectation value of theL i j

m operators foriÞ j is asso-
ciated with charge currents (m50) and spin currents (m
51,2,3). Likewise, the quantum expectation value ofL i j

m for
i 5 j describes the on-site charge densityQi5L i i

0 and the
on-site spin-densitySi

a5L i i
a , a51,2,3. In the AFM spin-

flux model9–12 we adopt the ansatz that there are no cha
density waves~CDW’s! or charge currents in the groun
stateL i j

0 50. For positive on-site Hubbard interaction, an
CDW would considerably increase the mean-field grou
state energy. Circulating charge currents are accompanie
magnetic fields and have been considered in the contex
conventionalflux phases.17 However, such states are not o
served experimentally in the cuprate superconductors. On
other hand, we incorporate the experimentally obser
AFM spin-density background̂SW i& and we postulate the ex
istence of circulating ‘‘spin currents’’ that take the form

^L i j
a &5(2t0 /V)D i j n̂a , whereuD i j u5D for all i j and n̂ is a

unit vector. In the spin-flux phase, these spin currents do
cause any rotation of the local magnetic moments^SW i&. In-
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stead, they correspond to rotations in the internal spac
Euler angles~phase changes! as the electrons circulat
around lattice plaquettes.

Implementing this ansatz with the help of the mea
field factorization L i j

m(L i j
m)1→^L i j

m&(L i j
m)11L i j

m^L i j
m&*

1^L i j
m(L i j

m)1&22^L i j
m&^L i j

m&* for iÞ j and making the
Hartree-Fock factorization for the on-sitei 5 j terms, we ob-
tain the mean-field Hamiltonian

H5Hel1Hconst,

where

Hel52t (
^ i j &,ab

~ai ,a
† Tab

i j aj ,b1H.c.!

2U (
i ,a,b

ai ,a
† ~SW i•sW a,b!ai ,b1

U

2(
i ,a

~Qi21!ai ,a
† ai ,a

~2!

and

Hconst5U(
i

S SW i
22

1

4
Qi

21
1

2
Qi D . ~3!

Here Tab
i j [(dab1 iD i j n̂•sW ab)/A11D2 are spin-dependen

SU~2! hopping matrix elements defined by the mean-fi
theory andt5t0A11D2.

In deriving Eq. ~2! we have dropped constant terms
well as terms proportional to( ini obtained from the mean
field factorization of the nearest-neighbor Coulomb inter
tion. However, we have kept all terms obtained from t
Hartree-Fock factorization of the on-site Coulomb repulsi
Thus the entire effect of the nearest-neighbor Coulomb in
action is the renormalization oft and the appearance of th
Tab

i j phase factors in the hopping Hamiltonian.
It was shown previously9,10 that the ground-state energ

of the Hamiltonian of Eq.~2! depends on the SU~2! matrices
Ti j only through the plaquette matrix productT12T23T34T41

[exp(in̂•sWF). Here F is the spin flux that passes throug
each plaquette and 2F is the angle through which the inte
nal coordinate system of the electron rotates as it encir
the plaquette. Since the electron spinor wave function is
valued, there are only two possible choices forF. If F50
we can setTab

i j 5d i j and the Hamiltonian~2! describes con-
ventional ordered magnetic states of the Hubbard model.
other possibility is that a spin fluxF5p penetrates each
plaquette, leading toT12T23T34T41521. This means that the
one-electron wave functions are antisymmetric around e
of the plaquettes, i.e., that as an electron encircle
plaquette, its wave function in the internal spin space of E
ler angles rotates by 2p in response to strong interaction
with the other electrons. We call this the spin-flux pha
This uniform spin-flux phase is accompanied by an AF
local moment background~with reduced magnitude! and
may be regarded as an alternative mean-field ground sta
the conventional AFM phase of the Hubbard model. In
spin-flux phase, the kinetic energy term in Eq.~2! exhibits
broken symmetry of a spin-orbit type. This form of spon
neous symmetry breaking occurs over and above that a
ciated with conventional antiferromagnetism. It is also d
of
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tinct from the smaller, conventional spin-orbit effects th
give rise to anisotropic corrections to superexchange inte
tions between localized spins in the AFM.18 We emphasize,
however, that this AFM mean field is a ‘‘false groun
state’’19 at finite doping, analogous to the ‘‘false vacuum’’ i
early models of quantum chromodynamics.20 In the presence
of charge carriers this mean field is unstable to the prolife
tion of topological fluctuations~magnetic solitons! that even-
tually destroy AFM long-range order. In this sense, t
analysis that we present below goes beyond simple me
field theory.

The article is organized as follows. In Sec. II we compa
the half-filled AFM mean-field ground states of the conve
tional phase and the spin-flux phase. We show that the s
flux phase mean-field ground state always has a lower en
and that it has a single quasiparticle dispersion relation
is consistent with angle-resolved photoemission stud
~ARPES!. This suggests that the spin-flux phase is a suita
starting point for studying the behavior of the parent co
pounds upon doping. In Sec. III we consider the problem
adding just one hole to the AFM background. We study
detail two possible soliton excitations, the fermion
charged, spin bag and the bosonic, charged, meron vo
for both the conventional and the spin-flux phase. Usin
simple energetical argument, we propose a phase diagram
each of these excitations showing which is the relevant
citation for variousU/t values and various dopings. In th
conventional phase we find that the spin bag is the relev
excitation at all dopings and all values ofU/t. In the spin-
flux phase, we find that for intermediateU/t values and low
dopings, the meron vortices are the relevant excitatio
Since the spin-flux phase has the lower energy, this me
that a liquid of meron vortices appears on the lattice up
doping. This suggests a plausible explanation for various
usual ~non-Fermi-liquid! properties of the underdoped an
slightly overdoped cuprate compounds. In Sec. IV we stu
multisoliton configurations by doping more holes into t
lattice. The results obtained are in good agreement w
those predicted from the simple phase diagrams inferre
Sec. III. We also show that at higher doping~overdoped
samples! the conventional phase has a lower energy than
spin-flux phase and therefore a transition to a conventio
Fermi liquid takes place in this regime. Using very simp
assumptions, we calculate the optical and static magnetic
sponse of underdoped cuprate containing a frozen liquid
meron vortices and show that it is consistent with the exp
mental measurements. Finally, Sec. V contains discussio
the results and conclusions.

II. THE UNDOPED MOTT INSULATOR

In order to carry out Hartree-Fock calculations for mul
soliton configurations in the antiferromagnet we conside
finite N3N lattice. In this case the eigenvalues and eigen
ergies of the mean-field Hamiltonian can be found nume
cally and the convergence algorithm is a straightforward
eration procedure. Starting from an initial spin and cha
distribution SW ( i ) and Q( i ) for i 5( i x ,i y) with i x51,N and
i y51,N, the mean-field Hamiltonian is numerically diago
nalized. This in turn leads to new expectation values for
spin and charge distributions given by
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SW ~ i !5 (
a51

Ne

(
s,s8561

fa* ~ i ,s!S 1

2
sW D

ss8

fa~ i ,s8!

Q~ i !5 (
a51

Ne

(
s561

fa* ~ i ,s!fa~ i ,s!.

