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Localization of Superradiance near a Photonic Band Gap
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(Received 22 June 1994)

We describe collective spontaneous emission ofN two-level atoms placed within a photonic band-
gap material. When the atomic resonance frequency lies at the band edge, superradiant emission
remains localized in the vicinity of the atoms. This leads to a steady state with spontaneously broken
symmetry in which the atomic system acquires a macroscopic polarization. The superradiant decay
rate is proportional toN2y3 and N2 for isotropic and anisotropic 3D band gaps, respectively. The
corresponding peak intensity of superradiance is proportional toN5y3 andN3, respectively.

PACS numbers: 71.55.Jv, 32.80.–t, 42.50.Fx
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Photon localization, in three-dimensional dielectric m
dia, opens a new frontier for fundamental phenomen
classical and quantum electrodynamics. Following
initial prediction [1] of this effect, attention has focuse
on systematic methods for the experimental realization
strong localization of light and its consequences in la
physics.

While studies in strongly disordered dielectrics ha
revealed signatures of incipient localization [2,3], the p
posal of creating a complete photonic band gap [4,5]
fers the most systematic route to this goal. In recent ye
several dielectric structures have been predicted [6
and observed [8] to exhibit a photonic band gap (PB
a range of frequencies for which no propagating elec
magnetic modes are allowed. The existence of PBG
terials gives rise to a number of interesting phenom
including the suppression of spontaneous emission
the formation of strongly localized states of light [5], a
photon-atom bound states [9]. Spontaneous emissio
a PBG displays distinct features from those in free sp
such as oscillatory behavior, fractional steady-state ato
population on the excited state, and subnatural linew
[10,11]. These are all direct consequences of localizat

Although photonic band gaps are analogous to e
tronic band gaps in semiconductors, there are m
intriguing aspects of photons which are not shared
electronic systems. Among these are laser action and
perradiance. These are related to the bosonic natur
light through which many photons can occupy the sa
mode. The recent observation of laser action in stron
scattering media [12] motivates studies in this new
rection. In this paper we derive theoretically the nat
of collective spontaneous emission ofN two-level atoms
whose resonance frequency lies at the edge of an isotr
or anisotropic 3D photonic band gap. It is shown that
collective decay rate is proportional toN2y3 and N2 for
isotropic and anisotropic 3D band gaps, respectively.
corresponding peak intensity is proportional toN5y3 and
N3, respectively. That is, the collection of atoms nea
3D band edge can radiate fasters,N2d and more intensely
s,N3d than Dicke superradiance in free space. We sh
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that a fraction of the superradiant emission remains lo-
calized in the vicinity of the atoms leading to a steady
state in which the atomic system acquires a macroscopic
polarization and retains a nonzero atomic population in
the excited state. This novel form of spontaneous sym-
metry breaking is the analog of lasing without a cavity
mode. The collective emission near the photonic band
edge is accompanied by self-induced oscillations, a simple
illustration of the “ringing” regime in superradiance. In
addition to being a fundamental phenomenon, localiza-
tion of superradiance may play an important role in low
threshold microlasers based on photonic band gap engi
neering. It suggests that a light emitting diode operating
near a photonic band edge will exhibit very high modu-
lation speed and coherence properties without recourse t
external mirrors or even a true cavity mode.

We consider a Dicke model [13–16] ofN identical
two-level atoms coupled to the radiation field in a
three-dimensional periodic dielectric. The atoms have
excited statej2l, ground statej1l, and resonant transition
frequencyv21. The Hamiltonian of the system in the
interaction picture takes the form

H ­
X
l

h̄Dla
y
lal 1 ih̄

X
l

glsay
lJ12 2 J21ald , (1)

where Jij ­
PN

k­1 jilkkk jj si, j ­ 1, 2d are the collective
atomic operators,al and a

y
l are the radiation field

annihilation and creation operators,Dl ­ vl 2 v21

is a detuning of the radiation mode frequency
vl from the atomic resonant frequencyv21, and
gl ­ sv21d21yh̄dsh̄y2e0vlV d1y2el ? ud is the atomic field
coupling constant. Hered21 andud are the absolute value
and the unit vector of the atomic dipole moment,V is the
sample volume,el ; ek,s are the two transverse (polar-
ization ) unit vectors, ande0 is the Coulomb constant.

