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Spin-flux skyrmions: Anomalous electron dynamics and spin-Hall currents
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We introduce a topologically distinct skyrmion, termed a spin-flux skyrmion, which shares the same real-
space magnetization profile as a conventional skyrmion but differs fundamentally in its underlying topological
structure. This distinction originates from the path traced by its rotation matrices within the doubly connected
SO(3) group manifold, leading to a nontrivial spinor phase of eiπ upon encircling the texture. Using an explicit
SU(2) gauge field formalism, we derive the emergent magnetic field components generated by both conventional
and spin-flux skyrmions. While conventional skyrmions exhibit a dominant σz component with weak dipolar
σx, σy contributions, spin-flux skyrmions possess an additional monopolar σx component that yields a finite
average emergent field for a finite density of skyrmions. This nontrivial component introduces a nontrivial term
in the Hall conductivity, enabling a direct explanation of experimental Hall resistivity anomalies that cannot
be accounted for by conventional skyrmions alone. Moreover, we show that this additional term couples to the
in-plane spin polarization of conduction electrons, providing a further tunable handle to control the transverse
Hall response.

DOI: 10.1103/3l8t-dpn8

I. INTRODUCTION

Magnetic skyrmions are nanoscale spin textures that ex-
hibit a characteristic whirl-like magnetization pattern [1–3],
first observed in noncentrosymmetric magnets [4], and later
found in many ferromagnetic [5–7] and antiferromagnetic
[8] systems. A key property of skyrmions is their integer
winding number, often referred to as the skyrmion number,
which distinguishes them from other magnetic configurations
[7,9]. This number measures how many times the local spin
configuration wraps around the unit sphere S2, as described by
a smooth spin texture �M(�r), over the two-dimensional plane.
It is given by Nsk = 1

4π

∫ �M · ( ∂ �M
∂x × ∂ �M

∂y )dxdy. A value of
Nsk = 1 corresponds to a single skyrmion, while larger abso-
lute values represent multiple windings, and the sign indicates
the sense of rotation of the configuration. Both theoretical and
experimental studies have shown that skyrmions can remain
stable over a wide range of external magnetic fields, magnetic
anisotropy strengths, and temperatures [10–17].

The formation and stability of magnetic skyrmions results
from a delicate competition between fundamental magnetic
interactions [18,19]. The symmetric Heisenberg exchange
interaction (J) favors parallel spin alignment. A crucial in-
gredient for inducing chirality is the Dzyaloshinskii-Moriya
interaction (DMI) (D), an antisymmetric exchange term that
favors a fixed, perpendicular canting between neighboring
spins [20,21]. This interaction requires broken inversion sym-
metry, which occurs in noncentrosymmetric crystal lattices.
At low or zero external magnetic field, the competition be-
tween the DMI and Heisenberg exchange typically produces
a one-dimensional spin-spiral (SS) ground state, where the
magnetization rotates periodically with a wavelength pro-
portional to J/D. Magnetic anisotropy, such as an easy
crystallographic axis for orientation, favors localized mag-
netic twists, rather than extended spirals. Applying an external

magnetic field, which favors spin alignment along the field
direction (+ẑ), likewise stabilizes localized magnetic tex-
tures relative to the spin-spiral state. These textures satisfy a
well-defined boundary condition: Spins are aligned with the
field (+ẑ) at large distances, while at their core, the spins
point opposite to the field (−ẑ), maintaining a nonzero in-
teger winding number [22]. As the magnetic field strength
increases, the ground state evolves predictably. At low fields,
the SS phase is stable. With increasing field, the system
transitions into a skyrmion lattice phase. At very high fields,
the system eventually reaches a fully polarized ferromagnetic
(FM) state, in which all spins align with the external field.
This sequence of phase transitions has been consistently ob-
served in both theoretical models and experimental studies
[10,12–17].

In spintronics, magnetic skyrmions are considered promis-
ing candidates for next-generation memory and logic devices
due to their stability and nanoscale dimensions [17,23],
as well as their controllability by electric currents. Their
ability to carry information in a stable, well-defined spin
configuration makes them ideal for high-density, low-power-
consumption magnetic memory [24,25]. Skyrmions can be
driven by current densities 2 to 4 orders of magnitude lower
than those required to move conventional magnetic domain
walls, typically in the range of 106 − 108 A/m2, compared
to 1010 − 1012 A/m2 for domain wall motion [5,26]. This
substantial reduction in current for skyrmion motion, makes
them attractive for energy-efficient spintronic devices. For ex-
ample, skyrmion-based racetrack memory [6,27,28] encodes
information in the presence or absence of skyrmions along
a narrow magnetic track. Data can be written, shifted, and
read by applying short current pulses that move skyrmions,
enabling faster data storage and retrieval. This architecture
offers high storage density [29,30] while consuming signif-
icantly less energy compared to conventional magnetic hard
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drives, which rely on moving mechanical parts or high current
densities for domain wall motion. Moreover, the high sensi-
tivity of skyrmions to low driving current may enable novel
spintronic logic devices [31].

Electron transverse deflection under different Lorentz-like
forces leads to various Hall effects. The ordinary Hall effect
arises from the Lorentz force of a physical magnetic field
acting on charge carriers. In contrast, the anomalous Hall ef-
fect occurs in ferromagnetic materials with magnetic textures
due to intrinsic spin-orbit coupling, even without an external
magnetic field [32]. In materials hosting skyrmions, the spatial
variation of magnetization gives rise to a synthetic matrix
magnetic field, strongest near the skyrmion cores. This field
deflects conduction electrons, producing a transverse voltage.
The resulting contribution to the Hall signal is referred to as
the skyrmion-induced Hall effect [6,7].

In this article, we introduce a topologically distinct
skyrmion that superficially exhibits the same magnetization
profile as the conventional Néel skyrmion. The topological
distinction arises from the detailed set of rotation matrices
used to form the magnetic texture and the path traced by the
rotation matrices, within the SO(3) group manifold of physical
rotations in three-dimensional space, as the skyrmion is encir-
cled by a path in two-dimensional coordinate space (Fig. 1).
It is well known that the group manifold of SO(3) is topolog-
ically, doubly connected. It has been suggested [33,34] that
this is the fundamental reason for the existence of spin −1/2
particles. It enables the two-valued nature of the spin −1/2
wave function and that under a 2π rotation, the wave function
changes sign. It is the doubly connected nature of SO(3) that
allows this two-valued wave function to be everywhere contin-
uous and differentiable. We refer to this distinctive magnetic
soliton as a spin-flux skyrmion. As in the case of conven-
tional skyrmions, the effects of the spin-flux skyrmion on a
conduction electron can be described by a matrix gauge field
whose matrix components can be represented by the set of
Pauli spin matrices {σx, σy, σz}. A fundamental consequence
of the spin-flux skyrmion is that when an electron encircles
this texture it acquires a nontrivial phase of eiπ . It has been
suggested that nontrivial and consequential spin-flux may
play a vital role in high-temperature cuprate superconductors
[34–38].

Superfluid 3 He-A is another physical system in which
an SO(3) order parameter space has been discussed. Here,
Cooper pairs form in a p-wave orbital angular momentum and
spin triplet wave function. This spin-1 condensate exhibits
interesting topological structures such as vortices and half-
vortices [39,40]. However, they do not rely on the doubly
connected nature of SO(3). Our spin-flux skyrmion is con-
stituted of spin-1/2 electrons. The underlying wave function,
leading to its observable magnetic moment structure, involves
constituent electrons that undergo a 2π rotation in their in-
ternal coordinate frame as the electron encircles the skyrmion
core.