Herea is an index for the eigenstates,fa is the correspond-
ing eigenfunction, andNe is the total number of electrons o
the lattice. This is related to the doping concentration~mea-
sured with respect to half filling! by d512Ne /N2. If the
new spin and charge distribution are different from the init
ones, we repeat the diagonalization until self-consistenc
reached. In this article, self-consistency is defined by
criterion that the largest variation of any of the charge or s
components on any of the sites is less than 1026 between
successive iterations. We assume for simplicity that
mean-field spin-flux parametersTi j are fixed. In a more gen
eral theory, these may also be treated as dynamical varia

It is experimentally observed that the ground state of
undoped Mott insulator has long-range AFM order. Acco
ingly, we choose a spin distribution of the formSW ( i )5

(21)( i x1 i y)SeW , whereeW is the unit vector of some arbitrar
direction, while the charge distribution isQ( i )51. The re-
sults for the conventional AFM are well known. In this cas
we choose the Brillouin zone to be a rotated square defi
by 2p/a<kx1ky<p/a and2pa<kx2ky<p/a. The dis-
persion relations are given by

E6~kW !56E~kW !56Ae2~kW !1~US!2, ~4!

where each level is twofold degenerate ande(kW )5
22t@cos(kxa)1cos(kya)# is the one-electron dispersion rel
tion of the noninteracting conventional state. The mean-fi
ground-state energy is given by@see Eqs.~2! and ~3!#

Egs522(
kW

E~kW !1N2US S21
1

4D , ~5!

where the self-consistent value for the staggered spinS sat-
isfies the energy minimization condition

S5
1

N2 (
kW

US

E~kW !
. ~6!

In the spin-flux phase, it is more convenient to choos
square unit cell in order to simplify the description of theTi j

phase factors. We make the simplest gauge choice com
ible with the spin-flux condition for theT matrices, namely,
that T125T235T3452T4151 ~see Fig. 1!. This leads to a
reduced square Brillouin zone2p/2a<kx<p/2a and
2p/2a<ky<p/2a. The dispersion relations for the AFM
configuration are given by

Es f
6~kW !56Es f~kW !56Aes f

2 ~kW !1~US!2, ~7!

where each level is fourfold degenerate andes f(kW )5
22tA@cos(kxa)#21@cos(kya)#2 are the noninteracting electro
dispersion relations in the presence of spin flux. The me
field ground-state energy is given by
l
is
e
n

e

es.
e
-

,
d

ld

a

at-

n-

Es f
gs524(

kW
Es f~kW !1N2US S21

1

4D , ~8!

where the AFM local moment amplitude is determined
the condition

S5
2

N2 (
kW

US

Es f~kW !
. ~9!

In both the conventional and spin-flux phases, a Mo
Hubbard gap of magnitude 2US opens between the valenc
and the conduction bands. However, the Fermi surfaces
very different. In the conventional phase, all the points of
Brillouin surface belong to the nested Fermi surface, while
the spin-flux phase the Fermi surface collapses to four po
(6p/2a,6p/2a). This means that the introduction of th
spin flux leads to a lowering of the energies of all the oth
points of the conventional nested Fermi surface and thus
a strongly interacting electron system the energy of the en
system is lower in the spin-flux phase. It is interesting to n
that the quasiparticle dispersion relation obtained in the p
ence of the spin flux closely resembles the dispersion as m
sured through ARPES in a compound such as Sr2CuO2Cl2
~Ref. 21! ~see Fig. 2!. Namely, there is a a peak centered a
(p/2,p/2) with an isotropic dispersion relation around it, o
served on both the (0,0) to (p,p) and (0,p) to (p,0) lines.
The spin-flux model at mean field exhibits another sma
peak at (0,p/2) that is not resolvable in existing experime
tal data. This minor discrepancy may be due to next near
neighbor hopping or other aspects of the electron-elec
interaction that we have not yet included in our model.22 The
quasiparticle dispersion relation of the conventional ph
has a large peak at (p/2,p/2) on the (0,0) to (p,p) line ~see
Fig. 2!, but it is perfectly flat on the (0,p) to (p,0) line.
Also, it has a large crossing from the upper to the lower ba

FIG. 1. Choice of the gauge for describing the mean-field sp
flux background. Physical observables depend on the rotation
trices Ti j only through the plaquette matrix productT12T23T34T41.
Shown above is the simplest~spin-independent! gauge choice de-
scribing a 2p rotation of the internal coordinate system of the ele
tron ~described by three Euler angles! as it encircles an elementar
plaquette. This is a different form of spontaneous symmetry bre
ing for a strongly interacting electron system in which the me
field Hamiltonian acquires a term with the symmetry of a spin-or
interaction.
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edge on the (0,0) to (0,p) line. This dispersion relation is
very similar to that of thet-J model ~see Ref. 22!.

The self-consistent solutions of Eqs.~5!, ~6!, ~8!, and~9!
are shown in Figs. 3~a! and 3~b! ~continuous lines!. Figure
3~a! shows the magnitude of the staggered spin as a func
of U/t. In the largeU/t limit S goes to 1/2, as expected. I
the smallU/t limit there is a solution withS→0 only for the
conventional phase. The spin-flux phase admits an AFMS
Þ0) mean-field solution only forU/t.3. The ground-state
energies per site are shown in Fig. 3~b! as a function ofU/t.
The energy of the spin-flux phase is lower than the energ
the conventional phase, suggesting that spin flux provide
better mean-field starting point from which to describe flu
tuation effects on the system.

In the largeU/t limit, the Hubbard model at half filling is
equivalent to the Heisenberg model.23 This equivalence re-
mains true in the presence of spin flux since the Heisenb
exchange coupling involves only the product of phase fac
Ti j Tji 51,

H5
4t2

U (
^ i , j &

uTi j u2S SW iSW j2
1

4D .

This equivalence between the conventional and spin-
phases is indeed observed in all our numerical simulati

FIG. 2. Comparison between the experimentally determi

E(kW ) quasiparticle dispersion relation, from angle resolved pho
emission studies~ARPES!, for the insulating Sr2CuO2Cl2 ~open
circles with error bars! and the mean-field AFM spin-flux phas
dispersion relation~full line! and the mean-field AFM conventiona
phase dispersion relation~dash-dotted line!. While the peak on the
(0,0) to (p,p) is equally well described in both models, the mea
field spin-flux model gives a much better agreement for the (p,0) to
(0,0) and (p,0) to (0,p) directions. The fitting corresponds toU
52.01 eV and t50.29 eV for the spin-flux phase andU
51.98 eV andt50.21 eV for the conventional phase. The expe
mental results are the ARPES results of Ref. 21.
n

of
a

-

rg
rs

x
s

when the electron concentration is at, or extremely near,
filling. The small differences are due to higher-order virtu
hopping corrections to the Heisenberg model. The most
nificant differences between the spin-flux AFM and the co
ventional AFM occur at intermediateU/t values.