Assume that the radiation field is initially in the vacuum
state. The equations of motion forkJ12stdl and kJ3stdl ­
kJ22stdl 2 kJ11stdl are

d
dt

kJ12stdl ­
Z t

0
Gst 2 t0d kJ3stdJ12st0dl dt0, (2a)
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kJ3stdl ­ 22
Z t

0
Gst 2 t0d kJ21stdJ12st0dl dt0 1 c.c .

(2b)
Here Gst 2 t0d ­

P
l g2

le2iDlst2t0d is the delay Green’s
function, and kAl indicates the expectation value of
the system operatorA. The Green’s functionGst 2 t0d
depends strongly on the dispersion relation and density
states of the medium. For the purpose of discussion w
consider two simple models of a PBG for electromagnet
waves in a three-dimensional periodic dielectric. In mode
I, we assume the dispersion is isotropic with respe
to the wave vectork. The simplest model dispersion
relation which exhibits an isotropic PBG while retaining
the correct behavior in the limit of very low and very high
frequencies is

vkyc ­ sgnsk 2 k0d
q

sk 2 k0d2 1 g2 1

q
k2

0 1 g2 . (3)

Here k ; jkj and k0 and g are parameters related to
the dielectric microstructure. The two-valued nature o
the square-root function is made explicit by the presenc
of the function sgnsk 2 k0d ­ 11 for k . k0 and21 for
k , k0. The square-root function has branch point singu
larities atk ­ k0 6 ig. The presence of the sign function
indicates that the branch cut should be placed along t
line connecting these two branch points. Physically, th
corresponds to placing an isotropic photonic band gap
width Dvyc ­ 2g centered about the frequencyv0yc ­p

k2
0 1 g2. Also v0yc ! ksk0y

p
k2

0 1 g2d as k ! 0 and
vkyc . k 1 s

p
k2

0 1 g2 2 k0d for k ¿ k0. Near the band
edgevcyc ­

p
k2

0 1 g2 1 g, the photon density of states
is singular. Fork . k0, we may simplify the disper-
sion relation by the effective mass approximationvk .
vc 1 Ask 2 k0d2, whereA ­ 1ys2gd.

The singular density of states is an artifact of th
isotropic model. In the anisotropic model II, which we
describe later, the density of states in fact vanishes
vc. While both models exhibit localized superradianc
and spontaneous symmetry breaking, the collective tim
scale factors for superradiant emission are qualitative
different for the two cases.

The delay Green’s functionGst 2 t0d can be written for
the isotropic PBG of model I as

Gst 2 t0d ­
v

2
21d2

21

6p2e0h̄

Z L

0

k2

vk
e2isvk2v21d st2t0d dk . (4)

Here we converted the mode sum over the transver
plane wave into an integral and performed the angul
integral. L ­ mcyh̄ is the cutoff in the photon wave
vector. Photons of energy higher than the electron re
massmc2 probe the relativistic structure of the electron
wave packet [17]. Using the effective mass isotropic dis
persion relation, integration of Eq. (4) yieldsGst 2 t0d ­
b3y2e2ipy4y

p
pst 2 t0d, where b3y2 ­ v

7y2
21 d2

21y6pe0h̄c3.
For simplicity we assumev21 ­ vc, i.e., the atomic res-
onance frequency lies at the band edge frequencyvc. A
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discussion of superradiance at general frequencies usin
the full dispersion relation (3) will be presented elsewhere.

To discuss the possibility of spontaneous symmetry
breaking during the process of superradiant emission
we introduce a very small external perturbation which
endows the atomic system with an infinitesimal polariza-
tion. This is analogous to the addition of a small magnetic
field h in describing the thermodynamic phases of a col-
lection of N magnetic moments. A ferromagnetic phase
transition at zero field is described by taking the limit
h ! 0 only after the thermodynamic limitN ! `. Ac-
cordingly, we find that an infinitesimal initial polarization
of the atomic dipoles gives rise to a macroscopic polariza-
tion in the steady state limitt ! `. Assume that initially
the atomic system is in the state [16]

jcN l ­
NY

k­1

s
p

rj1l 1
p

1 2 rj2ldk , (5)

where r ø 1, i.e., atoms are mostly populated in the
excited statej2l and the atomic coherence is infinitesimal.
Such a state can be created by interaction of atoms
with an external pulse [16]. Qualitatively similar results
to the ones we present occur for various values of
the initial atomic inversion per atomkJ3s0dlyN and for
an infinitesimal initial polarizationkJ12s0dlyN . The role
of different initial conditions and quantum fluctuations
on superradiance in a PBG will be discussed in detail
elsewhere. The system can be considered semiclassic
[15,16] and equations of motion forxstd ; kJ12stdlyN and
ystd ; kJ3stdlyN may be obtained from (2) by factorizing
the quantum expectation value of the operator products

