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Resonance Raman scattering in photonic band-gap materials
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We study the resonance Raman scattering of light from a three-level atom embedded in a photonic band-gap
material or in a frequency dispersive medium whose photon spectrum exhibits a gap due to photon coupling to
medium excitations such as excitons and optical phonons. We demonstrate that the one-particle spectrum of the
system consists of either a continuous part with energy lying outside the gap or a single discrete mode with
energy lying inside the gap. The discrete mode, which occurs when both of the allowed atomic transitions of
the L configuration lie inside the gap, can be treated as a photon-atom bound state in which the radiation is
localized in the vicinity of the atom. In the case of the continuous spectrum, the Rayleigh and Stokes lines are
shifted as well as narrowed~or broadened! as the corresponding transition frequencies are shifted relative to the
upper band edge, providing a distinctive experimental signature of atom-photon interactions near a photonic
band edge.
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I. INTRODUCTION

The prediction@1,2# and experimental observation@3# of
photonic band-gap~PBG! materials have opened a door
new effects in the quantum optics of atom-photon inter
tions. These materials are artificial periodic dielectric str
tures exhibiting a gap in the photon density-of-states for
directions of electromagnetic propagation. This absence
propagating photon states within the photonic band gap le
to the inhibition of single-photon spontaneous emission@1#,
classical light localization@2,4#, photon-atom bound stat
@5#, fractionalized single atom inversion@6#, and anomalous
vacuum Rabi splitting@6,7#. In the presence of many atom
it also leads to anomalously fast collective spontane
emission rates near the band edge@8# and photon hopping
conduction deeper within the gap@9#. The sharp variation of
the density of photon states near the band edges lead
non-Markovian atom-photon interactions@10# and may be
used to advantage for fast optical switching and optical tr
sistor action@11,12# at low-field intensities.

The photon-atom bound state describes the one-par
spectrum of an atom plus photon system with an eigen
quency lying within the band gap. A photon emitted by
atom in such a dressed state tunnels within the PBG mat
on length scale given by the localization length, only to
Bragg reflected back to the emitting atom and re-excite
Experimental investigation of the photon-atom bound st
have been hampered by the fact that its eigenfrequency
within the PBG, forcing the mode-light coupling to be o
resonance. A search for optical phenomena that exhibit s
troscopic signatures of a photon-atom bound state and
vides experimental information on the electromagnetic sp
trum in the vicinity of the gap is an important issue in t
characterization of PBG materials.

In this paper we study the problem of Raman scatter
for a three-level atom in theL configuration embedded in
PBG material. Using an exact solution of the one-parti
Schrödinger equation, we demonstrate that the spectrum
the system consists of both a continuous part with ene
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lying outside the gap and a single discrete mode~provided
the two allowed atomic transitions of theL configuration lie
inside the gap! with energy lying inside the gap. The discre
mode can be treated as a photon-atom bound state in w
the radiation is localized in the vicinity of the atom. In co
trast to the case of a two-level atom@6,13–15#, in the present
case there are two scattering channels, the elastic~Rayleigh!
and inelastic~Stokes or anti-Stokes! channels. The radiation
field is bound to the atom as a result of two-channel scat
ing, while the atom switches between the ground level a
the next excited level via the upper most excited level. In
case of the continuous spectrum, the Rayleigh and Sto
lines are shifted as well as narrowed~or broadened! as the
corresponding transition frequencies are shifted relative
the upper photonic band edge.

It is well known that a frequency gap for propagatin
photons also exists in certain natural dielectric materials. U
like artificial PBG materials, the gaps in natural frequen
dispersive media~FDM! are caused by electromagnetic co
pling to elementary excitations~excitons, optical phonons
etc.! of the media@16,17#. In this paper we also investigat
Raman scattering from a three-level atom embedded i
FDM. We demonstrate that the condition for occurrence o
photon-atom bound state is much more stringent in the F
case than in the PBG case. We also show that the spe
splitting observed in the PBG case~when one of the transi-
tion frequencies is near the upper band edge of the gap! is
absent in the FDM case. These differences are explaine
considering the near band-edge behavior of the density
photon states in the two different materials.