The analytical results described above provide a us
check for our self-consistent numerical scheme. The circ
and diamonds of Figs. 3~a! and 3~b! show the numerical
results obtained in the ‘‘bulk’’ limit, in good agreement wit
the analytic results. If we use cyclic boundary conditio
~CBC’s!, which require an even value forN, the bulk limit is
reached forN>10.

d

-

-

FIG. 3. ~a! Dependence of the staggered spinS of the AFM
undoped compound withU/t. The diamonds show the numerica
results obtained in the presence of the spin flux, while circles sh
numerical results for the conventional phase. The lines show
values predicted by Eqs.~6! and ~9! for the two phases. The spin
flux phase has a mean-field AFM solution (SÞ0) only for U/t
.3. As expected,S→1/2 in the largeU/t limit, where every elec-
tron becomes localized on individual sites.~b! Dependence of the
ground-state energy per site of the AFM parent compound w
U/t. The diamonds show the numerical results obtained in the p
ence of the spin flux, while circles show numerical results for
conventional phase. The lines show the values predicted by Eqs~5!
and~8! for the two phases. The mean-field AFM spin-flux phase h
a lower energy than the mean-field AFM conventional phase for
values ofU/t.



m
th
t
pe
pr
a
y

p
. L
b

is

al
s
e
b

s-
p

pe
o

f t
le
le
u
u
A
e

ni

r t
al
em
c

f
th
n-

lf-
p
d
rr
ib
th

of
ur-
ce

ate
ay

ng
vel
ree-
iral

by

he

are
gap

netic

lec-
ere

15 148 PRB 59MONA BERCIU AND SAJEEV JOHN
III. SOLITONS IN THE DOPED MOTT INSULATOR

When charge carriers are added to the system, the Ha
tonian depends directly on the doping charge through
Q( i ) parameters@see Eq.~2!#. As a result we have differen
mean-field Hamiltonians for hole-doped and electron-do
systems. However, the charge-conjugation symmetry is
served in the sense that the self-consistent spin and ch
distributions, the one-electron spectrum, and total energ
the hole-doped and electron-doped system are very sim
related to one another. The correspondence is as follows
H h be the Hamiltonian of a hole-doped system defined
the parametersSW h( i ) andQh( i )512r( i ), wherer( i ) is the
charge distribution of the doping holes. If this Hamiltonian
self-consistent, so is the HamiltonianH e of the electron-
doped system defined by the parametersSW e( i )52SW h( i ) and
Qe( i )511r( i )522Qh( i ). This follows from the fact that
if fh( i ) is a spinor such thatH hfh( i )5Efh( i ), then
fe( i )5(21)( i x1 i y)fh( i ) satisfiesH efe( i )52Efe( i ). In
other words, the doping charges are distributed identic
~only with different signs! and the final spin configuration
are identical, while the electronic spectrum of the hole-dop
system is obtained from that of the electron-doped system
reflection with respect toE50. Also, if n is the number of
charge carriers~measured with respect to the half-filled sy
tem!, the energies of the hole-doped and the electron-do
configurations are related byEhole(n)5Eelectron(n)2Un.
This difference in the energies of the equivalent hole-do
and electron-doped configurations is entirely an artifact
the absence of a charge term describing the interaction o
electrons with the neutralizing positive background of nuc
A hole-doped configuration always appears energetically
expensive than the corresponding electron-doped config
tion since the latter has additional electron-electron rep
sions, with no compensating electron-nuclei attraction.
very simple way of compensating for this is to identify th
average energy@Ehole(n)1Eelectron(n)#/2 with the energy
of the state withn doping charges.

All the spin and charge distributions, as well as electro
spectra presented in the rest of this article, are the ones
sociated with the corresponding hole-doped systems. Fo
energies of these configurations we give the average v
identified above, unless otherwise stated. However, we
phasize that the difference between the energies of the
responding hole-doped and electron-doped systemsUn is in-
dependent of the distribution of then charges. Therefore, i
we compare different configurations corresponding to
same doping andU/t parameter, the hole-doped, electro
doped, and averaged energies lead to the same optim
Hartree-Fock soliton configuration.

A. The spin bag

If we introduce just one hole in the plane, the se
consistent solution we get is a conventional polaron or s
bag~see Figs. 4 and 5!. The doping hole is localized aroun
a particular site, leading to the appearance of a small fe
magnetic core around that site. The spin and charge distr
tions at the other sites are only slightly affected. In fact,
localization length of the charge depends onU/t and be-
comes very large asUS→0 since in this limit the Mott-
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Hubbard gap closes. For intermediate and largeU/t, the dop-
ing hole is almost completely localized on the five sites
the ferromagnetic core. The static spin configuration s
rounding the hole makes charge transport very difficult sin
motion of the hole outside the ferromagnetic core will cre
a string of antiferromagnetic bond defects. The hole m
circumvent this self-trapped configuration by further twisti
the AFM background. However, the subgap electronic le
induced by the spin bag ensures that it has a lower Hart
Fock energy than a hole in the valence band of a sp
~twisted! magnetic background state.

The spin bag is a charged fermion, as can be seen
direct inspection of its charge and spin distributions~see
Figs. 4 and 5!. The electronic spectrum in the presence of t
hole-doped spin bag@see Figs. 6~a! and 6~b!# reveals that two
levels are drawn deep into the Mott-Hubbard gap. These
the first empty levels, suggesting that one of the discrete

FIG. 4. Self-consistent spin distribution of a 10310 lattice with
a spin bag centered at (5,5). The spin bag has a small ferromag
core and the magnetic order is only locally affected.

FIG. 5. Self-consistent charge distribution of a 10310 lattice
with a spin bag centered at (5,5). There is an average of one e
tron per site everywhere, except in the core of the spin bag, wh
the doping hole is localized.
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levels emerged from the upper edge of the valence ba
while the other one emerged from the lower edge of
conduction band. There is also an odd number of occup
discrete levels that split from the lower edge of the valen
band ~one in the spin-flux case, three in the conventio
phase!. This means that the valence band continues to h

FIG. 6. ~a! Electronic spectrum of a spin bag on a 10310 lattice
for U/t55 and spin flux. EigenenergiesEa are plotted as a function
of a51,2, . . . , 2N2 (N510). Only the firstN221599 states are
occupied. There are two empty bound discrete levels deep into
Mott-Hubbard gap (a5100,101), one of which comes from th
valence band of the undoped AFM compound~see inset!. There is
also an occupied discrete level below the valence band (a51). The
valence band is spin paired since it has an even number of le
Thus the total spin of the spin bag comes from the discrete occu
level. The spin bag is a charged, spin-1

2 fermion. ~b! Electronic
spectrum of a spin bag on a 10310 lattice forU/t55 in the con-
ventional state. EigenenergiesEa are plotted as a function o
a51,2, . . . , 2N2 (N510).Only the firstN221599 states are oc
cupied. There are two empty bound discrete levels deep into
Mott-Hubbard gap (a599,100), one of which comes from the va
lence band of the undoped AFM compound~see inset!. There are
also three occupied discrete levels below the valence banda
51,2,3). The valence band is spin paired since it has an even n
ber of levels. Thus the total spin of the spin bag comes from
discrete occupied levels. The spin bag is a charged, spin-1

2 fermion.
d,
e
d
e
l

ve

an even~paired! number of levels and therefore its contrib
tion to the total spin is zero. However, the excitation carr
the spin localized on the occupied discrete levels. Since th
is an odd number of such levels, the spin of the excitation
a half-integer spin.