In this paper, we focus on the explicit form of the SU(2)
gauge field for spin-flux skyrmions and highlight its dis-
tinctive features compared to conventional skyrmions. For
conventional skyrmions, the σz component of the emergent
magnetic field is dominant, peaking at the skyrmion core and
rapidly decaying with increasing radius, while the σx and

FIG. 1. We illustrate the distinction between two skyrmions cor-
responding to magnetic moment rotation fields U1 and U2 = U z

2U y
2 ,

in terms of the SO(3) group manifold [panels (a) and (b)]. In this
picture, a solid ball of radius π is used to represent all possible spin
rotations: each point inside the ball corresponds to a unique rotation,
the displacement from the origin indicates the rotation angle, and the
direction specifies the rotation axis. The surface of the ball therefore
represents a rotation angle of π . For the conventional U1 skyrmion
[panel (a)], we consider circular paths in coordinates space with radii
r = ρ0 (the skyrmion core radius) and r = ∞, which we label as p1

and p′
1, respectively. All rotation matrices describing this skyrmion

configuration lie infinitesimally below the surface of the SO(3) ball
(shown in blue and red). Here, the rotation field corresponds to a
fixed rotation angle of π about the spatially varying axis unit vector
n̂(�r). As the skyrmion is encircled, the spin rotation trajectory in
SO(3) forms a closed loop on the surface. Both paths, p1 and p′

1,
can be continuously deformed to a single point and are considered
topologically trivial within SO(3). For the U2(spin-flux) skyrmion
[panel (b)], the rotation U y

2 corresponds to single point in SO(3)
on the y axis for any circular path of given radius. The rotation U z

2

traverses a straight line path from the surface of SO(3), through the
center of the ball, to the antipodal point as the skyrmion is encircled
at any radius and −π < ζ < π . This endows the U2-skyrmion with
a nontrivial spin-flux of π . Since antipodal points on the sphere of
radius π are identical rotations, the path p2 cannot be continuously
deformed to a single point. In other words, the paths p1(p′

1) and p2

are homotopically distinct.

σy components exhibit a weaker dipolar distribution, with a
peak magnitude approximately one quarter of that of σz. In
contrast, spin-flux skyrmions exhibit a qualitatively different
behavior: the σz component retains a similar radial profile, but
a highly consequential σx component appears, with a singu-
lar monopolar character. This monopolar feature leads to a
finite contribution to the average emergent field in a skyrmion
lattice, a property absent in the conventional case. Conse-
quently, the emergent magnetic field introduces an additional
term in the Hall conductivity, supplementing the diagonal
contribution common to both skyrmion types. This additional
term provides a natural explanation for certain experimen-
tal observations that cannot be captured by the conventional
skyrmion model alone. Furthermore, we demonstrate how the
spin polarization density matrix of electrons driven by an
electric field can be used to control the Hall current in the
presence of spin-flux skyrmions.
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II. EMERGENT MAGNETIC FIELD GOVERNING
SKYRMION-ELECTRON INTERACTION

A. Topological distinctions

The interaction between skyrmions and electrons arises
due to the coupling between the spin of conduction elec-
trons and the local magnetization of the skyrmion texture.
This interaction can be effectively described by an exchange
coupling term in the Hamiltonian, where the conduction
electron spin �σ interacts with the local magnetization �M =
(sin θ cos φ, sin θ sin φ, cos θ ) of the skyrmion via Hint =
−Jh �M · �σ , and Jh is the exchange interaction strength [41–46].
The orientation angles θ and φ are functions of the planar po-
lar coordinates r and ζ , representing radial distance from the
origin and angle to the x coordinate axis, respectively. In most
systems, the ferromagnetic Hund’s coupling (Jh > 0) aligns
conduction-electron spins parallel to the local magnetization
[47,48]. When the spins are aligned, the coordinate space
wave function vanishes if the two electrons come very close to
one another, thereby reducing the Coulomb repulsion energy.
The strength of the skyrmion-electron interaction, Jh, typically
ranges from 1 to 100 meV [46,49], and plays a crucial role in
transport and scattering of electrons in skyrmion-hosting envi-
ronments. A minimal nonrelativistic Hamiltonian describing
the itinerant electrons whose spins are coupled to the localized
moments is H = �P2

2m − Jh �M · �σ , where �P is the momentum
operator of the free electron. This can be reexpressed as an
electron effectively coupled to a uniform ferromagnet, but
experiencing effective SU(2) gauge forces. We write ψ =
U †(r)
, where 
 is the spinor in the laboratory frame and ψ

is the spinor in the locally rotated frame, varying from point
to point in coordinate space. The SU(2) transformation matrix

U (r) is chosen such that U †(M · σ)U = σz, thereby aligning
the local spin quantization axis with the local magnetization
M(r). In this gauge-transformed frame, the spinor is expressed
as ψ = (ψ+

ψ−), where ψ+ and ψ− correspond to electronic states
with spin locally aligned and antialigned with M, respectively.
This unitary matrix U (r, t ), which can also vary with time for
a nonstatic magnetic background, encodes all the information
about the rotation of the spin basis at each point in the spin
texture.

A simple representation of the matrix field is given by
U (r) = eiσ·ε(r), where σ are the Pauli matrices, and ε(r) is a
position-dependent vector encoding the spin rotation parame-
ters. For rotation about a fixed axis, defined by a unit vector n̂
and by angle θ , ε(r) = θ n̂/2. Importantly, the choice of U (r)
is not unique. Different gauge choices correspond to different
ways of defining the local spin frame while still satisfying the
condition in U †(M · σ)U = σz. As we show below, there are
two different types of SU(2) unitary matrix fields that can rep-
resent the same local magnetic moment field of a skyrmion.
This dichotomy arises from the doubly connected topology
of the SO(3) group manifold, which describes physical rota-
tions in three-dimensional space. There are two homotopically
distinct classes of paths within SO(3). Paths within one class
cannot be continuously deformed to paths within the second
class. The group manifold of SO(3) can be represented as a
solid ball of radius π . Each point in this manifold corresponds

to unique rotation matrix. A rotation by an angle θ about an
axis n̂ is located at a displacement, θ , from the origin of the
solid ball in the direction of n̂. Rotation by angle π is the
same as a rotation by angle −π , so the antipodal points of
the solid ball are identified to be the same point. In other
words, two distinct SU(2) matrices correspond to the same
physical rotation. The leads to the doubly connected topology
of the manifold. There are two distinct classes of matrix fields
U (r) that can be chosen to represent the magnetic moment
structure of the skyrmion. For the conventional skyrmion, as
the coordinate vector, �r, encircles the skyrmion, the matrices
U1(�r) form a path, p1, within SO(3) that does not cross the
surface of the solid ball of radius π . This is depicted in Fig. 1.
In contradistinction, a spin-flux carrying skyrmion is gener-
ated by the matrix field U2(�r) with a path, p2, within SO(3)
that cannot be continuously deformed to p1 within the doubly
connected topological manifold of SO(3). The two paths in
SO(3) are homotopically inequivalent because the path p2

crosses the surface of the solid ball of radius π , whereas the
path p1 does not.

Applying the SU(2) transformation field to the electron
Hamiltonian, H ′ = U †(r)H (r)U (r), modifies the momentum
operator as �P → �P + �A, where the emergent matrix gauge
potential is given by �A = −ih̄U †∇U, and A0 = ih̄U †∂tU .
In our case of static skyrmions, A0 = 0 since U is time
independent. This leads to a synthetic matrix magnetic field
that influences electron dynamics in a manner similar to the
Lorentz force in electrodynamics. However, the SU(2) gauge
field, unlike the conventional electrodynamic vector potential,
introduces a spin-dependent force. The freedom in choosing
topologically distinct (homotopically nonequivalent) sets of
matrices U (r) leads to fundamentally and consequentially
different gauge potentials. As we show below, the choice
U2(�r) (corresponding to a spin-flux carrying skyrmion) leads
to an SU(2) gauge field that is singular as r → 0. An electron
encircling this skyrmion at a large distance from its core
acquires a nontrival phase of eiπ as if the skyrmion carries a
magnetic solenoid containing a flux of π . On the other hand,
the choice U1(r) (corresponding to a conventional skyrmion)
yields a nonsingular gauge field. An electron encircling this
skyrmion acquires a trivial phase of e2iπ . These two topo-
logically distinct skyrmions exhibit identical local magnetic
moment distributions, but lead to different dynamics for the
itinerant electron.