II. MODEL HAMILTONIAN

Consider a physical system consisting of a single thr
level atom embedded in a PBG material~or a FDM!. Let u0&
denote the ground level of the atom and letu1& and u2& be
the two excited levels~see Fig. 1!. Normalization and or-
thogonality require that̂ i u j &5d i j , where d i j is the Krö-
necker delta. We designate the energy of an atomic leveu i &
©2000 The American Physical Society14-1
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WOLDEYOHANNES, JOHN, AND RUPASOV PHYSICAL REVIEW A63 013814
by \v i and the frequency separation between levelsu i & and
u j & by v i j 5v i2v j . Transitions between the atomic leve
can be described using the atomic operatorss i j 5u i &^ j u with
the propertys i j uk&5d jku i & from which the commutation re
lation

@s i j ,s lk#5d j l s ik2d iks l j ~1!

can readily be obtained. The three-level atom is assume
be in theL configuration where the upper most atomic lev
u2& is dipole coupled to the lower levelsu1& and u0& by
radiation modes~photon reservoir! in a three-dimensiona
PBG or FDM. The transitionu1&→u0& is dipole forbidden.

We consider the resonance Raman scattering of a l
pulse of frequencyvL5v20 from the three-level atom. The
radiation scattered by the atom consists of Stokes and
leigh components with frequenciesvS5vL2v and vR
5vL , respectively. Accordingly, we divide the photon re
ervoir into two parts, one consisting of the Raleigh mod
~identified by the subscriptR) and the other consisting of th
Stokes modes~identified by the subscriptS).

Our consideration in this paper is restricted to the case
isotropic photonic band gaps where the band edge is as
ated with a sphereuku5k0 in k space~spherical Brillouin
zone!. The spectrum of elementary electromagnetic exc
tions in such an isotropic PBG has the form shown in
inset of Fig. 2. Due to the spherical symmetry of the pro
lem, it is convenient to use the spherical harmonic repres
tation for dynamical variable of the system. In this repres
tation, the model Hamiltonian H of our atom-field syste
can be written as@14#

H5 (
j 51,2

v j 0s j j 1 (
a5R,S

E
Ca

dv

2p
vaa

†~v!aa~v!

2E
CR

dv

2p
Az20~v!@aR

†~v!s021s20aR~v!#

2E
CS

dv

2p
Az21~v!@aS

†~v!s121s21aS~v!#, ~2!

where we choose units in which\5c51. The first term in
Eq. ~2! represents the Hamiltonian of the bare atom, tak
the zero of energy to be at levelu0& so thatv050. The
second term represents the Hamiltonian of the photon re
voir which is decomposed into Rayleigh and Stokes com

FIG. 1. Schematic representations of a three-level system in
L configuration. Dashed lines with arrows denote dipole allow
transitions. In theL configuration, levelsu1& and u0& are of the
same symmetry and the transitionu1&→u0& is not dipole allowed.
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nents. Associated with the Rayleigh and Stokes modes
the radiation field annihilation and creation operators,aa(v)
andaa

†(v), obeying the commutation rules

@aa~v!,aa8
†

~v8!#52pdaa8d~v2v8!. ~3!

We assume that the Rayleigh and Stokes components
well separated in frequency so that their corresponding
erators commute. We also assume that atomic operatorss i j

commute with the field operatorsaa(v) and aa
†(v) for the

quantized Stokes and Rayleigh modes.
The last two terms in Eq.~2! represent interaction Ham

iltonians. The third term describes the interaction betwe
the atom and the Rayleigh part of the photon reserv
whereas the fourth term describes the interaction between
atom and the Stokes part of the photon reservoir. These
teraction Hamiltonians are written in the electric dipole a
proximation. They are also written in the rotating wave a
proximation @18# in which virtual processes of excitatio
~de-excitation! of the atom with simultaneous creation~anni-
hilation! of a photon@i.e., terms of the formaR

†(v)s20 and
aR(v)s02] are neglected.

As shown in the inset of Fig. 2, the photon frequen
varies from zero tovv within the lower branch and fromvc
to 1` within the upper branch, wherevv and vc are the
lower and upper band-edge frequencies, respectively.
gap width isD[vc2vv and the gap to midgap ratio isr
[D/vo , wherevo is the midgap frequency. We denote b
G the frequency range spanning the gap:

G[~vv ,vc! . ~4!