We define the excitation energy of a spin bag as the
ference between the energy of a self-consistent configura
with a spin bag and the energy of the undoped AFM ba
ground. In Fig. 7 we show the variation of this excitatio
energy with the sizeN of the lattice, forU/t56, for both
cyclic and free boundary conditions. As expected, the ex
tation energy of the spin bag does not depend on the siz
the lattice forN>10. The variation of the excitation energ
of the spin bag withU/t is shown in Fig. 8. In the very large
U/t limit, this energy goes asymptotically from abovehe

ls.
ed

e

m-
e

FIG. 7. Excitation energy of a spin bagEspin bagas a function of
the lattice sizeN. Diamonds show results for a spin-flux AFM
phase, with CBC’s~full diamonds! and FBC’s~empty diamonds!.
Circles show results for the conventional AFM state, with CBC
~full circles! and FBC’s~empty circles!. The Hubbard parameter i
U/t56. The bulk limit is reached forN.10. In this limit, the
excitation energy of the localized spin bag becomes independe
the size of the lattice.

FIG. 8. Excitation energy of a spin bagEspin bagas a function of
U/t, in the presence of spin flux~filled diamonds! and in the con-
ventional state~circles!. In the very largeU/t limit, the excitation
energy approaches asymptotically the valueU/222t. The excita-
tion energy of a spin bag is lower in the spin-flux phase than in
conventional phase.
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U/222t. This can be understood from the fact that in th
limit, a hole-doped spin bag should cost no Coulomb ene
since we simply remove an electron from a site. An electr
doped spin bag, on the other hand, costsU since we have a
doubly occupied site. In both cases, the doping charge
move within the ferromagnetic core, lowering its energy
2t. The average energy, therefore, isU/222t, as obtained
numerically.

B. The meron vortex

In the previous discussion it was suggested that
charged spin bag is relatively immobile in the AFM bac
ground whereas a twisted magnetic background would fa
tate electrical conductivity. In this section we present anot
self-consistent charged soliton, the meron vortex~see Figs. 9
and 10!. This excitation has a topological~winding! number
1 ~i.e., the spins on each sublattice rotate by 2p on any
closed contour surrounding the center of the meron!. As
such, this excitation cannot appear alone in an infinitely
tended AFM plane by the introduction of a single hole in
the plane. From a topological point of view, this is so b
cause the AFM background has a winding number 0 and
winding number must be conserved, unless topological e
tations migrate over the boundary into the considered reg
Moreover, the excitation energy of the meron vortex
verges logarithmically with the size of the lattice. Th
means that an isolated hole introduced in the AFM plan
initially dressed into a spin-bag excitation. Nevertheless,
study the characteristics of the isolated meron vortex si
this provides a foundation for understanding multiple mer
antimeron configurations at higher dopings, which are
longer topologically or energetically forbidden.

In order to get a self-consistent meron solution, we s
with a spin configuration with a winding number of unit

FIG. 9. Self-consistent spin distribution of a 10310 lattice with
a meron vortex in the spin-flux phase. The core of the mero
localized in the center of a plaquette, in the spin-flux phase~in the
conventional phase, the core of the meron vortex is localized
site!. This excitation has a topological winding number 1 since
spins on either sublattice rotate by 2p on any curve surrounding th
core. The magnitude of the staggered magnetic moments is slig
diminished near the vortex core, but is equal to that of the undo
AFM background far from the core.
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Successive iterations conserve this winding number, but
just the magnitude of the spins and distribution of charg
until self-consistency is reached. In this case, it is usefu
use free boundary conditions since cyclic boundary con
tions would distort the spins near the edges of the sam
such that they orient in the same direction with the spins
the opposite edge, affecting the excitation energy.

From Figs. 9 and 10 we can see that the meron vorte
a charged boson since the total spin of such a configuratio
zero, while it carries the doping charge. Its electronic sp
trum is shown in Figs. 11~a! and 11~b!. In the presence of the
hole-doped meron vortex we see a pair of levels drawn d
into the gap. In the conventional AFM state these two lev
are degenerate, whereas in the spin-flux phase the de
eracy is lifted. This is a direct consequence of the fact t
the self-consistent meron vortex of the spin-flux phase
localized at the center of a plaquette~as shown in Fig. 9!
while a self-consistent meron vortex in the conventional st
is localized at a site. If the charge-dependent terms are
moved from the meron vortex Hamiltonian, this pair of le
els is exactly at the midgap of the Mott-Hubbard gap for a
value of U/t, as predicted in Ref. 11. These two levels a
the first unoccupied levels, suggesting that one of th
emerges from the valence band, while the other one eme
from the conduction band. Moreover, they split from t
(p/2,p/2) peaks of the electron dispersion relation~the
Fermi points of the spin-flux phase!.11,12This process is con-
sistent with the opening of the hole pockets near (p/2,p/2)
in the underdoped cuprates.

The bosonic nature of the meron vortex can be infer
from its electronic spectrum as well. In this case@see Figs.
11~a! and 11~b!# only the extended states of the valence ba
are occupied and therefore they are the only ones contri
ing to the total spin. Since only one state is drawn from
valence band into the gap, becoming a discrete bound le
it appears that an odd~unpaired! number of states was left in
the valence band. However, one must remember that for
pological reasons, merons must appear in vortex-antivo
pairs. Thus the valence band has an even number of~paired!

is

a
e

tly
d

FIG. 10. Self-consistent charge distribution of a 10310 lattice
with a meron vortex in the spin-flux phase. Most of the dopi
charge is localized in the center of the meron. Far from the c
there is an average of one electron per site.
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levels and the total spin is zero. This argument of the boso
character of the meron vortex is identical to that for t
charged domain wall in polyacetylene.12–14

The excitation energy of the meron as a function of
lattice size is shown in Fig. 12 for a fixedU/t. This excita-

FIG. 11. ~a! Electronic spectrum of a meron vortex on
10310 lattice, for U/t55, in the presence of the spin flux
Eigenenergies Ea are plotted as a function of a
51,2, . . . , 2N2 (N510). Only the firstN221599 states are oc
cupied~the valence band!. There are two discrete empty levels de
into the Mott-Hubbard gap, one of which (a5100) comes from the
valence band of the undoped AFM parent. Merons must be cre
in vortex-antivortex pairs~for topological reasons!. Each pair re-
moves two levels from the undoped AFM valence band. Thus
valence band remains spin paired and the total spin of this ex
tion is zero. This meron is a spinless, charged, bosonic collec
excitation of the doped antiferromagnet.~b! Electronic spectrum of
a meron vortex on a 10310 lattice, forU/t55, in the conventional
phase. EigenenergiesEa are plotted as a function ofa
51,2, . . . , 2N2 (N510). Only the firstN221599 states are oc
cupied~the valence band!. There is a double degenerate unoccup
bound discrete level deep into the Mott-Hubbard gap. One of th
bound levels (a5100) comes from the valence band of the u
doped AFM parent. Merons must be created in vortex-antivor
pairs ~for topological reasons!. Each pair removes two levels from
the undoped AFM valence band. Thus the valence band rem
spin paired and the total spin of this excitation is zero.
ic