The synthetic magnetic field of a single U1(r) skyrmion
has a monopolar structure in the σz component, but a dipolar
structure in the σx and σy component (see Fig. 2). In the pres-
ence of uniform density of such skyrmions, there is a nonzero
average value of the net magnetic field for the σz component.
However, the average magnetic field for the σx and σy compo-
nents vanishes due to the canceling effects of different dipoles.
In contrast, the synthetic magnetic field of a single U2(�r)
spin-flux skyrmion has a monopolar structure in both the σz

and σx components (see Fig. 3). For a uniform density of U2(r)
spin-flux skyrmions, there is a nonzero average value of the
synthetic magnetic field for both the σz and σx components.
This leads to observable differences in the electron dynamics
in the presence of U1(r) vs. U2(r) skyrmion densities.
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FIG. 2. Behavior of the emergent magnetic field and vector potential for a conventional Néel skyrmion with spin rotation θ (r) =
2 tan−1(r/ρ0), and U1 = exp(−i π (n̂·�σ )

2 ), where �n = (sin θ

2 cos φ, sin θ

2 sin φ, cos θ

2 ). Panels (a–c) display the σz, σx , and σy components of the
magnetic field, respectively. Panels (d–f) show the corresponding components of the vector potential. The color bars represent the magnitude
of the vector potential, while the arrows indicate its direction. The emergent vector potential and magnetic field are scaled in units of h̄/a and
h̄/a2, respectively, where a is the lattice constant.

In the literature, a commonly adopted form of the SU(2)
unitary transformation U1(r) is [46,50]

U1(r) = exp

(
− i

π (n̂ · �σ )

2

)
. (1)

Here, the unit vector �n = (sin θ
2 cos φ, sin θ

2 sin φ, cos θ
2 ) de-

fines the axis of rotation and the angles θ and φ are functions
of 2D polar coordinates r and ζ . This transformation corre-
sponds to a single rotation by angle π about the axis n̂, which
lies halfway between the local magnetization direction and the
z axis. As a result, U1(r) rotates the local spin texture into
alignment with the z axis. The rotational path traced out by
such transformations within the SO(3) group manifold, as �r
encircles the skyrmion, dictates key features of the emergent
gauge potential. Two example paths, p1 and p′

1, within SO(3)
are depicted in Fig. 1(a), corresponding to circles of different
radii (in coordinate space) that encircle the skyrmion.

Instead of the commonly used unitary matrix form, an al-
ternative form of the U (r) matrix was introduced in Ref. [34],
which is topologically distinct from U1(r) but yields the same
magnetic textures. In particular, the unitary matrix U2(r) fol-
lows a sequence of two separation rotations:

U2(r) = exp

(
− i

σzζ

2

)
exp

(
− i

σyθ (r)

2

)
. (2)

The skyrmion defined by the rotation matrix field U2(r) ex-
hibits the same topological charge, defined by the mapping

R2 → S2, as the conventional skyrmion. However, U2(r) de-
fines a homotopically distinct path within the group manifold
of SO(3) from U1(r) as the electron encircles the skyrmion
in coordinate space. As we show below, this leads to observ-
able differences in electron dynamics between these distinct
skyrmions. The unitary matrix product U2 = U z

2U y
2 again

aligns the electron spin with the local magnetization at each
point in space. The factor, U y

2 ≡ exp(−i σyθ

2 ), describes the
rotation by an angle θ around the y axis, aligning the spinor
with the local magnetization direction in the yz plane. The
factor, U z

2 ≡ exp(−i σzζ

2 ), applies a rotation by an angle, φ =
ζ , around the z axis. The path followed by the rotations U z

2
in the group manifold of SO(3) as the skyrmion is encircled
is depicted in Fig. 1(b). The skyrmion involving U z

2 exhibits
a consequential “spin-flux” of π causing spin-dependent de-
structive wave interference of two electron trajectories passing
either side of the skyrmion core.

The effective gauge potential �A modifies the electron mo-
tion similarly to a real magnetic vector potential except in a
spin-dependent manner. This can be described by the emer-
gent field �B = ∇ × �A. One consequence of this emergent
field is the topological Hall effect (THE), where electrons
experience a transverse Lorentz force due to their interac-
tion with the skyrmion. The transformed Hamiltonian H ′ =

1
2m (P + A)2 − Jhσz now includes an emergent SU(2) gauge
potential A. Depending on the homotopically distinct choices
of the unitary matrix fields, U1 or U2, the structure of the
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FIG. 3. The emergent magnetic field and vector potential for a spin-flux skyrmion with θ (r) = 2 tan−1(r/ρ0), and unitary matrix field

U2 = e−i σzζ
2 e−i

σyθ (r)
2 . Panels (a) and (b) show the σz and σx components of the emergent magnetic field, respectively. Notably, the σy component

vanishes in this configuration. Unlike U1, an emergent off-diagonal magnetic field of monopolar form appears in the σx component. Panels
(c–e) display the σz, σx , and σy components of the vector potential. The color bars represent the magnitude of the vector potential, while the
arrows indicate its direction. Panel (f) shows the singular radial dependence of the σz component of the vector potential, denoted as A3. The
emergent vector potential and magnetic field are scaled in units of h̄/a and h̄/a2, respectively, where a is the lattice constant.

emergent gauge potential and its associated physical conse-
quences differ. In the next section, we analyze the explicit
forms of the SU(2) gauge potentials produced by a single
skyrmion. In particular, the skyrmion created by U2(r) ex-
hibits monopolar off-diagonal components in its emergent
magnetic field and a vector potential similar to that of a mag-
netic solenoid carrying a magnetic flux of π . In our analysis,
we treat the skyrmion as a static texture.

B. Synthetic gauge field due to conventional skyrmions

The local magnetization M = (sin θ cos φ, sin θ sin φ,

cos θ ), is defined at each point r = (x, y) ≡ (r cos ζ , r sin ζ ),
where r is the radial distance from the origin and ζ is the angle
with respect to the x axis. The angles θ and φ are functions of
r and ζ . For the U1 unitary matrix, the emergent gauge vector
potential is given by (see Appendix A)

�A = h̄

2

[
θr (σy cos φ − σx sin φ)r̂

+ ζ̂
2φζ sin θ

2

r

(
σz sin

θ

2
− cos

θ

2
(σx cos φ + σy sin φ)

)]
,

(3)

where θr ≡ ∂θ/∂r and φζ ≡ ∂φ/∂ζ . Here, r̂ is the unit vec-
tor in the radial direction and ζ̂ is the unit vector in the
azimuthal direction. We consider a skyrmion whose central
spin is aligned along the +z direction, with a radially outward
rotation described by θ (r) = 2 tan−1(r/ρ0). In all our calcula-
tions, we consider only Néel-type skyrmions, for which φ = ζ

[6,10]. In this case, the detailed form of the emergent vector
potential and the corresponding emergent magnetic field are
(see Appendix A 1 for details)

�A = h̄

2

[
2ρ0

r2 + ρ2
0

(σy cos ζ − σx sin ζ )r̂

+ ζ̂

(
σz

2r

r2 + ρ2
0

− 2ρ0

r2 + ρ2
0

(σx cos ζ + σy sin ζ )

)]

≡ σx �A1 + σy �A2 + σ3 �A3 (4)

Bz = h̄

[
σz

2ρ2
0(

r2 + ρ2
0

)2 + 2rρ0(
r2 + ρ2

0

)2 (σx cos ζ + σy sin ζ )

]

≡ σzBzz + σxBzx + σyBzy. (5)

The behavior of σz, σx, and σy components of the vector
potential are shown in Figs. 2(d), 2(e), and 2(f), respectively.
Here, the arrows indicate the direction of the vector potential
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at each point, while the colored bars represent its magnitude.
As shown in Fig. 2(d), the σz component of the vector po-
tential is maximal at the skyrmion center and decays as 1/r
at large distances. In contrast, σx and σy components, shown
in Figs. 2(e) and 2(f), decay more rapidly, following a 1/r2

dependence. Additionally, the maximum value of the σz com-
ponent is approximately 1.4 that of the other two components.
Since the σz component of A is aligned along the azimuthal
direction, it contributes directly to the magnetic flux. On the
other hand, σx and σy components are aligned purely along
the y and x directions, respectively, and do not produce net
magnetic flux. The total magnetic flux enclosed within a circle
of radius R is given in Eq. (6). In the limit R → ∞, this
total flux approaches 2π . The flux experienced by an up-spin
electron is opposite to that of a down-spin electron. Since
the vector potential lies in the x-y plane it generates only a
z component of synthetic SU(2) magnetic field.

