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Localization of Superradiance near a Photonic Band Gap
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We describe collective spontaneous emissiomvafwo-level atoms placed within a photonic band-
gap material. When the atomic resonance frequency lies at the band edge, superradiant emission
remains localized in the vicinity of the atoms. This leads to a steady state with spontaneously broken
symmetry in which the atomic system acquires a macroscopic polarization. The superradiant decay
rate is proportional tav?* and N? for isotropic and anisotropic 3D band gaps, respectively. The
corresponding peak intensity of superradiance is proportionaftband N3, respectively.

PACS numbers: 71.55.Jv, 32.80.—t, 42.50.Fx

Photon localization, in three-dimensional dielectric me-that a fraction of the superradiant emission remains lo-
dia, opens a new frontier for fundamental phenomena imalized in the vicinity of the atoms leading to a steady
classical and quantum electrodynamics. Following thestate in which the atomic system acquires a macroscopic
initial prediction [1] of this effect, attention has focused polarization and retains a nonzero atomic population in
on systematic methods for the experimental realization ofhe excited state. This novel form of spontaneous sym-
strong localization of light and its consequences in lasemetry breaking is the analog of lasing without a cavity
physics. mode. The collective emission near the photonic band

While studies in strongly disordered dielectrics haveedge is accompanied by self-induced oscillations, a simple
revealed signatures of incipient localization [2,3], the pro-llustration of the “ringing” regime in superradiance. In
posal of creating a complete photonic band gap [4,5] ofaddition to being a fundamental phenomenon, localiza-
fers the most systematic route to this goal. In recent yearsion of superradiance may play an important role in low
several dielectric structures have been predicted [6—8&hreshold microlasers based on photonic band gap engi-
and observed [8] to exhibit a photonic band gap (PBG)neering. It suggests that a light emitting diode operating
a range of frequencies for which no propagating electronear a photonic band edge will exhibit very high modu-
magnetic modes are allowed. The existence of PBG mdation speed and coherence properties without recourse to
terials gives rise to a number of interesting phenomenaxternal mirrors or even a true cavity mode.
including the suppression of spontaneous emission [4], We consider a Dicke model [13—-16] of identical
the formation of strongly localized states of light [5], and two-level atoms coupled to the radiation field in a
photon-atom bound states [9]. Spontaneous emission ithree-dimensional periodic dielectric. The atoms have
a PBG displays distinct features from those in free spacexcited statd2), ground staté1), and resonant transition
such as oscillatory behavior, fractional steady-state atomifrequency w,;. The Hamiltonian of the system in the
population on the excited state, and subnatural linewidtlinteraction picture takes the form
[10,11]. These are all direct consequences of localization.

Although photonic band gaps are analogous to elec- H = ZﬁAAa}aA + iﬁZg/\(aIJn — Jnay)), (1)
tronic band gaps in semiconductors, there are many ) A
intriguing aspects of photons which are not shared b30vhere Jy =S¥ iyl Gi,j = 1,2) are the collective
electronic systems. Among these are laser action and su- . + L .
perradiance. These are related to the bosonic nature omic  Operators,a, an_d ay are the radiation field
light through which many photons can occupy the sam&nnihilation and  creation operators, = w — wa
mode. The recent observation of laser action in strongl)'/S a detuning Of. the radiation mode frequency
scattering media [12] motivates studies in this new di-“* from the atomic re?/‘;”am frequency,;, and
rection. In this paper we derive theoretically the nature®* ~ (@21d21 /E)(7i/2€00,)V) ey -uy is the atomic field
of collective spontaneous emission &ftwo-level atoms coupling constant. Herg;, and‘.ld are the absolut_e value
whose resonance frequency lies at the edge of an isotropﬁpd the unit vector of the atomic dipole momeitis the

or anisotropic 3D photonic band gap. It is shown that thesample volumee, = ex, are the two transverse (polar-

collective decay rate is proportional 16> and N? for Ization ) unit vectors, ané is the Coulomb constant.
isotropic and anisotropic 3D band gaps, respectively. The Assume that the radiation f|_eld is initially in the vacuum
corresponding peak intensity is proportionalN§/? and ~ StAte: The equations of motion fafy;(1)) and(J3(¢)) =
N3, respectively. That is, the collection of atoms near &/2(0) = (Unl) are