Thus, the integration contourCa in Eq. ~2! are subsets of the
full contour

he
d

FIG. 2. The photon density-of-statesr(v) in a PBG material
described by the isotropic dispersion relation~54!. The dashed
curve represents the free space density of photon states,r(v)
5v2/2p. For isotropic PBG,r(v) exhibits singularities at both
band edges behaving liker(v);(vv2v)21/2 for v,vv , and like
r(v);(v2vc)

21/2 for v.vc . Far from the band edges,r(v) is
essentially the same as that of free space, as expected. A ty
isotropic dispersion relation for a PBG material is shown in t
inset.
4-2
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RESONANCE RAMAN SCATTERING IN PHOTONIC . . . PHYSICAL REVIEW A 63 013814
C5@0,vv#ø@vc ,`!5@0,̀ !2G. ~5!

Within the band gap, there are no propagating photon mo
in any direction in space so that the density of photon mo

r~v!50, vPG. ~6!

In the Hamiltonian~2!, the frequency dependent couplin
constantAz2 j (v), between the atomic transitionu2&→u j &
and the corresponding photon reservoir is given by

z2 j~v!5g2 j~v!z~v!, ~7!

whereg2 j (v) represents the coupling constant of the atom
transitionu2&→u j & with the free space photon reservoir@that
is, g2 j (v) gives the free space spontaneous emission rate
the transitionu2&→u j &] and

z~v!5S dv

dk D 21

~8!

is the ‘‘atomic form factor.’’ As shown in Appendix A,z(v)
can be expressed in terms of the photon density-of-s
r(v) as

z~v![
2p2r~v!

k2~v!
. ~9!

Clearly,z(v) is proportional tor(v) and vanishes whereve
r(v) vanishes, such as within a photonic band gap:

z~v!50, vPG. ~10!

In the resonance approximation we replaceg2 j (v) in Eq. ~7!
by the constant value

g2 j5
4
3 v2 j

3 d2 j
2 , ~11!

whered2 j represents the magnitude of the dipole moment
the transitionu2&→u j & and we extend the contoursCa in Eq.
~2! to

C`5~2`,vv#ø@vc ,`!5~2`,`!2G. ~12!

The operator for the number of excitations of our mod
system~atom plus radiation field!

N5s221 (
a5R,S

E
C

dv

2p
aa

†~v!aa~v! ~13!

commutes with the model Hamiltonian,@N,H#50. Thus all
eigenstates of the model can be classified with respect to
number of excitations or eigenvalues of the operatorN and
we can separately study the sectors of Hilbert space con
ing different number of excitations. In this paper we de
only with the one-excitation problem. Two-excitation pro
lems are discussed elsewhere@19#.
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III. ONE-PARTICLE PROBLEM

A. One-particle eigenstates

We look for one-particle eigenstates of the number ope
tor N in the form

uC1&5H js201E
C

dv

2p
@cS~v!aS

†~v!s10

1cR~v!aR
†~v!#J uvac&, ~14!

where the vacuum stateuvac& is defined as the state in whic
the atom is in the ground stateu0& and there is no photon in
the system so thataa(v)uvac&50. The amplitudej gives
the probability of finding the atom in the excited stateu2&
and both photon reservoirs in the vacuum state. The oper
productaS

†(v)s10 acting on the vacuum stateuvac& excites
the atom to the upper levelu1& while creating a Stokes pho
ton of frequencyv, andcS(v) gives the amplitude for this
process. On the other hand,aR

†(v) acting onuvac& creates a
Rayleigh photon of frequencyv but leaves the atom in the
ground stateu0& andcR(v) gives the amplitude for this pro
cess.

The stateuC1& is a one-particle eigenstate of the numb
operatorNuC1&5uC1&. Now let uC1& also be an eigenstat
of the Hamiltonian~2! with the eigenvaluee:

HuC1&5euC1&. ~15!

Projecting this time-independent Schro¨dinger equation onto
aR

†(v)uvac&, aS
†(v)s10uvac&, and s20uvac&, respectively,

we obtain

~v2e!cR~vue!5Az20~v!j~e!, ~16a!

~v2e1v10!cS~vue!5Az21~v!j~e!, ~16b!

~v202e!j~e!5E
C`

dv

2p
@Az20~v!cR~vue!

1Az21~v!cS~vue!#. ~16c!