The explicit form of this fictitious magnetic field is given
in Eq. (5). The σz component of the magnetic field, denoted
Bzz, is maximum at the center of the skyrmion and decays as
1/r4 with distance. The behavior of Bzz in the x − y plane is
shown in Fig. 2(a). Among all components, Bzz has the highest
magnitude-approximately four times larger than the Bzx and
Bzy components depicted in Figs. 2(b) and 2(c), respectively.
The Bzx component exhibits an antisymmetric dipolar struc-
ture along the x axis resulting in zero net magnetic flux over
the skyrmion area. The Bzy component shows a similar dipolar
profile along the y axis, also contributing no net magnetic flux.
For this conventional (nonsingular) skyrmion:∮

C

�A · d�l ≡
∫ π

−π

�A(R, ζ ) · ζ̂Rdζ

= 2π h̄

(
1 − ρ2

0

R2 + ρ2
0

)
σz

= 2π h̄σz|R→∞ (6)∫
S

Bzdxdy ≡
∫ R

0

∫ π

−π

Bz(r, ζ )rdrdζ

= 2π h̄

(
1 − ρ2

0

R2 + ρ2
0

)
σz

= 2π h̄σz|R→∞. (7)

Here, the line integral is taken along a circular contour C of
radius R, and the surface integral extends over the circular dis
k S : 0 � r � R,−π � ζ � π .

C. Singular gauge field due to spin-flux skyrmions

The general expression for the SU(2) gauge potential
associated with a U2 spin-flux skyrmion is given by (see
Appendix A)

�A = h̄

2

[
−θrσyr̂ + ζ̂ φζ

r
(−σz cos θ + σx sin θ )

]
. (8)

We again consider a representative up-center skyrmion config-
uration defined by θ (r) = 2 tan−1(r/ρ0), and φ = ζ . For this
choice, the explicit analytical forms of the emergent gauge

potential and the corresponding SU(2) magnetic field exhibit
singularities as r → 0 (see Appendix A 2 for details):

�A = h̄

2

[
− 2ρ0

ρ2
0 + r2

σyr̂

+ ζ̂

(
− σz

ρ2
0 − r2

r
(
ρ2

0 + r2
) + σx

2ρ0

ρ2
0 + r2

)]
(9)

Bz = h̄

[
σz

2ρ2
0(

ρ2
0 + r2

)2 + ρ0
(
ρ2

0 − r2
)

r
(
ρ2

0 + r2
)2 σx

]
. (10)

The behaviors of the σz, σx, and σy components of the vector
potential are illustrated in Figs. 3(c), 3(d), and 3(e), respec-
tively. Here, the arrows indicate the direction of the vector at
each point, and the colored bars represent the magnitude of
the vector potential. The σz component of the vector poten-
tial exhibits a 1/r singularity at the center of the skyrmion
and decays as 1/r for larger. The other two components are
nonsingular as r → 0 and decay as 1/r2 at large distances.
Both σz and σx components are aligned along the azimuthal
direction, contributing to the total magnetic flux. The ex-
plicit form of the flux inside a circle of radius R is given in
Eq. (12). Unlike the case discussed in Sec. II B, where the
magnetic flux originates solely from the σz component, the
U2 skyrmion exhibits flux contributions from both σz and σx.
As shown in Fig. 3(f), the σz component of the azimuthal
vector potential [see Eq. (9)] changes sign at r = ρ0. For
r < ρ0, this component is negative, resulting in a clockwise
circulation of the vector field. For r > ρ0, it becomes posi-
tive, reversing the rotation direction to counterclockwise [see
Fig. 3(c)]. This is a distinctive behavior for U2-skyrmion not
present in the U1-skyrmion. In the limit R → ∞, the total
magnetic flux approaches 2π . However, the line integral of
the vector potential approaches π leading to distinct phase
changes from the U1-skyrmion as the electron encounters the
U2-skyrmion. An electron encircling the U2 skyrmion acquires
a nontrivial phase factor of eiπ . For this reason, we refer to
the U2 skyrmion as a “spin-flux” skyrmion. The usual Stoke’s
theorem, relating magnetic flux to the line integral of the
vector potential, is inapplicable due to the singular form of
the gauge field as r → 0.

The explicit form of the fictitious magnetic field for the U2

spin-flux skyrmion is given in Eq. (10). The σz component of
the magnetic field, denoted by Bzz, reaches its maximum at the
center of the skyrmion, as shown in Fig. 3(a). This behavior
closely resembles that observed for the U1 skyrmion discussed
earlier. In contrast, the Bzx component of the U2 spin-flux
skyrmion, shown in Fig. 3(b), exhibits a unique structure.
Unlike the dipolar pattern observed in the U1-skyrmion, the
Bzx field now displays a singular monopolelike structure cen-
tered at the skyrmion core and also decays as 1/r3 for large
distances. For the (singular) spin-flux skyrmion:∫

Bzdxdy = 2π h̄

[(
1 − ρ2

0

R2 + ρ2
0

)
σz + Rρ0

R2 + ρ2
0

σx

]

= 2π h̄σz|R→∞ (11)∮
�A · d�l = 2π h̄

[(
1

2
− ρ2

0

R2 + ρ2
0

)
σz + Rρ0

R2 + ρ2
0

σx

]

= π h̄σz|R→∞. (12)
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FIG. 4. Spatial profiles of components of the emergent magnetic field, for a lattice of skyrmions with core radius ρ̃0 = 5a, within the
large circular region of radius r̃ = 20a. Panel (a) shows the distribution of the Bzz component in the x − y plane for a lattice of either U1

or U2 skyrmions. For both skyrmion lattices, Bzz remains nearly uniform throughout the interior but drops sharply near the boundary. Panel
(b) presents the spatial variation of Bzx for the U1 skyrmion lattice. As expected, Bzx is nearly zero across the central area but becomes nonzero
near the boundary and displays a dipolarlike structure. In contrast, panel (c) illustrates the behavior of Bzx for the U2 skyrmion lattice. This has
monopolar peaks at the center of each skyrmion, leading to a significant average value over the large circular area.

D. Average field of a skyrmion lattice

We now consider a periodic arrangement of skyrmions con-
fined within a large circular region of radius r0, as illustrated
in Fig. 6(c). Here, we assume that the presence of multiple
skyrmions can be represented by a linear superposition of
their emergent gauge fields. The total emergent magnetic field
is obtained by summing the contributions from all individual
skyrmions within this region as depicted in Fig. 4. For the σz

component, the total field for both the U1− skyrmion and the
U2− skyrmion is given by

Btotal
zz =

∑
i

Bi
zz =

∑
i

2ρ2
0 h̄[(

x − xi
0

)2 + (
y − yi

0

)2 + ρ2
0

]2 . (13)

Here, (xi
0, yi

0) are the coordinates of the center of the ith

skyrmion, and πr2
0 is the total area of the skyrmion region.