3D band edge can radiate fasterv?) and more intensely d ! , , ,

(~N?) than Dicke superradiance in free space. We show Eulz(’» - fo Gt = ) (502 dr', (2a)
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d ' / INW, discussion of superradiance at general frequencies using

— = — - +cc. ; . : :

dt (3 2/0 Gt — ) Un(@)dr + cc the full dispersion relation (3) will be presented elsewhere.
(2b To discuss the possibility of spontaneous symmetry

breaking during the process of superradiant emission,
§ we introduce a very small external perturbation which
endows the atomic system with an infinitesimal polariza-
jon. This is analogous to the addition of a small magnetic
eld & in describing the thermodynamic phases of a col-
ection of N magnetic moments. A ferromagnetic phase
Fransition at zero field is described by taking the limit
f—0 only after the thermodynamic limi¥ — «. Ac-
cordingly, we find that an infinitesimal initial polarization
of the atomic dipoles gives rise to a macroscopic polariza-
tion in the steady state limit— «. Assume that initially
the atomic system is in the state [16]

Here G(r — ') = X, gie =) is the delay Green's
function, and (A) indicates the expectation value o
the system operatot. The Green’s functiorG(r — ')
depends strongly on the dispersion relation and density
states of the medium. For the purpose of discussion w
consider two simple models of a PBG for electromagneti
waves in a three-dimensional periodic dielectric. In mode
I, we assume the dispersion is isotropic with respec
to the wave vectokk. The simplest model dispersion
relation which exhibits an isotropic PBG while retaining
the correct behavior in the limit of very low and very high
frequencies is

N
wi/c = sgnlk — kol — ko) + 92 + i3 + y2. (3) i) = [T + 31— r2k, (5)
k=1

Here k = |k| and k, and y are parameters related to where r <« 1, i.e., atoms are mostly populated in the
the dielectric microstructure. The two-valued nature ofexcited stat¢2) and the atomic coherence is infinitesimal.
the square-root function is made explicit by the presencéuch a state can be created by interaction of atoms
of the function sgfk — k) = +1 for k > ko and—1 for ~ with an external pulse [16]. Qualitatively similar results
k < ko. The square-root function has branch point singuto the ones we present occur for various values of
larities atk = ko = iy. The presence of the sign function the initial atomic inversion per ator(y;(0))/N and for
indicates that the branch cut should be placed along than infinitesimal initial polarization/,,(0))/N. The role
line connecting these two branch points. Physically, thiof different initial conditions and quantum fluctuations
corresponds to placing an isotropic photonic band gap ofn superradiance in a PBG will be discussed in detail
width Aw/c = 2y centered about the frequenay/c =  elsewhere. The system can be considered semiclassical
\/kg + y2. Also wy/c — k(ko/\/kZ + y?) ask — 0 and  [15,16] and equations of motion faKr) = (J1,(¢))/N and
wifc =k + (K + 4% — ko) for k 3> ko. Nearthe band ¥(1) = (J3(1))/N may be obtained from (2) by factorizing
edgew./c = \/k + y2 + v, the photon density of states the quantum expectation value of the operator products

is singular. Fork = ky;, we may simplify the disper- dx t e
sion relation by the effective mass approximatiop = i Ny(f)fo G@t — t)x(r))ar’, (6a)
w. + Alk — ko)?, whereA = 1/(2y). .

The singular density of states is an artifact of the dy _ _2Nx*(;)f G(t — x(t)dt' + c.c. (6b)
isotropic model. In the anisotropic model II, which we dr 0

describe later, the density of states in fact vanishes dt is easy to verify, using the isotropic, effective mass
w.. While both models exhibit localized superradiancesolution to the Green’s function (4), that and y are
and spontaneous symmetry breaking, the collective timéunctions of the dimensionless, scaled, time variable
scale factors for superradiant emission are qualitativey8N*3:. The factor BN*? is analogous to a bandwidth