The general solutions of Eqs.~16a! and ~16b! are

cR~vue!52pxR~e!d~v2e!1
Az20~v!

v2e2 i0
j~e!, ~17a!

cS~vue!52pxS~e!d~v2e1v10!1
Az21~v!

v2e1v102 i0
j~e!,

~17b!

where xR(e) and xS(e) are as yet undetermined arbitra
functions that can be fixed by specifying asymptotic~bound-
ary! values for cR and cS . In Eqs. ~17a! and ~17b!, the
eigenvaluee is made slightly complex by adding a sma
positive imaginary part (i0) to it. This is a standard proce
dure in scattering theory@20# to get around the singularitie
associated with both 1/(v2e) and 1/(v2e1v10). The
4-3
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WOLDEYOHANNES, JOHN, AND RUPASOV PHYSICAL REVIEW A63 013814
choice of sign before the small imaginary parti0 depends on
the system’s initial configuration. The minus sign corr
sponds~as in our case! to an initially incident ~incoming!
photon.

B. Self-energy

Substituting Eqs.~17a! and ~17b! into Eq. ~16! to elimi-
nate the wave functionsca(vue), we obtain

@v202e2S~e!#j~e!5Az20~e!xR~e!1Az21~e2v10!xS~e!,
~18!

where

S~e!5E
C`

dv

2p F z20~v!

v2e2 i0
1

z21~v!

v2e1v212 i0G ~19!

is referred to as the self-energy of the system. Using
identity

lim
h→0

S 1

x6 ih D5PS 1

xD7 ipd~x!, ~20!

whereP denotes the Cauchy principal@21#, we can decom-
pose the self-energyS(e) into real and imaginary parts as

S~e!5S8~e!1 iS9~e!, ~21!

where

S8~e!5g20PE
C`

dv

2p

z~v!

v2e
1g21PE

C`

dv

2p

z~v!

v2e1v10
,

~22a!

S9~e!5
1

2
@g20z~e!1g21z~e2v10!#, ~22b!

and we have used Eq.~7! in the resonance approximation.
The real partS8(e) gives the energy shift of levelu2& due

to the atom-field interaction. Assuming that the main con
bution to S8(e) comes from the region near the transitio
frequencyv20, we can evaluateS8(e) at e5v20 and incor-
porate this value in the definition of the energy of levelu2&.
Accordingly, we introduce

n205v202S8~v20! ~23!

as the new transition frequency when the atom is in the
dium. The first integral on the right-hand side of Eq.~22a! is
of the orderg21 except in the neighborhood ofv;e or in
regions wherez(v) @or equivalently the photon density-o
statesr(v)] is very large. On the other hand, the decay r
g20 is smaller than optical transition frequencyv20 by at
least six orders of magnitude (g20;108 s21 whereasv20
;1015 s21). Thus, whatever the value of the first integral,
cannot offset the smallness ofg20 and we can safely assum
that the first term on the right-hand side of Eq.~22a! is very
small compared to an optical transition frequency. The sa
applies for the second term. It follows thatS8(v20)!v20.
From Eq.~22a! we obtain
01381
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dS8~e!

de
5PE

C

dv

2p F g20z~v!

~v2e!2
1

g21z~v!

~v2e1v10!
2G.0,

~24!

which indicates thatS8(e) is a monotonically increasing
function of e.

The imaginary partS9(e) of the self-energy gives the
decay rate of the upper levelu2&. In other words, the atom
decays from the excited stateu2& with a lifetime of 1/S9(e).
From Eqs.~9! and ~22b! we see that

S9~e!;
g20

2
r~e!1

g21

2
r~e2v10!. ~25!

Like the real partS8(e), the imaginary partS9(e) is pro-
portional to the decay ratesg2 j and is very small except in
regions where the local photon density-of-states is v
large. However, unlikeS8(e), S9(e) cannot possibly be ne
glected since this would lead to infinite lifetime for the e
cited atomic stateu2&.

The electromagnetic vacuum is characterized by the
persion relationv(k)5k. For such a dispersion relation
Eqs.~7! and ~8! give z2 j (v)5g2 j (v) for the coupling con-
stant which, in the resonance approximation, is replaced
the constant value given by Eq.~11!. Moreover, since there
is no gap in the free space photon density-of-states, the
tour C` in Eq. ~22a! extends over the entire real axis,C5
(2`,`). Equations~22a! and ~22b! then give

S8~e!5PE
2`

` dv

2p S g20

v2e
1

g21

v2e1v10
D50, ~26a!