dx
dt

­ Nystd
Z t

0
Gst 2 t0dxst0d dt0, (6a)

dy
dt

­ 22Nxpstd
Z t

0
Gst 2 t0dxst0d dt0 1 c.c . (6b)

It is easy to verify, using the isotropic, effective mass
solution to the Green’s function (4), thatx and y are
functions of the dimensionless, scaled, time variable
bN2y3t. The factorbN2y3 is analogous to a bandwidth
parameter in solid state physics. As a result of the band
edge mediated interaction between atoms, the effective
Rabi splitting is enhanced and the spectrum is broadened
by a factor ofN2y3. In the Markovian approximation [15],
it is assumed that the dynamical evolution of the system
at timet is determined entirely by the state of the system
at timet. Neglecting memory effects, Eq. (6) yields

kJ3stdl ­ 2N tanhhBfstytd3y2 2 1gj , (7)

where B ­ arctanhs1 2 2ryNd and t ­ 32y3p1y3B2y3y
2bN2y3. It is clear from Eq. (7) that the collective decay
rate at the band edge of an isotropic PBG is proportional
to N2y3 and the delay timet of superradiance is propor-
tional to N22y3. As a result, the superradiant intensity,
which is proportional to2dkJ3stdlydt, scales asN5y3.
One can see from Eq. (7) that limt!`kJ3stdl ­ 2N . In
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the Markovian approximation, all atoms decay to th
ground state and there is no localization of superradian
While the Markovian approximation does give the corre
collective time scale factors, it fails to properly accou
for memory and feedback effects. These effects a
particularly important in a photonic band gap whe
photons can bind to atoms [9].

To recapture this localization effect, we solve th
system of Eqs. (6a) and (6b) exactly using numeric
methods [18]. In Fig. 1 we plot the atomic populatio
inversion kJ3stdlyN (solid curve) and atomic dipole mo-
ment DstdyN ­ jkJ12stdljyN (dashed curve) as a function
of bN2y3t. In Fig. 2 we plot the phasemstd of the atomic
polarization kJ12stdl for the same initial condition (5).
Clearly, the collective spontaneous emission at the ed
of a PBG displays striking distinctions from the free spa
case: (i) In the steady-state limit the population inversi
kJ3stdlyN is not equal to21. This follows from the fact
that the single atomic population inversion in the excite
statej2l remains nonzero [11]. This signifies localizatio
of superradiant emission in the vicinity of the atoms. (i
The atomic polarization evolves from its infinitesimal in
tial value to a steady-state macroscopic value. This is d
tinct from the free space superradiance where the ato
steady-state polarization is equal to zero. This spon
neous symmetry breaking in the atomic polarization fie
is analogous to lasing without a cavity mode. It sugge
the possibility of observing macroscopic quantum cohe
ent superpositions of states. (iii) The evolution ofkJ3stdl,
Dstd, andmstd displays collective self-induced oscillation
instead of a simple decay as it is in free space. These
cillations are analogous to the collective Rabi oscillatio
of N Rydberg’s atoms in a resonant high-Q cavity [19].
In addition to amplitude oscillations, the phase of th
macroscopic polarization rotates in the steady-state lim
with a frequency proportional to the magnitude of va
uum Rabi splitting. (iv) The collective time scale facto
for the isotropic PBG is proportional toN2y3 rather thanN
as it is in free space. That is, the collective decay rate
superradiance is proportional toN2y3 and the peak super-
radiance intensity, which is proportional to2dkJ3stdlydt,
is proportional toN5y3 rather thanN2.

Our numerical results reveal qualitatively simila
behavior for different initial conditions. In particular
macroscopic polarization emerges forany initial state
for which kJ3s0dlyN . 0, and the steady-state limit
kJ12s`dlyN is independent of the initial (infinitesimal)
value kJ12s0dlyN. The delay time required for super
radiant emission, however, decreased noticeably
kJ12s0dlyN was varied from1024 to 1023. The magnitude
of the macroscopic steady-state polarizationkJ12s`dlyN
decreases monotonically from 0.42 to 0.15 as the init
inversion kJ3s0dlyN was decreased form 0.95 to 0.3. I
the absence of population inversionfkJ3s0dlyN , 0g, we
find that macroscopic polarization (in the long time limi
e
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FIG. 1. Atomic inversionkJ3stdlyN (solid curve) and ampli-
tude of the atomic polarizationDstdyN ­ jkJ12stdljyN (dashed
curve) in an isotropic PBG as a function of the scale time
bN2y3t for initial condition (10) withr ­ 1026.

occurs only if the initial state itself has a macroscopic
polarization.