e

tion energy was obtained by subtracting the energy of
AFM undoped background~with free boundary conditions!
from the energy of the meron-configuration. As in the case
the spin-bag excitation, it is energetically more expensive
excite a meron in the conventional phase than in a spin-
phase for all possible values ofU/t. The dependence of th
excitation energy onN may be fitted to the expected form
Emeron(N)5a ln N1ecore. The dependences ofa and ecore
on U/t are shown in Figs. 13 and 14. Both vanish asS→0
~corresponding toU→3t for the spin-flux phase andU→0
for the conventional phase!. In the very largeU limit, a
→0 andecore→U/2, as expected. In this limit all possibl
spin configurations become degenerate~i.e., there is no dif-
ference between the excitation energy of a meron and
excitation energy of a spin bag!. In the intermediateU/t

ed

e
a-
e

se

x

ns

FIG. 12. Excitation energy~in units of t) of a single meron
vortex, as a function of the meron sizeN, in the presence of the spin
flux ~diamonds! and without spin flux~circles!. The lines show fits
with a logarithmic dependence onN, Emeron(N)5a ln N1ecore.
The excitation energy of a meron vortex is always lower in t
spin-flux phase than in the conventional phase. If the size of
meron core is small enough, the excitation energy of the me
vortex may become smaller than the excitation energy of a spin

FIG. 13. Dependence of the coefficienta ~in units of t) from the
fit Emeron(N)5a ln N1ecore on U/t. Diamonds show results for a
spin-flux phase, while circles correspond to a conventional st
The line serves to guide the eye. In the largeU/t limit a→0 since
in this limit all spin configurations become degenerate and the
citation energy of the meron vortex should equal the excitat
energy of the spin bag.
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region, the core energy of the meron vortex in the spin-fl
phase is energetically less expensive than that of the m
vortex of the conventional phase due to the spreading o
charged core over the four sites of a plaquette.

Comparing the energy of a meron in a finite size sam
with that of a spin bag, we can obtain a crude estimate of
critical doping concentration at which a transition from t
spin bags to a liquid of charged meron vortices may ta
place. Comparing Fig. 14 with Fig. 8, we see thatecore
,Espin bag for small and intermediateU/t. This means that
the excitation energy of a meron vortex is smaller than t
of a spin bag provided the effective sizeNe f f of the meron is
smaller than N0 defined by Emeron(N0)5a ln(N0)1ecore
5Espin bag. The effective size is given by the sample sizeN
or the distance to the core of the nearest antimeron, wh
ever is smaller. This suggests that for an infinite lattice a
finite doping, meron-vortex excitations have lower energ
than spin-bag excitations provided each hole is dressed
meron or antimeron vortex and that the average separa
between the vortex and the antivortex is less thanN0.
Clearly, this may occur if the doping concentrationd is
larger than the critical valuedc[1/N0

2. We plot this critical
concentration as a function ofU/t in Fig. 15 for both con-
ventional and spin-flux phases.

In the conventional phase we see that the purported c
cal concentration for the dissociation of spin bags in
charged meron-antimeron pairs is larger than 0.30. At s
large doping concentrations the average size of the excita
is N0,2 and the distinction between merons and spin bag
blurred. We conclude, therefore, that there is no clear tra
tion from a state with spin-bag excitations to a state w
meron excitations as the doping increases. In other wo
the only relevant excitations for the conventional AFM pha
are spin bags, within the Hartree-Fock approximation.

In the spin-flux phase, the situation is very different. Fo
broad range of intermediate values ofU/t the critical con-
centrationdc is small and the distinction between spin ba
and merons remains clear. This suggests that for these va

FIG. 14. Dependence ofecore ~in units of t) from the fit
Emeron(N)5a ln N1ecore on U/t. Diamonds show results for a
spin-flux phase, while circles correspond to a conventional st
The line serves to guide the eye. In the largeU/t limit ecore

→Espin bagsince in this limit all spin configurations become dege
erate and the excitation energy of the meron vortex should equa
excitation energy of the spin bag.
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of U/t there are two distinct types of Hartree-Fock grou
states, as a function of doping. At very low dopings, t
spin-bag excitations are energetically more favorable. Si
spin bags affect the magnetic order only locally, the lon
range AFM order is still preserved in their presence. Ho
ever, if the concentration increases beyonddc , it is energeti-
cally favorable for each hole to be surrounded by a meron
antimeron vortex. In this case, the long-range AFM order c
be destroyed, leaving behind either power-law decay
magnetic correlations or short-range AFM on the leng
scale of the average distance between vortices.

In the above estimate of the critical concentrationdc we
assumed that the merons and antimerons are uniformly
tributed. However, the actual critical concentrationdc may
be lowered when the tendency of merons and antimeron
form tightly bound pairs~of total winding number 0! is con-
sidered. In Figs. 16 and 17 we show the self-consistent s
and charge distributions for the lowest energy configurat
found when we put two holes on the AFM lattice in the sp
flux phase. It consists of a meron and an antimeron cente
on neighboring plaquettes. As a result of the interaction,
cores of the vortices are somewhat distorted and most of
charge is missing from the~10,10! site that is common to
both cores. If the vortices were uncharged, a total collaps
the vortex-antivortex pair would be plausible. However, f
charged vortices, the fermionic nature of the underlying el
trons prevents two holes from being localized at the sa
site, in spite of the bosonic character of the collective ex
tation.

A very interesting feature of this tightly bound mero
antimeron solution is that the attraction between the char
vortices is of purely topological nature and appears e
though the electronic Hamiltonian~1! contains only repul-
sive electron interactions. Vortex-antivortex attraction var
as the logarithm of the distance between the cores and th
fore the pair of vortices should remain bound even if f
Coulomb repulsion exists between the charged cores. T

e.

-
he

FIG. 15. Critical doping concentrationdc , above which a
charged meron-antimeron liquid is energetically favorable co
pared to a gas of spin bags. Diamonds show results for a spin
phase, while circles correspond to a conventional state. The
serves to guide the eye. In the conventional phase the critical
centrations are very large,dc.0.3. In the spin-flux phase the tran
sition to the liquid of meron vortices takes place at dopings sma
than 0.10 forU/t,8. In the conventional phase the critical dopin
is so large (dc.0.30) that merons are unlikely to appear before t
Mott-Hubbard gap itself closes.
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the process of nucleation of meron-antimeron pairs u
doping provides a very natural scenario for the existence
preformed pairs in the underdoped regime.

There is another possible self-consistent state for the
tem with two holes, consisting of two spin bags far fro
each other~such that their localized wave functions do n
overlap!. The excitation energy of such a pair of spin bags
simply twice the excitation energy of a single spin ba
When this excitation energy is compared to the excitat

FIG. 16. Self-consistent spin distribution for a tightly boun
meron-antimeron pair in the spin flux phase. The meron~M! and the
antimeron~A! are localized on neighboring plaquettes. The to
winding number of the pair is zero. The magnetic AFM order
disturbed only on the small region where the vortices are localiz
The attraction between holes is of topological nature and on a
length scale is stronger than unscreened Coulomb repulsion
tween charges.