S9~e!5~g201g21!/2 ~26b!

for the real and imaginary parts of the self-energy in fr
space. Thus the real part of the free space self-energ
identically zero, while the imaginary part is half the sum
the decay rates for the two allowed decay channels,u2&
→u0& andu2&→u1&. Note that the principal part in Eq.~26a!
vanishes because we have extended the lower limit of i
gration to 2` by applying the resonance approximatio
Had we not done so, the principal part would have given r
to a nonzero contribution~in fact, divergent contribution,
which has to be corrected by introducing a cutoff@22,23# on
the energy of photons! which is associated with the Lam
shift of the atomic levels. Even in this case, however, we c
set the principal value term to zero by assuming that
Lamb shifts are incorporated into the definition of our sta
energies.

C. Auxiliary space

The amplitude functionsca(vue) can be cast into a more
familiar form by introducing at space@15#, which is auxil-
iary to thev space. This auxiliary space is defined by t
Fourier transforms

aa~v!5E
2`

`

dtaa~t!e2 ivt, ~27a!
4-4
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ca~vue!5E
2`

`

dtca~tue!e2 ivt. ~27b!

The inverse Fourier transforms are given by

aa~t!5
1

2pE2`

`

dvaa~v!eivt, ~28a!

ca~tue!5
1

2pE2`

`

dvca~vue!eivt. ~28b!

Taking the Fourier transforms of Eqs.~17a! and ~17b! we
obtain

cR~tue!5@xR~e!1 iqR~e!Q~t!#ei et, ~29a!

cS~tue!5@xS~e!1 iq ~e !Q~t!ei (e2v10)t, ~29b!

where

qR~e!5Az20~e!j~e!, ~30a!

qS~e!5Az21~e2v10!j~e!, ~30b!

andj(e) is given by Eq.~18!:

j~e!5
Az20~e!xR~e!1Az21~e2v10!xS~e!

v202e2S~e!
. ~31!

In Eqs. ~29a! and ~29b! Q(t) represents the unit step func
tion defined by

Q~t!5H 1 for t.0

0 for t,0.
~32!

From Eqs.~29a! and~29b! we identify iqR(e) and iqS(e) as
the scattering amplitudes for the Rayleigh and Stokes mo
respectively. The scattering cross sections, i.e., the prob
ity for an incident photon of frequencyv to be scattered in
the Rayleigh or the Stokes channel are given by

sR~v!}u iqR~v!u25g20z~v!uj~v!u2, ~33a!

sS~v!}u iqS~v!u25g21z~v2v10!uj~v!u2, ~33b!

where we have used Eq.~7! in the resonance approximation
Using Eq.~9! in Eq. ~33a! we notice that

sR~v!}r~v!, sS~v!}r~v2v10! ~34!

D. Discrete mode

Equations~17a! and ~17b!, together with a choice of val
ues for the arbitrary functionsxR(e) andxS(e) @depending
on the boundary conditions forcR(vue) andcS(vue)] com-
pletely determine the one-particle spectrum of the system
this section we look for a discrete mode of the system w
frequencyed such that bothed and ed2v10 lie within the
frequency gapG. This requires that

edPG8, ~35!
01381
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where

G8[~vv1v10,vc! ~36!

is a subinterval ofG5(vv ,vc). Thus for bothed and ed
2v10 to lie within the gapG, we must havevv1v10,vc or

v10,vc2vv5D. ~37!

In other words, the transition frequencyv105v202v21 must
be less than the width of the gap. When bothed and ed
2v10 lie within the gap, Eq.~10! shows that bothz(ed) and
z(ed2v10) are zero so that, according to Eq.~22b!, the
imaginary partS9(e) of the self-energy is also zero:

S9~ed!50, edPG8. ~38!

Within the band gap, single-photon spontaneous emissio
completely inhibited@5#. When bothed and ed2v10 lie
within the gap, we havevÞed andvÞed2v10 and the first
terms on the right-hand side of both Eqs.~17a! and~17b! do
not contribute tocR(vued) and cS(vued), respectively.
Therefore, when condition~35! is satisfied, we can choose

xR~ed!5xS~ed!50, edPG8. ~39!

This choice can then be used in Eqs.~17a!, ~17b!, and~18! to
obtain

cR~vued!5
Az20~v!

v2ed
j~ed!, ~40a!

cS~vued!5
Az21~v!

v2ed1v10
j~ed!, ~40b!

and

@v202ed2S8~ed!#j~ed!50. ~41!

In Eq. ~41! we have used Eq.~38! to replaceS(ed) by the
real partS8(ed).