The total number of skyrmions is Nt , and the skyrmion density
is defined as Dsk = Nt

πr2
0
. To obtain the average magnetic field,

we integrate the total field over the system area. For the σz

component, the average is given by Bav
zz = 1

πr2
0

∫
Btotal

zz dxdy.
The average values of the other components, Bav

zx and Bav
zy , can

be computed similarly and we denote the matrix average as
Bav

z = Bav
zx σx + Bav

zy σy + Bav
zz σz. In what follows, we generalize

Bav
z to represent a configuration average, [Bz]c, over different

skyrmion coordinate locations [not restricted to those depicted
in Fig. 6(c)]. We assume that [Bz]c = Bav

z . The average emer-
gent magnetic field components, Bav

zz and Bav
zx , are functions

of skyrmion density and radius. As shown in Fig. 5(a), Bav
zz

increases with skyrmion density for both U1- and U2-type
skyrmions. Conversely, Fig. 5(b) shows that Bav

zz decreases
with increasing skyrmion core radius ρ0. This highlights the
competing roles of skyrmion size and density in determining
the spatially averaged field.

The off-diagonal components Bzx and Bzy of the emer-
gent magnetic field of a conventional skyrmion (U1) exhibit
dipolelike structures oriented along the x and y directions,
respectively, as illustrated in Fig. 2. Consider a crystal of
skyrmions filling a large circular region [see Fig. 6(c)]. In such
a configuration, the dipole field of one skyrmion can overlap
with that of a nearby skyrmion, leading to partial or complete

cancellation of the local field in the interior region. In any
event, the spatial averages the off-diagonal components of the
emergent field of the U1− skyrmion crystal cancel out in the
bulk of the system. However, this cancellation does not hold at
the boundaries if the dipolar fields are aligned in one direction.

This situation is quite different for a lattice of U2-
skyrmions. Figure 5(c) shows that the average emergent field
component Bav

zx increases with skyrmion density. As shown in
Fig. 5(d), Bav

zx initially increases with skyrmion radius ρ0, but
eventually saturates. This behavior can be understood from the
monopolar nature of the emergent field of a single skyrmion

Bzx(r) ∝ ρ0(ρ2
0 −r2 )

r(ρ2
0 +r2 )2 , which is singular at the skyrmion center

and decays as 1/r3 for r � ρ0. This distinctive behavior
provides a framework for interpreting certain experimental
results on the Hall conductivity as a function of applied mag-
netic field, as we discuss below (see Fig. 8).

In summary, for the U1-skyrmion, the spatially aver-
aged emergent magnetic field component Bav

zz increases with
skyrmion density but decreases with skyrmion core radius,
while the off-diagonal components Bav

zx and Bav
zy are negligibly

small. In contrast, for the U2 spin-flux skyrmion, both Bav
zz and

Bav
zx are significant, with Bav

zx increasing with skyrmion core
radius. Thus, the averaged emergent matrix magnetic fields
for a finite density of skyrmions takes the form

Bav
z =

{
Bav

zz σz, for U1 (Conventional skyrmions)

Bav
zz σz + Bav

zx σx, for U2 (Spin-flux skyrmions)
.

(14)

This contributes to different dynamics for an itinerant electron
encountering a region of U1− skyrmions vs. U2− skyrmions
even in a semiclassical picture, as demonstrated in Sec. III.

III. SPIN-DEPENDENT DRUDE THEORY

We now consider the semiclassical dynamics of an electron
subject to the emergent matrix-valued magnetic field gen-
erated by a finite density of skyrmions. In this framework,
fluctuations of the emergent field around its average value are
treated as an additional scattering source, contributing to an
effective relaxation time τ . The resulting transport behavior is
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FIG. 5. Panels (a) and (b) show the behavior of the averaged magnetic field component Bav
zz as a function of skyrmion density, Dsk, and

skyrmion radius ρ0, respectively. Bav
zz remains the same for both U1− skyrmion and spin-flux U2− skyrmion lattices. Panels (c) and (d) display

the behavior of the averaged off-diagonal field component Bav
zx for U2− skyrmion lattice, as a function of Dsk and ρ0, respectively. The amplitude

of Bav
zz is larger than that of Bav

zx , due to their distinct functional forms, as described in Eqs. (5) and (10). The dependence of Bav
zz and Bav

zx on ρ0

is qualitatively different as seen by comparing panels (b) and (d). For the U1− skyrmion lattice, the average values of the off-diagonal field
components are nearly zero. In all cases, the region containing skyrmions has a radius of 25a, where a is the lattice spacing between magnetic
moments.

described using a spin-dependent generalization of the Drude
model [51]. We start from an effective Heisenberg equation of
motion for the electron momentum operator:

m�̇v = −q �Eσ0 − m
�v
τ

− Bz(�v × ẑ). (15)

Here �v = x̂ẋ + ŷẏ is the velocity operator, which includes the
identity matrix, σ0, in spin space. Here, �E is the physical
external electric field, and Bz represents the spin-dependent
emergent magnetic field arising from a finite density of sta-
tionary skyrmions. The term Bz(�v × ẑ) is a spin-dependent
Lorentz-like force due to this emergent field, while the damp-
ing term m �v

τ
phenomenologically accounts for momentum

relaxation from impurities, emergent-field fluctuations, and
other sources of random scattering. A detailed derivation is
presented in Appendix B. The first term on the right-hand
side corresponds to the force exerted by the external electric

field, acting identically on all spin states. The Drude-like
equation (15) gives rise to spin-selective transport determined
by the specific form of the conduction electron spin density
matrix.

We now take the ensemble average and quantum expec-
tation value of Eq. (15) under steady-state conditions, where
the average acceleration vanishes, i.e., 〈�̇v〉ens = 0. Assuming
a uniform applied electric field along the x axis, the spin-
dependent Drude equation reduces to the following Cartesian
component:

0 = −qEx − m
〈vx〉ens

τ
− 〈Bzvy〉ens. (16)

Here, the ensemble average 〈Ô〉ens for any operator Ô is de-
fined as 〈Ô〉ens = [〈Ô〉]c, where [Ô]c denotes a configurational
average over skyrmion positions, and 〈Ô〉 ≡ Tr(ρ Ô) is the
quantum mechanical expectation value with respect to the

FIG. 6. Panel (a) depicts the averaged magnetic field component Bav
zz (identical for both U1− skyrmions and U2 spin-flux skyrmions) as a

function of skyrmion density Dsk and skyrmion radius ρ0. The color bar indicates the magnitude of Bav
zz . Panel (b) displays the distribution of

the Bav
zx component for the U2 spin-flux skyrmion in the same parameter space. Clearly, Bav

zz increases with skyrmion density but decreases with
increasing skyrmion radius. In contrast, Bav

zx is nonzero and large only in U2 skyrmions. This shows a monotonic increase with both skyrmion
density and radius. Panel (c) shows a schematic representation of skyrmions arranged in a square lattice within a large circle of radius r̃0 = 25a.
The red dots denote individual skyrmions, while black dots mark the underlying lattice sites of individual magnetic moments. The radius of
each skyrmion is set to ρ̃0 = 2a.
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FIG. 7. Cartoon illustration of the transverse Hall effect from a
density of conventional and spin-flux skyrmions. (a) For a current
composed of 60% electrons with 〈σz〉 = +1 (upward arrows) and
40% with 〈σz〉 = −1 (downward arrows), electrons with 〈σz〉 = +1
deflect toward the +y edge, while those with 〈σz〉 = −1 accumulate
at the −y edge. The resulting Hall current originates from the av-
erage Bav

zz component of the emergent field and is identical for both
conventional and spin-flux skyrmions. (b) For a current composed of
60% electrons with 〈σx〉 = +1 (oblique right arrows) and 40% with
〈σx〉 = −1 (oblique left arrows), the Hall response arises from the
average Bav

zx component. For this input current, a finite Hall current
arises only from a density of spin-flux skyrmions, while a density of
conventional skyrmions yields no transverse response.