The collective time scale factor ofN2y3 was found
above using the isotropic PBG (model I). This exponent of
N , however, depends sensitively on the dimension of the
phase space occupied by band-edge photons of vanishing
group velocity and the resulting band-edge singularity in
the overall photon density of states. In an isotropic band
edge, we have overestimated this phase space using the
entire spherejkj ­ k0. For a real dielectric crystal in
three dimensions with an allowed point-group symmetry,
the band edge is associated with a pointk ­ k0 (or a
finite collection of symmetry related points) rather than
the entire spherejkj ­ jk0j. In model II, we choose the
“effective mass” dispersion relation to be of the form

vk > vc 1 Ask 2 k0d2. (8)

Using the anisotropic dispersion relation (8), the Green’s
function in Eq. (2) and its integral for the case ofvct ¿ 1
become

Gst 2 t0d > 2
1

p
2

b
1y2
3 eipy4yst 2 t0d3y2, (9a)

FIG. 2. Phase angle of the atomic polarization as a function
of bN2y3t for the same parameter as in Fig. 1.
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Z t

0
Gst 2 t0d dt0 ­

p
2 b

1y2
3 eipy4y

p
t 2 i

p
2p v1y2

c b
1y2
3 ,

(9b)
whereb

1y2
3 ­ v

2
21d2

21y8
p

2 h̄e0p3y2A3y2vc. It is straight-
forward to verify, using Eqs. (6a) and (6b) and th
Green’s function (9a), thatx and y are now functions of
a new dimensionless time variableb3N2t. In the Mar-
kovian approximation,kJ3stdl is again determined from
Eqs. (6a), (6b), and (9b),

kJ3stdl ­ 2N tanhhBfstyt3d1y2 2 1gj , (10)

wheret3 ­ B2y4b3N2. It is clear from Eq. (10) that in
an anisotropic 3D PBG, the collective decay rate is p
portional to N2. As a result, the superradiance inte
sity, which is proportional to2dkJ3stdlydt, is proportional
to N3.

Model II exhibits both localization of superradianc
and spontaneous symmetry breaking. To see this,
solved Eqs. (6a) and (6b) numerically [18] using Eqs. (
In Fig. 3 we plot kJ3stdlyN (solid curve) andDstdyN ­
jkJ21stdljyN (dashed curve) as a function ofb3N2t. As
before, superradiance is localized in the vicinity of atom
and the system tends to the steady state with macrosc
atomic polarization and rotating phase.

The strong dependence of the collective processes
the structure of the photonic band gap can be ass
ated with the density of states near the band edge o
PBG. As discussed in Refs. [9,11], the isotropic disp
sion relation leads to a photonic density of statesrsvd
at a band edgev $ vc which behaves assv 2 vcd21y2.
For the anisotropic dispersion (8) this becomesrsvd ,
sv 2 vcd1y2.

In conclusion, we have demonstrated that localizat
and macroscopic coherence in superradiant emission
cur near a photonic band edge even in the absence of
electric defect mode or other cavity mode. This sugge
the possibility that ordinary light emission in a perfect
periodic dielectric may exhibit coherence properties w

FIG. 3. Atomic inversionkJ3stdlyN (solid curve) and ampli-
tude of the atomic polarizationDstdyN ­ jkJ12stdljyN (dashed
curve) in an anisotropic 3D PBG as a function of the scale ti
b3N2t for jN ­ s2pvcyb3N2d1y2 ­ 10 andr ­ 1026.
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infinitesimal threshold. For the case of a physical three-
dimensional anisotropic gap, the superradiant emission
occurs much faster and with higher peak intensity than
conventional superradiance. These results are based on
simple model of point superradiance in whichN atoms are
confined to a region smaller than the wavelength of light.
The spontaneous atomic polarization in the steady state is
analogous to the emergence of a “superfluid” order param-
eter for photons. If the volume of superradiance is made
larger than a cubic wavelength, alternate forms of sponta-
neous symmetry breaking may arise from the spatial de-
pendence of the effective atomic resonance dipole-dipole
interaction (RDDI). In general, RDDI causes a breaking
of the permutation symmetry of theN-atom wave function
(5). This may diminish the magnitude of the macroscopic
steady-state polarization, and lead to a “Bose glass” under
certain circumstances.
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