FIG. 17. Self-consistent charge distribution for a tightly bou
meron-antimeron pair. The doping charge is mostly localized on
two plaquettes containing the meron and antimeron cores. Du
interactions, the cores of the vortices are somewhat distorted,
most of the charge missing from the (10,10) site common to b
cores. The two holes localized in the cores are responsible for
fact that the meron-antimeron pair does not collapse~due to Fermi
statistics, it is impossible to have two holes at the same site!.
n
of

s-

s
.
n

energy of the tightly bound meron-antimeron pair, we fi
that it is higher by 0.15t ~for U/t55). This would suggest
that spin bags are always unstable to the creation of cha
meron-antimeron pairs within the spin-flux phase and t
the critical doping concentrationdc should be set equal to
zero. A more realistic determination of the critical hole co
centration for the nucleation of meron-antimeron pairs
quires the incorporation of the long-range Coulomb rep
sion between charge carriers in the doped Mott insulator

The situation in the high-Tc copper-oxide materials is
probably more complex and depends on the nature of
doping process. If the charge carrier concentration is low
uniformly distributed, the average distance between hole
large. At low temperatures, it is possible that these holes
trapped somewhere in the vicinity of their donors in the fo
of spin bags. If two spin bags encounter each other, t
should indeed decay into a tightly bound meron-antime
pair. Since such a pair distorts the AFM background only
a very small region, magnetic long-range order is preserv
At low temperatures and low dopings, these mero
antimeron pairs may remain pinned to the donor atoms
other forms of disorder, giving rise to the appearance o
spin-glass-type phase of the magnetic background. At hig
dopings the pinning potential of the donor atoms is scree
and the soliton-soliton interactions are stronger than pinn
energies. For concentrations greater than some critical c
centration, it is possible that charged meron-antimeron p
are no longer tightly bound and AFM long-range order
completely destroyed.

If this scenario is applicable to the high-Tc copper oxide
materials, it is tempting to associate the charge carriers in
doping regime relevant to superconductivity with meron v
tices. Besides the magnetic order, another extremely im
tant issue is the dynamics of solitons. For instance, in
intermediateU/t regime, a spin bag as depicted in this mod
~see Figs. 4 and 5! is basically immobile since moving would
mean leaving behind a string of ferromagnetically align
spins. It is plausible24 that the kinetic energy of localization
of the hole could be lowered if the spin bag~spin polaron!
has a ferromagnetically aligned core, within which the ho
is free to move. Another possibility25 is that a spiral twist in
the AFM background accompanies the hole as it moves.
meron vortex may be regarded as a self-consistent realiza
of the twist-accompanied hole that is topologically stab
even when the charge carrier is stationary. The vortex in
AFM background surrounding the hole facilitates mobility
charge since hopping of the vortex core to a neighbor
plaquette leads to a less severe distortion of the AFM
change coupling between neighboring spins. Since me
vortices have a bosonic nature, the non-Fermi-liquid nat
of the metal from which superconductivity emerges is a
quite natural.

IV. HIGHER DOPINGS:
MULTISOLITON CONFIGURATIONS

For higher carrier concentrations, there is some arbitr
ness in choosing the initial spin and charge configurati
from which to begin the iterative self-consistency schem
Since a variety of different self-consistent states may be
alized starting from different initial configurations, we ado
a probabilistic approach. We give random numbers as
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initial components of the spin distribution and also choo
randomly the sites where the holes are initially localize
This iterative process is repeated many times and the
consistent configuration of lowest energy is finally select
As we mentioned before, the relation between the energy
site of the hole-doped configuration and that of the equi
lent electron-doped configuration is given byehole(d)
5eelectron(d)2Ud, where d is the average number o
charge carriers per site. For convenience, we plot the en
of the hole-doped configurations as a function of doping. T
results obtained in the random searches are summarize
Fig. 18, where the energy per site~in units of t) of the self-
consistent hole-doped configurations is plotted as a func
of the electron concentration. They correspond toU/t55
and a 10310 lattice with cyclic boundary conditions. Ford
50.01 and 0.02~corresponding to one and two holes, resp
tively! we recapture the results presented in Sec. III. In
spin-flux phase, a single isolated hole forms a spin b
whereas the lowest energy configuration found for two ho
is the tightly bound meron-antimeron pair shown in Figs.
and 17. For two holes we also find a number of se
consistent metastable states, containing widely separ
spin bags.

For a doping up to about 0.30~which corresponds to an
electron densityc50.70–1), the lowest energy configur
tions always correspond to various arrangements of me
antimeron pairs in the spin-flux phase. As an example,
show the spin configuration of lowest energy found for eig
holes, c50.08 ~see Fig. 19!. We can see four meron
antimeron pairs arranged such that each meron is surrou
by antimerons and vice versa. This state appears to b
crystal of meron-antimeron pairs, in the sense that the lat
obtained through translations of the 10310 lattice shown in
Fig. 19 has an ordered distribution of meron-antimeron pa

FIG. 18. Energy per site~in units of t) as a function of the
electron concentrationc512d for U/t55. Circles correspond to
the lowest energies found in the random trial in the spin-flux ph
~liquid of meron vortices!, while squares correspond to the be
result of the random trial in the conventional phase~stripes!. The
dashed line shows the exact value forU50 ~noninteracting case!.
At low doping ~high electron concentration! the liquid of meron
vortices of the spin-flux phase has a lower energy than the stripe
the conventional phases. However, at higher dopings (d.0.4) the
conventional phase becomes stable.
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This crystallization is very likely an artifact of the zero
temperature, semiclassical, static Hartree-Fock approach
corporation of dynamics and fluctuations in the model m
lead to the melting of this crystal into a quantum liquid
mobile meron-antimeron pairs. However, as discussed
Sec. IV A, ordered arrays of merons and antimerons m
play an important role at some special dopings.

As the doping becomes larger than 0.20, the density
vortices is so large that we obtain configurations that hav
meron or antimeron vortex localized on almost ea
plaquette, leading to a state where long-range AFM corre
tions are completely lost. As a consequence, the dop
charge is quite uniformly distributed over the whole latti
and the magnitude of the staggered spin decreases cons
ably. The apparent overlap of the charge carrier wave fu
tions here suggests that quantum corrections to the Har
Fock approximation may be substantial in this doping ran
and that the charge carriers here form a different type
quantum liquid. Finally, at very large doping (d.0.4), the
entire spin-flux phase is energetically unstable to the form
tion of a conventional electron gas. This is expected si
@see Eqs.~4! and ~7!# the bottom of the valence band in th
spin-flux phase is higher than that of the valence band in
conventional phase. At very low electron concentrations,
energy per site approaches that of the noninteractingU
50) electron model~see Fig. 18!, as expected.