different for the two cases. parameter in solid state physics. As a result of the band
The delay Green'’s functioa(r — ') can be written for edge mediated interaction between atoms, the effective
the isotropic PBG of model | as Rabi splitting is enhanced and the spectrum is broadened
2 2 A g2 by a factor ofN?/3. In the Markovian approximation [15],
Gt — 1) = 6&;2;762%[ — e il =) i (4) it is assumed that the dynamical evolution of the system
0 0 Wi

at timer is determined entirely by the state of the system

Here we converted the mode sum over the transversg timer. Neglecting memory effects, Eq. (6) yields
plane wave into an integral and performed the angular

integral. A = mc/h is the cutoff in the photon wave (J3(1)) = =N tanB[(1/7)"* = 11}, ()
vector. Photons of energy higher than the electron resyhere B = arctarh(l1 — 2r/N) and 7 = 3¥371/3p2/3/
massmc® probe the relativistic structure of the electron2gn2/3. It is clear from Eq. (7) that the collective decay
wave packet [17]. Using the effective mass isotropic disrate at the band edge of an isotropic PBG is proportional
persion relation, integration of Eq. (4) yielddr — 1) =  to N%/3 and the delay time of superradiance is propor-
B32e~im/* )\ [w(t — 1), where B3/2 = wil*d3 J6meghic.  tional to N-2/3. As a result, the superradiant intensity,
For simplicity we assume,; = w., i.e., the atomic res- which is proportional to—d{J;(r))/dt, scales asN“/3.
onance frequency lies at the band edge frequesnicy A One can see from Eq. (7) that lim.(J5(z)) = —N. In
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the Markovian approximation, all atoms decay to the
ground state and there is no localization of superradiance.
While the Markovian approximation does give the correct
collective time scale factors, it fails to properly account
for memory and feedback effects. These effects are
particularly important in a photonic band gap where
photons can bind to atoms [9].

To recapture this localization effect, we solve the
system of Egs. (6a) and (6b) exactly using numerical
methods [18]. In Fig. 1 we plot the atomic population 7L : ‘ P
inversion{(J5(¢))/N (solid curve) and atomic dipole mo-
mentD(r)/N = [(J2(t))l/N (dashed curve) as a function BN/
of BN?3t. In Fig. 2 we plot the phasg(r) of the atomic

polarization (J;5(1)) for the same initial condition (5). rlgé %)If tlféog?é‘;niigvsg?é?ir‘;;igg/(g /1(\?0="dl <qu(r;/)e>:|)/13nzjd :srﬂglé'
Clearly, the collective spontaneous emission at the edg(f%rve) in an isotropic PBG as a functiorl12 of the scale time

of a PBG displays striking distinctions from the free spacegy2/3; for initial condition (10) withr = 10-°.
case: (i) In the steady-state limit the population inversion

(J5(2))/N is not equal to—1. This follows from the fact
that the single atomic population inversion in the excite
state|2) remains nonzero [11]. This signifies localization
of superradiant emission in the vicinity of the atoms. (i)
The atomic polarization evolves from its infinitesimal ini-
tial value to a steady-state macroscopic value. This is di

0.5

<J5(t)>/N; D(t)/N
-0.5

Joceurs only if the initial state itself has a macroscopic
polarization.

The collective time scale factor af*? was found
above using the isotropic PBG (model I). This exponent of
N however, depends sensitively on the dimension of the

tinct from the free space superradiance where the atomf?:?(ijse \?gl?)((::(iet nglép;ﬁg ?gsgﬁ%d-%i%?j-per:jOtgnsSinOfu\I/:rri]tIS%ng
steady-state polarization is equal to zero. This spont he ori/erall goton densitv of sSsltes In a% isotr% ic b)gnd
neous symmetry breaking in the atomic polarization fiel P y ' P

is analogous to lasing without a cavity mode. It suggest dge, we have overestimated this phase space using the

the possibility of observing macroscopic quantum coher-entlre spherelk| = k. For a real dielectric crystal in

ent superpositions of states. (iii) The evolution(sf()), three dimensions with an allowed point-group symmetry,

D(zt), and u(r) displays collective self-induced oscillation t.h(? band ed_ge is associated with a PANE ko (or a
instead of a simple decay as it is in free space. These o%;rl“te C(.)”ec“ﬁn of si/mmetry relageo: points) r:ather tf?an
cillations are analogous to the collective Rabi oscillations, ?fen.tlre SP e'r,ﬂ(.l N |k.°|' In mode Il, we choose the
of N Rydberg’s atoms in a resonant high<avity [19]. effective mass” dispersion relation to be of the form