conduction electron density matrix ρ. This formulation en-
sures that both the spatial distribution of skyrmions and the
quantum spin state of conduction electrons are consistently

taken into account when evaluating transport quantities. In the
regime where the applied electric field is strong and the influ-
ence of the emergent magnetic field is weak, the longitudinal
electron dynamics is primarily governed by the electric field
and the relaxation time τ . Under this assumption, the term
〈Bzvy〉ens can be neglected, and the steady-state longitudinal
velocity simplifies to

〈vx〉ens ≈ −τq

m
Ex. (17)

For the transverse (y) direction, Eq. (15) reduces to 0 =
−m 〈vy〉ens

τ
+ 〈Bzvx〉ens. Substituting Eq. (17) for 〈vx〉ens into

Eq. (16) and applying a mean-field factorization 〈Bzvx〉ens ≈
〈Bz〉ens 〈vx〉ens, we obtain the approximate transverse velocity:

〈vy〉ens ≈ τ

m
〈Bz〉ens〈vx〉ens

= −qτ 2

m2
Ex

〈
Bav

z

〉
, (18)

where Bav
z ≡ [Bz]c denotes the configurationally averaged

emergent magnetic field. The corresponding longitudinal cur-
rent is jx ≡ −qn〈vx〉ens = nτq2

m Ex ≡ σxxEx, where σxx = nτq2

m
is the conventional Drude longitudinal conductivity and n
is the carrier density. The transverse (Hall) current jy ≡
−qn〈vy〉ens = n q2τ 2

m2 Ex〈Bav
z 〉 ≡ σyxEx, with the Hall conductiv-

ity given by

σyx =
⎧⎨
⎩

n q2τ 2

m2 Bav
zz 〈σz〉, for U1 (Conventional skyrmions),

n q2τ 2

m2

[
Bav

zz 〈σz〉 + Bav
zx 〈σx〉

]
, for U2 (Spin-flux skyrmions).

(19)

This result reveals that the Hall conductivity depends explic-
itly on the spin expectation values of the input current and the
emergent magnetic field generated by the skyrmion lattice,
leading to a spin-polarized topological Hall effect. For U1

skyrmions, the Hall signal arises solely from the out-of-plane
component 〈σz〉, consistent with earlier reports [7,52–56]. In
contrast, for U2 skyrmions, an additional in-plane term pro-
portional to 〈σx〉 emerges due to the finite Bav

zx component. A
summary of the differences between conventional and spin-
flux skyrmions is presented in Table I.

To illustrate this quantitatively, consider a conduction elec-
tron population described by the spin density matrix ρ =
(3/5 0

0 2/5), which corresponds to an incoherent mixture of
60% electrons with 〈σz〉 = +1 (spin-up) and 40% electrons
with 〈σz〉 = −1 (spin-down). In other words, n↑ = 0.60n and
n↓ = 0.40n, where n = n↑ + n↓ is the total carrier density.
From Eq. (19), the emergent field Bav

zz deflects spin-up elec-
trons toward the +y direction and spin-down electrons toward
the −y direction with equal transverse velocity magnitude vy.

TABLE I. Comparison of key properties between conventional skyrmions and spin-flux skyrmions, including the Unitary matrix, the form
of the emergent magnetic field, the phase obtained from the line integral of the gauge potential over a closed loop of radius R, the average
field for a skyrmion lattice, and the expression of the spin-dependent Hall conductivity.

Key Feature Conventional skyrmion Spin-flux skyrmion

Unitary matrix U1 = e−i π (n̂· �σ )
2 . U2 = e−i σzζ

2 e−i
σyθ (r)

2 .

Emergent field Bz h̄
[
σz

2ρ2
0

(r2+ρ2
0 )2 + 2rρ0

(r2+ρ2
0 )2 (σx cos ζ + σy sin ζ )

]
h̄
[
σz

2ρ2
0

(ρ2
0 +r2 )2 + ρ0 (ρ2

0 −r2 )

r(ρ2
0 +r2 )2 σx

]
∮

C
�A · d�l 2π h̄

(
1 − ρ2

0
R2+ρ2

0

)
σz 2π h̄

[(
1
2 − ρ2

0
R2+ρ2

0

)
σz + Rρ0

R2+ρ2
0
σx

]
Bav

z Bav
zz σz Bav

zz σz + Bav
zx σx

σyx
n q2τ2

m2 Bav
zz 〈σz〉 n q2τ2

m2

[
Bav

zz 〈σz〉 + Bav
zx 〈σx〉

]
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FIG. 8. Panel (a) shows extracted experimental data from Ref. [57], giving the skyrmion core radius (ρ0) and the skyrmion density (Dsk)
as a function of external magnetic field. The experimental Dsk increases from 2.5 × 10−6a−2 to 11.5 × 10−6a−2 as the field is increased. To
simulate such densities we utilize a circular region of radius 1317a. Using the experimental data from (a), we compute the field dependence of
the Hall conductivity using Eq. (19). The configuration averaged emergent fields are calculated using the recipe illustrated in Fig. 5. Panel (b):
For conventional skyrmions, the Hall conductivity increases rapidly with field up to the point where the skyrmion density saturates, and then
continues to increase slowly due to the gradual reduction of the skyrmion radius. Panel (c): For spin-flux skyrmions, the Hall conductivity first
rises rapidly with field but, after the density saturates, decreases with increasing field. This decrease originates from the finite Bzx component
of the emergent field and reproduces the experimental trend reported in Ref. [57]. In panels (b) and (c), we consider two choices of the input
current. In the first case, an incoherent mixture of 40% 〈σz〉 = 1 and 60% 〈σx〉 = 1 is assumed (red dots), while in the second case 20% 〈σz〉 = 1
and 80% 〈σx〉 = 1 is used (blue dots). The slope of the conductivity decrease depends on the relative weights of in-plane and out-of-plane spin
components. The σyx scale on the y axis is the same for panels (b) and (c).

The resulting transverse charge current density is then

jy = −q(n↑ < vy,↑ >ens +n↓ < vy,↓ >ens)

= q2τ 2

m2
Bav

zz Ex(n↑ − n↓)

= 1

5

n q2τ 2

m2
Bav

zz Ex. (20)

This applies to both U1 and U2 skyrmion densities, as illus-
trated in Fig. 7(a).

Alternatively, consider a conduction electron population
consisting of an incoherent mixture with 60% of electrons po-
larized along +x̂ (〈σx〉 = +1) and 40% along −x̂ (〈σx〉 = −1).
The corresponding spin density matrix is ρ = ( 1/2 1/10

1/10 1/2 ),
expressed in the σz basis. In the σx basis, n+ = 0.60n and
n− = 0.40n, where n = n+ + n− is the total carrier density.
The emergent magnetic field Bav

zx now deflects 〈σx〉 = +1 elec-
trons in the +y direction and 〈σx〉 = −1 electrons in the −y
direction, both with equal transverse velocity magnitude vy.
The resulting transverse charge current density is

jy = −q(n+ < vy,+ >ens +n− < vy,− >ens)

= q2τ 2

m2
Bav

zx Ex(n+ − n−)

= 1

5

n q2τ 2

m2
Bav

zx Ex. (21)

This contribution is unique to the U2 (spin-flux) skyrmions,
since Bav

zx is absent in conventional U1 skyrmions. In other
words, a finite Hall response under in-plane spin polarization
provides a direct experimental signature for the presence of
spin-flux skyrmions, as illustrated in Fig. 7(b).