Apart from the trivial solutionj(ed)50, Eq. ~41! has a
nontrivial solutionj(ed)Þ0 provided that an eigenenergyed
is found such that

v202ed2S8~ed!50, edPG8. ~42!

Since,S8(e) is a monotonically increasing function ofe @see
Eq. ~24!#, Eq.~42! can have only one roote5ed given by the
intersection of the curveS8(e) with the straight linev20
2e. Clearly, a discrete bound state occurs only if the strai
line y(e)5v202e intersects the curveS9(e) within the fre-
quency rangeG8 where, according to Eq.~38!, S9(e)50.

Substituting Eqs.~40a! and ~40b! into Eq. ~14!, we find
this discrete eigenstate of the system:

uCd&5j~ed!H s201E
C`

dv

2p F Az21~v!

v2ed1v10
aS

†~v!s10

1
Az20~v!

v2ed
aR

†~v!G uvac&J . ~43!
4-5
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WOLDEYOHANNES, JOHN, AND RUPASOV PHYSICAL REVIEW A63 013814
The function j(ed) is determined from the normalizatio
condition ^CduCd&51. We obtain

uj~ed!u25F11g20E
C`

dv

2p

z~v!

~v2ed!2

1g21E
C`

dv

2p

z~v!

~v2ed1v10!
2G21

. ~44!

When the system~atom1 field! is in the discrete bound
state uCd&, the probability to find the atom in the excite
stateu2& is given by

P25uj~ed!u2. ~45!

The integrals in Eq.~44! are not principal value integral
since bothed and ed2v10 lie within the band gapG and
therefore do not lie on the contour of integrationC` . Thus

P2'~11g201g21!
21'1, ~46!

since g2 j!1. It follows that, when the system is in th
photon-atom bound stateuCd&, the atom spends most of it
time on the excited stateu2&. Once in a while, the atom drop
to the lower stateu1& by emitting a Stokes photon or to th
ground stateu0& by emitting a Rayleigh photon. Howeve
the emitted photon is quickly re-absorbed by the atom, wh
is then re-excited to levelu2&.

The discrete mode~43! describes the three-level ato
analog of the photon-atom bound state predicted by John
Wang@5# for a hydrogenic atom. In the present case there
two scattering channels, the elastic~Rayleigh! and the inelas-
tic ~Stokes or anti-Stokes! channels. A photon of frequenc
v incident on an unexcited atom~atom on levelu0&) can be
scattered in the Rayleigh channel preserving its frequenc
in the Stokes channel, in which the atom is excited to le
u1& and a Stokes photon of frequencyvS5v2v10 is cre-
ated. Alternately, the photon can be scattered from an exc
atom on levelu1& accompanied by the creation of an an
Stokes photon of frequencyvAS5v1v10 and the de-
excitation of the atom to the ground levelu0&. Thus, in the
three-level atom case, the radiation field is bound to the a
as a result of two-channel scattering, while the atom switc
between levelsu0& and u1& via the intermediate stateu2&.

According to Eq.~23! the solution of Eq.~42! can be
written in terms of the shifted atomic transition frequen
n20 ased5n20. There will be a discrete bound state only
n20 ~or roughly v20) lies in the frequency range betwee
vv1v10 and vc . Moreover, condition~35! for the occur-
rence of a discrete bound state requires that the trans
frequency v105v202v21 be less than the widthD5vc
2vv of the gap. Thus for a discrete bound state to occur
must havev21PG andv20PG8, where the frequency inter
vals G andG8 are given by Eqs.~4! and ~36!, respectively.
If, for instance,v21¹G, the bound state becomes qua
bound. Its lifetime is determined by the possible irradiati
of a photon of frequencyv21 in resonance with the escap
channelu2&→u1&.
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E. Continuous spectrum

In this section we consider the case when the eigenvalue
of Eq. ~15! does not satisfy the discrete bound-state con
tion ~35!. This requires thate¹G8. We investigate the scat
tering of a single incident laser photon of frequencyv from
the three-level atom initially in the ground state. This initi
condition ~atom on levelu0&, a laser photon and no Stoke
photon! determines the asymptotic~large distance! values of
the amplitudescR and cS uniquely and therefore fixes th
functionsxR(e) andxS(e) of Eqs.~17a! and ~17b! to

xR~e!51, xS~e!50. ~47!

Using this choice in Eq.~31! and substituting the result in
Eqs.~33a! and ~33b! we obtain

sR~v!}
g20

2 z2~v!