In contrast to the above picture of a meron liquid in t
spin-flux phase, the lowest energy configurations at low d
ings in the conventional AFM phase always consists
charged stripes.26,27 For example, in Fig. 20 we show th
self-consistent spin configuration found forc50.15, where
all the spin bags assemble in a closed stripe~the stripe must
close due to the cyclic boundary conditions!. We have also
calculated the energies of ordered horizontal and diago
stripes. This necessitates bigger lattices, so that the cy

e

of

FIG. 19. Self-consistent spin distribution for the configuration
lowest energy found atd50.08 ~eight holes!, starting from an ini-
tial random distribution, forU/t55 in the spin-flux phase. Fou
meron-antimeron pairs appear. We have marked withM the
plaquettes on which merons are centered and withA the plaquettes
on which antimerons are centered. A meron and an antimeron
‘‘split’’ between the two opposing boundaries~we have imposed
cyclic boundary conditions!.
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boundary conditions are satisfied. ForU/t55 we find basi-
cally no difference between the energies of such stripes
that of the closed stripes obtained from the random ini
conditions. The instability of the spin bags to stripe form
tion has also been proved in the three-band Hubbard m
and thet-J model.28 However, as seen from Fig. 18, suc
states have higher energies than the liquid of mer
antimeron pairs of the spin-flux phase. We have also trie
obtain horizontal and diagonal stripes in the spin-flux ph
by starting with an initial configuration containing such
stripe. However, they converge to the liquid of mero
antimeron pairs rather than self-consistent stripe config
tions.

At large dopings, the conventional phase becomes e
getically more favorable and more and more discrete lev
are drawn into the Mott-Hubbard gap. Due to overlap of
charge carrier wave functions, these levels spread int
broad impuritylike band. Also, the staggered magnetizatioS
at each site is strongly suppressed, leading to shifts of
band-edge energies~roughly given by6US). These two ef-
fects conspire to close the Mott-Hubbard gap and lead to
formation of a conventional Fermi liquid with a partiall
filled band for dopingsd.0.3.

In summary, our picture is that of three distinct regim
At very low dopings, we have a collection of tightly boun
meron-antimeron pairs and/or spin bags, which preserve
long-range AFM order. When the doping exceeds some c
cal value dc , a transition to a quantum liquid of meron
antimeron pairs occurs and is accompanied by the des
tion of the AFM long-range order. Since these charg
merons are spinless bosons this metallic state will invaria
exhibit non-Fermi-liquid properties. As the doping furth
increases, the spin-flux state itself is unstable, the M
Hubbard gap closes, and the system reverts to a convent
Fermi liquid. Although our static Hartree-Fock analys
points to the above picture, it does not describe soliton
namics and quantum fluctuation effects pertinent to the qu

FIG. 20. Self-consistent spin distribution for the configuration
lowest energy found atd50.15, starting from initial random distri
butions, forU/t55 in the conventional phase. A closed charg
stripe appears~cyclic boundary conditions were imposed!. The
AFM order is switched from one phase to the other one~up to down
and vice versa! as the stripe is crossed.
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tum liquid phase of merons. In addition, a more careful tre
ment of the long-range part of the Coulomb repulsi
between charge carriers may be needed in the non-Fe
liquid phase where the conventional arguments of screen
are inapplicable.29 Finally, a more realistic model must in
clude the interactions of the doping charges with the im
rity charges located in nearby planes and the influence
structural distortions of the CuO planes. The last issue
pertinent to the meron crystal phase at the special dopind
51/8, which we discuss below.

A. Charge carrier concentration of d51/8

The d51/8 doping is very special because in som
compounds30 superconductivity is completely suppressed
this doping. A very simple and natural explanation of th
suppression is that the charge carriers become immo
Within our picture of a charged meron liquid, at a doping
1/8, we find a self-consistent structure consisting of a cry
of merons and antimerons~see Figs. 21 and 22!. Neutron
scattering reveals that ford51/8, the (p/a)(1,1) AFM mag-
netic peak splits into four peaks situated at (p/a)(1,16 1

8 )
and p/a(16 1

8 ,1).31,32 For the calculated meron crysta
shown in Figs. 21 and 22, the magnetic structure factor
hibits four peaks with the correct distances between
peaks. However, they are rotated by 45°~they appear along
the diagonals, not along the horizontals! relative to the ob-
served neutron scattering peaks. This picture can be bro
into agreement with experiments by introducing a small
isotropy in the electron hopping within the copper-oxi
plane. The addition of such a perturbation to our mode
justified by the experimentally observed distortion of the l
tice from the usual low-temperature orthorhombic struct
to the low-temperature tetragonal~LTT! structure at this
doping.33 In the LTT structure the atomic displacemen
form a horizontal~or vertical! structure and very likely favor
the pinning of horizontal~vertical! stripes. The easiest wa
to mimic this structural distortion is to add a small aniso
ropy in the magnitude of the hopping integral, with the sa
periodicity. For a 3% anisotropy, the half-filled stripe stru

f FIG. 21. Self-consistent spin distribution for the configuration
lowest energy found atd51/8 for U/t55 in the spin-flux phase.
An ordered crystal of charged merons and antimerons is create
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15 156 PRB 59MONA BERCIU AND SAJEEV JOHN
ture predicted by Tranquadaet al.32 becomes stable~see Fig.
23!. The self-consistent stripe configuration obtained in
presence of the small anisotropy is made up of merons
antimerons packed along horizontal lines. This example
lustrates that a more realistic model including the effects
such structural distortions and possibly the interaction w
the impurity charges is required for a quantitative compa
son with experiments.

B. Optical absorption

As we mentioned before, in the presence of each mero
antimeron vortex, two electronic levels, one from the valen
band and one from the conduction band, are drawn deep
the gap. In the presence of multisoliton interactions th

FIG. 22. Self-consistent charge distribution for the configurat
of lowest energy found atd51/8 for U/t55 in the spin-flux phase
An ordered crystal of charged merons and antimerons is creat

FIG. 23. Self-consistent spin distribution for the configuration
lowest energy found after adding a 3% anisotropy in the hopp
integral, atd51/8, for U/t55 in the spin-flux phase. The meron
and antimerons rearrange on horizontal lines, leading to a struc
similar to that suggested by Tranquadaet al. in Ref. 32.
e
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l-
f

h
i-

or
e
to
e

levels spread into a broad impurity band within the larg
Mott-Hubbard gap. Since these localized states are em
~for the hole-doped system!, electrons can be optically ex
cited to them from the valence band. Consequently, a br
optical absorption band appears inside the Mott-Hubb
gap. In Fig. 24 we show the evolution of the optical abso
tion with doping. The absorption was calculated throu
straightforward perturbation theory, after a term coupling
doping charge to an external vector field34 was added to the
mean-field Hamiltonian. This leads to the formula for t
electric conductivity tensor

s i j ~v!5
1

iv (
a51

Ne

(
b5Ne11

N2 F hab
i hba

j

\v2~Ea2Eb!1 iG

2
hba

i hab
j

\v1~Ea2Eb!1 iGG ,
where

hW ab5
iet

\ (
^ i , j &

@~rW j2rW i !fa* ~ i !Ti j fb~ j !