In addition to amplitude oscillations, the phase of the wk = w. + Ak — ko). (8)
macroscopic polarization rotates in the steady-state limi
with a frequency proportional to the magnitude of vac-
uum Rabi splitting. (iv) The collective time scale factor
for the isotropic PBG is proportional t6>/? rather thanv

bsing the anisotropic dispersion relation (8), the Green'’s
function in Eq. (2) and its integral for the case®ft > 1
become

as itis in free space. That is, the collective decay rate of Gt — 1) = L o1 iy i 9a
superradiance is proportional /> and the peak super- ( ) V2 Ps /( . (%)
radiance intensity, which is proportional ted(J/5(z))/dt, °

T T —p— —

is proportional tav>/? rather thanv?.

Our numerical results reveal qualitatively similar
behavior for different initial conditions. In particular,
macroscopic polarization emerges fany initial state .
for which (J3(0))/N > 0, and the steady-state limit <
(J12(»))/N is independent of the initial (infinitesimal) . 1
value (J1»(0))/N. The delay time required for super-
radiant emission, however, decreased noticeably as
(J12(0))/N was varied froml0~* to 1073. The magnitude . o B .
of the macroscopic steady-state polarizatigp(«))/N 0 5 10 15 20 25
decreases monotonically from 0.42 to 0.15 as the initial
inversion(J;(0))/N was decreased form 0.95 to 0.3. In

the absence of population inversipfy;(0))/N < 0], we  FiG. 2. Phase angle of the atomic polarization as a function
find that macroscopic polarization (in the long time limit) of gN%3¢ for the same parameter as in Fig. 1.

-5

aNZ/3
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/’ Gt — ) di = \/EIB;/Zei”M/\/; _ i\/ﬁwl./zﬁé/z, infinites_imal thrgshold.' For the case of a physical thrge-
0 ¢ dimensional anisotropic gap, the superradiant emission
occurs much faster and with higher peak intensity than
12 . 32 432 ) _(9b) c_onventional super_radiance. 'I_'hese _resul;s are based on a
where g;'" = w%1d21/8ﬁ hegm*?A* .. It is straight-  simple model of point superradiance in whighatoms are
forward to verify, using Eqgs. (6a) and (6b) and theconfined to a region smaller than the wavelength of light.
Green's function (9a), that andy are now functions of ~ The spontaneous atomic polarization in the steady state is
a new dimensionless time variab@N?. In the Mar-  anajogous to the emergence of a “superfluid” order param-
kovian approximation{/s(z)) is again determined from eter for photons. If the volume of superradiance is made
Egs. (6a), (6b), and (9b), larger than a cubic wavelength, alternate forms of sponta-
(J5(1)) = —N tanKB[(t/m3)"* — 1]}, (10)  Nneous symmetry breaking may arise from the spatial de-

) ~ pendence of the effective atomic resonance dipole-dipole
wherer; = B>/4B;N°. It is clear from Eg. (10) that in jnteraction (RDDI). In general, RDDI causes a breaking
an anisotropic 3D PBG, the collective decay rate is propf the permutation symmetry of the-atom wave function
portional to N> As a result, the superradiance inten- (5. This may diminish the magnitude of the macroscopic
sity, which is proportional te-d(/3(1))/dt, is proportional  steady-state polarization, and lead to a “Bose glass” under
to N3, certain circumstances.

Model Il exhibits both localization of superradiance This work was supported in part by the Natural
and spontaneous symmetry breaking. To see this, Wgciences and Engineering Research Council of Canada
solved Egs. (6a) and (6b) numerically [18] using Eqgs. (9)and Ontario Laser and Lightwave Research Center.

In Fig. 3 we plot{J3(¢))/N (solid curve) andD(r)/N =
[{(J21(t))|/N (dashed curve) as a function giN?z. As
before, superradiance is localized in the vicinity of atoms
and the system tends to the steady state with macroscopic
atomic polarization and rotating phase.
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