@v202v2S8~v!#21@S9~v!#2
, ~48a!

sS~v!}
g20g21z~v!z~v2v10!

@v202v2S8~v!#21@S9~v!#2
~48b!

as the scattering cross sections for the Rayleigh and St
channels. HereS8(v) andS9(v) are the real and imaginar
parts of the self-energy given, respectively, by Eqs.~22a! and
~22b!. Equations~48a! and ~48b! are written as functions o
the incident laser photon frequencyv. The frequency of the
scattered Rayleigh photons isvR5v, whereas that of the
Stokes photons isvS5v2v10.

Equations~48a! and~48b! show that scattering cross se
tions for the Rayleigh and Stokes components of the s
tered light are strongly dependent on the atomic form fac
z(v) and on the self-energyS(v). In the case of free space
z(v)51 and the self energies are given by Eqs.~26a! and
~26b!. Using them in Eqs.~48a! and~48b! we obtain the free
space scattering cross sections:

sR~v!}
g20

2

~v202v!21~g201g21!
2/4

, ~49a!

sS~vS!}
g20g21

~v212vS!21~g201g21!
2/4

. ~49b!

In Eq. ~49b! we have used the relationv215v202v10 to
write sS(vS) as a function of the Stokes frequencyvS5v
2v10. Equations~49a! and ~49b! represent two Lorentzian
distributions of full width at half maximum~FWHM! G
5g201g21 peaked at the two transition frequenciesv20 and
v21. The linewidthG is determined by the total lifetime o
level u2&, which can decay via eitheru2&→u0& ~with decay
rateg20) or u2&→u1& ~with decay rateg21).

In a reservoir with a modified density of photon mode
the spectra of both the Rayleigh and the Stokes compon
of the scattered light will depart from a Lorentzian distrib
tion in as much as the form factorsz(v) and the self-energy
S(v) in the medium deviate from their corresponding fr
space forms. In analyzing the continuous spectrum in s
4-6
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modified reservoirs, we assume that the Rayleigh transi
frequencyv20 lies far above the upper band edgevc and
consider cases when the Stokes transition frequencyv21 lies
in the neighborhood ofvc . Thus the Rayleigh transition
u2&→u0& can be considered to be occurring in a normal f
space~Markovian reservoir! whereas the Stokes transitio
u2&→u1& occurs in a modified non-Markovian reservoir. O
main interest is to investigate effects on the Rayleigh sp
trum due to the coupling of the Stokes transitionu2&→u1& to
the modified reservoir.

Whenv20 lies far above the gap, the real and imagina
parts of the self-energy

SR~e!5g20E
C`

dv

2p

z~v!

v2e2 i0
~50!

corresponding to the Rayleigh component of the photon
ervoir can be approximated by the free space valuesSR8 (e)
50 andSR9 (e)5 ig20/2. The real and imaginary parts of th
total self-energy~19! will then be

S8~e!5SS8~e!, ~51a!

S9~e!5g20/21SS9~e!, ~51b!

where

SS8~e!5g21PE
C`

dv

2p

z~v!

v2e1v21
, ~52a!

SS9~e!5
g21

2
z~e2v10! ~52b!

are the real and imaginary parts of the Stokes compon
The Rayleigh scattering cross section becomes

sR~v!}
g20

2 z2~v!

@v202v2SS8~v!#21@g2012SS9~v!#2/4
. ~53!

We investigate specific features of this cross section for
case of PBG and FDM separately in the following sectio

IV. SYSTEM IN A PBG MATERIAL

A. Model dispersion relation

We first consider the case where the three-level atom
embedded in an isotropic PBG. A simple model dispers
relation, which exhibits a gap in the photon density-of-sta
is given by@8#

v~k!5Ak0
21g26A~k2k0!21g2, ~54!

wherek5uku is the modulus of the wave vector, andk0 and
g are parameters related to the periodic dielectric struct
The1 (2) applies for the upper~lower! branch of the pho-
ton spectrum. Physically model~54! corresponds to placing
an isotropic band gap of the form shown in the inset in F
2 centered about the frequencyvo5Ak0

21g2, the lower and
upper band-edge frequencies beingvv5vo2g and vc
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5vo1g. The width of the photonic band gap isD5vc
2vv52g and the gap to midgap ratio isr[D/vo

52g/Ak0
21g2. In the context of photonic band-gap mate

als, the lower~upper! branch of the photon spectrum is mo
appropriately called the dielectric~air! band@24#.