1~rW i2rW j !fa* ~ j !Tji fb~ i !#

is the matrix element between an occupied statea and an
empty stateb of the density of current operatorjW. HereNe is
the number of occupied states,N2 is the total number of
states, andG is a phenomenological damping coefficien
The calculation is approximate, in the sense that we did
include the variation of the spin and charge distributions d
to the modification of the wave function in the external fie
A more detailed calculation involving a time-dependent ge
eralization of the Hartree-Fock method~the random-phase
approximation! will be presented elsewhere. In order

n

.

f
g

re

FIG. 24. Optical absorption~arbitrary units! as a function of the
frequency~in units of t) for various dopings. The Hubbard param
eter isU/t55 and the corresponding self-consistent lowest-ene
configurations of frozen liquids of merons and antimerons w
used. The damping coefficient isG50.1t. As the doping increases
a broadband due to electronic excitations from the lower Mo
Hubbard gap to the discrete, empty, meron-induced levels deve
deep in the gap.



ing
t t
c
n
f-

ro
ito
om
ra
a

n
au
at
s
m
ad
c

wi
hi
o

ng
uc
tu

co
en
e
ra
in

ra

an
ar
u

on
gy
e
r-
in

ge
d
t o
ve
n

a
nd
he
etic
M
re

me
d-

a
g

ed
ela-
rp-

ron
for
m

rge

of
o

tel-
-
ons

PRB 59 15 157NUMERICAL STUDY OF MULTISOLITON . . .
mimic the interaction with spin waves and other damp
effects on the excited electronic states we assumed tha
subgap levels are homogeneously broadened with a spe
width of G50.1t. This leads to a smooth optical absorptio
even for a 10310 lattice. As the doping increases, two e
fects are apparent. The first is the appearance of a b
absorption band deep into the gap. This is due to the sol
gap states and significant weight is transferred into it fr
the conduction band. The second effect is that the ove
charge-transfer gap itself decreases since doping decre
the average self-consistent value ofS, leading to a shift in the
mean-field position of the valence- and conduction-ba
edges. This second effect is less apparent in Fig. 24, bec
of the fairly large damping we chose. It is well known th
the optical absorption of the doped compounds contain
broad midinfrared band and a Drude-like tail starting fro
very low frequencies.6 It is reasonable to associate the bro
midinfrared band with electronic transitions from the valen
band to the vortex mediated impurity band~see Fig. 24!. On
the other hand, the Drude tail component is associated
the translational motion of the bosonic meron-vortices. T
may be described in a time-dependent Hartree-Fock appr
mation.

C. The magnetic structure factor

We can characterize the evolution of the magnetic lo
range order with the doping by looking at the magnetic str
ture factor. We have calculated the static magnetic struc
factor

S~QW !5
1

N2 (
i , j

eiQW •(rW i2rW j )SW ~ i !SW ~ j !,

assuming that the spins are frozen in the self-consistent
figuration. The results are shown in Fig. 25. The AFM par
compound has a large peak at (p/2,p/2), as expected. As th
doping increases, this peak splits into four incommensu
peaks, whose positions shift with the doping. This is
agreement with the observed behavior of some cup
compounds.31,32

V. DISCUSSION AND CONCLUSIONS

In this article we presented a numerical study of a me
field approximation of the one-band extended Hubb
model. We have shown that at low dopings, the spin-fl
phase provides a better starting point than the conventi
phase. ForU/t in the intermediate range, the lowest ener
configurations found in the doping regime relevant to sup
conductivity consist of a liquid of meron and antimeron vo
tices. These meron vortices are mobile, charge carry
bosons that accommodate each of the doping holes in
impurity band that occurs within the Mott-Hubbard char
transfer gap. The key ingredient that distinguishes our mo
from previous studies of the Hubbard model is the concep
spin flux. In its absence, our analysis reproduces the con
tional AFM, in which there is a tendency for stripe formatio
at low doping, as predicted by many other authors.26–28
he
tral

ad
n

ll
ses

d
se

a

e

th
s
xi-

-
-
re

n-
t

te

te

-
d
x
al

r-

g
an

el
f
n-

However, introduction of spin flux into the AFM leads to
lower mean-field energy state, in which the doping holes fi
it energetically favorable to be cloaked by vortices of t
magnetic background. This cloaking stabilizes the magn
vortex and also facilitates the mobility of holes in the AF
background. At extremely low doping the holes either a
paired in tightly bound meron-antimeron pairs or beco
spin bags~which may be thought of as a collapsed charge
meron–neutral-antimeron pair!. Increasing doping creates
liquid of meron-antimeron pairs, completely destroyin
AFM order. This picture is consistent with angle-resolv
photoemission studies of the quasiparticle dispersion r
tion, the appearance of a broad midinfrared optical abso
tion band with doping, and various aspects of the neut
scattering data. It also offers a microscopic mechanism
the non-Fermi-liquid characteristic of the metallic state fro
which superconductivity emerges.

One of the great challenges in the understanding of cha

FIG. 25. Static magnetic structure factor as a function
(kx ,ky), measured in units of 2p/a. The first picture corresponds t
d50.00 and has the large magnetic peak at (p/a,p/a). As the
doping increases tod50.05 ~second picture! and d50.08 ~third
picture! this magnetic peak splits into four incommensurate sa
lites. The Hubbard parameter isU/t55 and the corresponding self
consistent lowest-energy configurations of frozen liquids of mer
and antimerons were used.



i
s
rm
u
de
rie
ge
t
a
a

on
e
n

oc
i-
te
th
le

th

on
in

n-
nts

ef-

be
s
of

rac-
.

-
-

and
wl-
hip

15 158 PRB 59MONA BERCIU AND SAJEEV JOHN
carrier pairing is that an attractive force must emerge from
purely repulsive many-electron Hamiltonian. This problem
exacerbated by the fact that the standard argument
screening of the Coulomb repulsion are based on Fe
liquid theory and may be inapplicable to a doped Mott ins
lator. Our model, based on charged vortex solitons, provi
a very natural strong attractive force between charge car
that is of topological origin and can lead to binding of char
carriers even in the absence of screening. Moreover,
presence of vortices in the AFM background will lead to
large renormalization of the spin-wave spectrum. This m
in turn be related to the observed pseudogap phenomen
the high-Tc cuprates.35 As the doping increases further, th
spin-flux phase is unstable to the formation of a conventio
Fermi liquid, in which the Mott-Hubbard gap is closed.

All of our results so far are based on a static Hartree-F
mean-field theory. In spite of the simplicity of our approx
mation, the calculated properties of our model are consis
with a variety of independent experimental signatures of
cuprate superconductors. We believe that it is reasonab
proceed beyond this mean-field theory to understand
greater detail the quantum and dynamical properties of
n
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meron liquid. The long-range part of the Coulomb repulsi
between doping charges may play a more important role
the properties of this quantum liquid than it does in a co
ventional Fermi liquid where standard screening argume
apply. Also, additional interactions such as crystal field
fects and the conventional spin-orbit interaction,18 which
help to stabilize uncharged meron vortices, may need to
added in the starting Hamiltonian~1!. These consideration
may in turn shed light on the microscopic mechanism
high-temperature superconductivity and the detailed cha
teristics of the non-Fermi-liquid state from which it arises
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