Experimental results are often reported in terms of the
Hall resistivity ρyx. This is related to the conductivity through
the tensor inversion formula ρyx = σyx

σ 2
xx+σ 2

yx
. In the small Hall

angle limit (as also noted in Ref. [57]), where |σyx| � σxx,
this reduces to ρyx ≈ σyx

σ 2
xx

. Since σxx is approximately constant
with the external magnetic field, the field dependence of ρyx

closely follows that of σyx, differing only by a scaling factor.
In this case σyx can be compared to experimentally observed
variations of ρyx with an externally applied magnetic field. It
has been shown [10,13] that an external magnetic field con-
trols the density and the core radii of the magnetic skyrmions.

In Ref. [57], for the material system [Ta/CoFeB/MgO]1.5,
the measured topological Hall conductivity increases with
magnetic field, reaches a maximum, and then decreases. From
the same study, we extract the field dependence of both the
skyrmion core radius (ρ0) and the skyrmion density (Dsk), as
shown in Fig. 8(a). The experimentally observed Dsk increases
from 2.5 × 10−6a−2 to 11.5 × 10−6a−2 (with a = 0.29 nm)
as the external magnetic field is increased from 0 to 4500
Oe, and then Dsk remains nearly constant over the field range
4500–8500 Oe. In order to simulate this behavior, we model
a circular region of radius 1317a to maintain a total skyrmion
number and density, Dsk , consistent with the experimentally
observed values [Fig. 8(a)]. Using our model, we compute
the average emergent fields. For a given applied magnetic
field, each pair of data points in Fig. 8(a) can be associated
with a single point in either Fig. 6(a) or 6(b). As the applied
magnetic field is varied continuously, it describes paths in
Figs. 6(a) and 6(b), from which the emergent magnetic fields
as a function of applied magnetic field is determined. Inserting
these emergent fields into our analytical framework [Eq. (19)],
we calculate the Hall conductivity for both conventional and
spin-flux skyrmions, as shown in Figs. 8(b) and 8(c). This is
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done for two choices of the input current. In the first case,
we consider an incoherent mixture of 40% 〈σz〉 = 1 and 60%
〈σx〉 = 1, with electron spin density-matrix ρ1 = (0.7 0.3

0.3 0.3).
In the second case, an incoherent mixture of 20% 〈σz〉 = 1
and 80% < σx >= 1, with electron spin density-matrix ρ2 =
(0.6 0.4
0.4 0.4).

Figure 8(b) shows the behavior of σyx with external mag-
netic field for conventional skyrmions, evaluated for the two
density matrices, ρ1 (red dots) and ρ2 (blue dots). The ini-
tial increase of σyx with magnetic field is well known from
the literature [7,24,58,59], corresponding to the formation
and growth of the skyrmion phase. In both cases, σyx in-
creases rapidly with magnetic field, and then continues to rise
only slowly once the skyrmion density saturates. This trend
arises because both the emergent field component Bzz and
the skyrmion density increase with magnetic field. After the
density becomes nearly constant, σyx is controlled primarily
by the shrinking skyrmion core radius. Since conventional
skyrmions only possess a finite Bzz component, the result-
ing Hall conductivity never decreases with field but instead
shows a gradual saturation. However, in the experimental
data of Ref. [57], a clear downturn of σyx is observed before
the final high-field collapse. This intermediate-field reduction
is not simply explained by conventional skyrmion models
[7,24,58,60]. Our spin-flux skyrmion mechanism provides a
simple, natural, and fundamental explanation. At sufficiently
high magnetic fields (in this case above ∼8500 Oe), the
skyrmion density sharply decreases as the system approaches
a phase transition into either the conical or the ferromagnetic
phase. Experimentally, this leads to a rapid collapse of the
topological Hall signal, as observed in Ref. [57]. This high-
field collapse is widely reported [7,24,56,60–63] and can be
understood with both conventional and spin-flux skyrmions.

In contrast, for spin-flux skyrmions [Fig. 8(c)], both Bzz

and Bzx components contribute. Initially, σyx again increases
with field due to the rising skyrmion density. However, once
the density saturates, the conductivity is determined by the
core radius: Bzz decreases with radius [see Fig. 5(b)], while
Bzx increases [see Fig. 5(d)]. Their combined effect in Eq. (19)
produces a nonmonotonic σyx, which decreases after reaching
a maximum. The rate of decrease depends sensitively on the
relative spin composition of the conduction electrons. Specif-
ically, a larger fraction of in-plane spins enhances the relative
weight of the Bzx contribution, which counterbalances the Bzz

term and leads to faster drop in σyx. This effect is evident in
Fig. 8(c), where the blue dots denote results for ρ2 and red
symbols for ρ1. For ρ2, σyx decreases more rapidly because
of the stronger in-plane spin polarization. The resulting field
dependence of σyx in our spin-flux model resembles the ex-
perimental trend reported in Ref. [57], where σyx increases
at low fields, peaks, and then decreases. Such nonmonotonic
behavior of σyx with applied magnetic field is not explained
by conventional skyrmions alone. Similar behavior of the
experimentally observed the Hall resistivity with external
magnetic field is reported in other materials, including FeGe
[61,62], MnSi [56,59], MnGe [64], GdRu2Ge2 [63], and
Gd2PdSi3 [60].

IV. DISCUSSION

We have introduced the concept of spin-flux carrying
skyrmions as a possible additional modality for magnetic
memory in spintronics. Spin-flux has its origin in the fun-
damental two-valued nature of the wave function of spin −
1/2 electrons. Under a 2π rotation in its internal coordinate
system, the electron wave function changes sign, leading
to observable physical consequences. We have derived the
explicit SU(2) gauge field for spin-flux skyrmions and demon-
strated how their emergent fields and Hall response differ
fundamentally from conventional skyrmions. The monopolar
σx component inherent to spin-flux skyrmions generates a
finite average emergent field, leading to an additional contri-
bution to the topological Hall conductivity that is absent in
conventional systems. This feature provides a possible inter-
pretation of several experimentally observed Hall resistivity
behaviors that cannot be fully explained by the conventional
skyrmion model.

The tunability of the Hall response with respect to spin
polarization indicates that spin-flux skyrmions could be used
to control charge transport in a manner not accessible with
conventional textures. For instance, the Hall conductivity in
such systems can be enhanced or suppressed depending on the
spin alignment of itinerant electrons, offering a controllable
mechanism for transverse charge flow under a longitudinal
current. Such behavior has potential relevance for memory
and logic architectures based on skyrmion motion, where
controlling transverse deflection is essential to reduce energy
dissipation and improve device stability [7,18,65,66].

Spin-flip scattering [67,68] provides another probe to
identify skyrmionic spin textures. In most experimental
conditions, the kinetic energy of conduction electrons is
significantly larger than the characteristic energy scale of
the skyrmion–electron interaction. Previous theoretical works
[69,70] have treated this interaction as a scattering potential
and analyzed the corresponding scattering amplitudes as a
function of relevant system parameters. Spin-flux skyrmions
lead to stronger forms of spin-flip scattering of conduction
electrons, than realized by conventional skyrmions. This is ap-
parent from the presence of finite off-diagonal components in
the spin-flux skyrmion gauge field, absent in the conventional
case. The observation of (stronger than conventional) spin-flip
scattering may provide additional support for the presence of
spin-flux skyrmions.

The physical origin of the spin-flux skyrmion is related to
the structure of the many-electron wave function underlying
the magnetic texture. The local magnetic moments are quan-
tum expectation values with respect to a wave function built
from spin-1/2 electrons, whose two-valued nature is essen-
tial. When the electronic wave function is followed around
a closed path encircling the skyrmion, its internal spinor un-
dergoes a full 360◦ rotation. This results in a sign change
corresponding to a spin-flux of π [34,37,71]. This internal
rotation may be driven by spin-orbit interactions, such as
the Dzyaloshinkii-Moriya interaction [20]. A full energetic
comparison between spin-flux and conventional skyrmions,
requiring a quantum many-body analysis, is a worthy
direction for future study.
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Spin-flux skyrmions are a direct consequence of the dou-
bly connected topological structure of the group manifold
of physical rotations in three-dimensional space. We hope
that our exposition will motivate more focused experimental
effort to identify such skyrmions. Such an identification may
offer previously unrecognized technological opportunities in
spintronics.
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APPENDIX A: DETAILED CALCULATION
OF EMERGENT MAGNETIC FIELD

The emergent vector potential and the corresponding mag-
netic field arising from the SU(2) gauge transformation are
expressed as

�A = −ih̄U †∇U, �B = ∇ × �A. (A1)

1. Conventional skyrmion

For a conventional skyrmion, the explicit form of the
unitary matrix is U1(r) = exp(−i π (n̂·�σ )

2 ) = −in̂ · �σ , where
the unit vector �n = (sin θ

2 cos φ, sin θ
2 sin φ, cos θ

2 ). Here, we
have used the Pauli matrix identity eiθ n̂·�σ = σ0 cos θ + in̂ ·
�σ sin θ . Using the gradient operator ∇ ≡ r̂ ∂

∂r + ζ̂

r
∂
∂ζ

, the cor-
responding SU(2) vector potential can be derived using the
observation that n̂ · �σ∂r (n̂ · �σ ) = θr

2 ( 0 e−iφ

−eiφ 0 ) and n̂ · �σ∂ζ (n̂ ·
�σ ) = iφζ ( sin2( θ

2 ) − 1
2 e−iφ sin θ

− 1
2 eiφ sin θ − sin2( θ

2 ) ). It follows that

�A = −ih̄U †
1 ∇U1 (A2)

≡ h̄

2

[
θr (σy cos φ − σx sin φ)r̂ + ζ̂

2φζ sin θ
2

r

×
(

σz sin
θ

2
− cos

θ

2
(σx cos φ + σy sin φ)

)]
. (A3)

Consequently, the corresponding emergent magnetic field is
given by [7,18]

�B = ∇ × �A (A4)

= 1

r

[
∂

∂r
(rAζ ) − ∂Ar

∂ζ

]
ẑ (A5)

= h̄

2r
θrφζ

[
σz sin θ + 2 sin2 θ

2
(σx cos φ + σy sin φ)

]
ẑ

≡ Bzẑ, (A6)

where θr = ∂θ
∂r , φζ = ∂φ

∂ζ
. We consider a Néel-type

skyrmion in our calculation, described by the solution
θ (r) = 2 tan−1(r/ρ0) and φ = ζ . With this configuration, the

emergent vector potential and the corresponding emergent
magnetic field are given by

�A = h̄

2

[
2ρ0

r2 + ρ2
0

(σy cos ζ − σx sin ζ )r̂

+ ζ̂

(
σz

2r

r2 + ρ2
0

− 2ρ0

r2 + ρ2
0

(σx cos ζ + σy sin ζ )

)]
(A7)

Bz = h̄

[
σz

2ρ2
0(

r2 + ρ2
0

)2 + 2rρ0(
r2 + ρ2

0

)2 (σx cos ζ + σy sin ζ )

]

≡ σzBzz + σxBzx + σyBzy. (A8)

2. Spin-flux skyrmion

For a spin-flux skyrmion, the explicit form of the unitary
matrix is U2 = exp(−i σzφ(ζ )

2 ) exp(−i σyθ (r)
2 ). The correspond-

ing vector potential can be deduced using the Pauli matrix
identity from A 1 and the cyclic algebra σ jσk = δ jkσ0 +
iε jklσl , where ε jkl is the antisymmetric Levi-Civita tensor.

�A = −ih̄U †
2 ∇U2 (A9)

= −ih̄

[−iθr

2
σyr̂ + ζ̂

2r
(−iφζ )U †

2 σzU2

]
. (A10)

It is straightforward to show that U †
2 σzU2 = σz cos θ −

σx sin θ .
It follows that

�A = h̄

2

[
− θrσyr̂ +

ˆζφζ

r
(−σz cos θ + σx sin θ )

]
. (A11)

Consequently, the corresponding emergent magnetic field
is given by

�B = ∇ × �A (A12)

= 1

r

[
∂

∂r
(rAζ ) − ∂Ar

∂ζ

]
ẑ (A13)

= h̄
θrφζ

2r

[
σz sin θ + σx cos θ

]
ẑ ≡ Bzẑ. (A14)

We consider a Néel-type skyrmion in our calculation, de-
scribed by the solution θ (r) = 2 tan−1(r/ρ0) and φ = ζ . With
this configuration, the emergent vector potential and the cor-
responding emergent magnetic field are given by

�A = h̄

2

[
− 2ρ0

ρ2
0 + r2

σyr̂ + ζ̂

(
−σz

ρ2
0 − r2

r
(
ρ2

0 + r2
) + σx

2ρ0

ρ2
0 + r2

)]

≡ Ar r̂ + Aζ ζ̂ (A15)

Bz = h̄

[
σz

2ρ2
0(

ρ2
0 + r2

)2 + ρ0
(
ρ2

0 − r2
)

r
(
ρ2

0 + r2
)2 σx

]
≡ σzBzz + σxBzx.

(A16)

The radial component Ar contains a σy term and is indepen-
dent of the azimuthal angle ζ , i.e., ∂Ar

∂ζ
= 0. Therefore, the σy

component does not contribute to the emergent magnetic field.
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APPENDIX B: DERIVATION OF THE SPIN-DEPENDENT
LORENTZ EQUATION IN A HOMOGENEOUS

MATRIX FIELD

The Hamiltonian of an electron in the presence of an emer-
gent field is

H ′ = 1

2m
(P + A)2 − Jhσz, (B1)

where A is the microscopic synthetic gauge field due to
skyrmions. As described earlier, we replace H ′ with a mean-
field Hamiltonian, HMF in which A is replaced by its
configuration averaged value Aav = [A]c. In the symmetric
gauge this becomes

Aav = 1
2 Bav

z (�r × ẑ), (B2)

where the total averaged emergent magnetic field is given by
Bav

z = Bav
zxσx + Bav

zyσy + Bav
zz σz. For the U1 skyrmion, we have

Bav
zx = Bav

zy = 0, while for the U2 spin-flux skyrmion, Bav
zy = 0,

but Bav
zx �= 0. The mean-field Hamiltonian is then given by

HMF = 1

2m
(P + Aav)2 − Jhσz (B3)

= 1

2m

[
σ0

(
P2

x + P2
y + (x2 + y2)

4

(
Bav

z

)2
)

+ Bav
z (xPy − yPx ) − J1hσz

]
,

where J1h = 2mJh (B4)

= 1

2m

[
σ0

(
P2 + r2

4

(
Bav

z

)2
)

+ Bav
z Lz − J1hσz

]
, (B5)

where Lz = xPy − yPx is the z component of the orbital
angular momentum operator. The Heisenberg position and
momentum operators satisfy a matrix version of the classical
equations of motion [72,73]:

dx

dt
= i

h̄
[HMF , x] = 1

2m

(
2Pxσ0 − Bav

z y
) ⇒ Pxσ0

= m
dx

dt
+ Bav

z y/2 (B6)

dy

dt
= i

h̄
[HMF , y] = 1

2m

(
2Pyσ0 + Bav

z x
) ⇒ Pyσ0

= m
dy

dt
− Bav

z x/2 (B7)

dPx

dt
= i

h̄
[HMF , Px] = − 1

2m

(
x
(
Bav

z

)2

2
+ Bav

z Py

)
(B8)

dPy

dt
= i

h̄
[HMF , Py] = − 1

2m

(
y
(
Bav

z

)2

2
− Bav

z Px

)
. (B9)

Substituting Eqs. (B6) and (B7) into Eqs. (B8) and (B9), we
obtain

dPx

dt
= −1

2
Bav

z

dy

dt
(B10)

dPy

dt
= 1

2
Bav

z

dx

dt
. (B11)

Since �P = m�̇r, we obtain the matrix form of the Lorentz force
equation

m�̈r = −Bav
z (�v × ẑ). (B12)
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