As shown in Appendix A, for a PBG material describe
by the dispersion relation~54! the atomic form factorz(v)
takes the form

z~v!5H uv2vou

A~v2vv!~v2vc!
, v¹G

0, vPG,

~55!

which, when used in Eq.~9!, gives

r~v!55
uv2vou

2p2 Fv222vov12vvvc

A~v2vv!~v2vc!
62AvvvcG ,

v¹G

0, vPG
~56!

for the density of photon modes. Here the1(2) sign apply
for v.vc (v,vv).

The density-of-states~56! is plotted in Fig. 2. For regions
far removed from the band edges,r(v) differs little from its
free space value ofv2/2p, as expected. Near the band edg
vv and vc , Eq. ~56! shows that,r(v) behaves asr(v)
;(vv2v)21/2 for v,vv and asr(v);(v2vc)

21/2 for
v.vc , the square-root singularities being characteristic o
one-dimensional phase space@5#. These singularities are ar
tifacts of the isotropic dispersion relation~54! which associ-
ates the band-edge wave vector with a sphere ink space,
uku5k0 ~spherical Brillouin zone! and thereby artificially in-
creases the true phase space available for photon propag
near the band edge. In a real three-dimensional dielec
crystal with an allowed point-group symmetry, the gap
highly anisotropic and the band edge is associated wit
point k5k0 ~or a finite collection of symmetry relate
points! in k space@24#, rather than with the entire spher
uku5uk0u. In this case the density of photon states is finite
the band-edge frequencies@25#.

Using Eqs.~7! and~55! in Eq. ~22b!, we obtain the imagi-
nary partS9(e) of the self-energy for a PBG described b
the isotropic dispersion relation~54!. Likewise the real part
S8(e) is determined by using Eqs.~7! and~55! in Eq. ~22a!
and evaluating~numerically! the integral. For illustration, we
consider an isotropic PBG with a gap to midgap ratio or
515%, a ratio that can be achieved in practical PBG ma
rials @25#. Thus, in units of the midgap frequencyvo , the
bandwidth isD50.15, and the band-edge frequencies are
vv512r /250.925 andvc511r /251.075. In what fol-
lows, we fix the transition frequency tov105D/10
50.015vo . Then the frequency intervalsG andG8 are given
by G5(0.925,1.075) andG85(0.94,1.075). Also we
chooseg205g215v10/10 for visualizaton purposes. In rea
ity, g20!v10 if v10 is in the optical regime. However, a
seen in Eqs.~22b! and~22a!, the constantsg2 j appear only as
4-7
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prefactors in the expressions forS8(e) and S9(e), and,
therefore, their only effect is to change the scale of plots

In Fig. 3 we plot the real partS8(e) ~solid curve! and the
imaginary partS9(e) ~dashed curve! of the self-energyS(e)
as functions of the scaled frequencye/vo for the case when
both v20 andv21 lie inside the gap. The dotted curve repr
sents the imaginary part of the free space self-energy g
by Eq. ~26b!. The real part of the free space self-energy
identically zero @see Eq. ~26a!#. According to Eq. ~38!,
S9(e)50 for ePG85(0.94,1.075). Near the band edge
vv andvc , S9(e) grows steadily from its free space valu
of unity, exhibiting singularities atvv50.925, vv1v10
50.94, vc51.075, andvc1v1051.09. The singularities a
the band-edge frequenciesvv and vc are due to the term
containingz(e) @see Eqs.~22b! and ~55!#, whereas the sin-
gularities at the shifted frequenciesvv1v10 and vc1v10
are due to the term containingz(e2v10). Likewise, the real
part S8(e) of the self-energy is singular at the frequenc
vv , vv1v10, vc and vc1v10. In the frequency rangee
PG8, S8(e) is a monotonically increasing function ofe. It
is negative fore,e0 and positive fore.e0, wheree0 de-
notes the zero ofS8(e). Far from the band gap,S8(e) and
S9(e) are practically indistinguishable from their corr
sponding free space values, as expected.

B. Discrete modes in a PBG

In this section we investigate the photon-atom bound s
in a PBG described by the isotropic dispersion relation~54!.

FIG. 3. The real partS8(e) ~solid curve! and the imaginary par
S9(e) ~long-dashed curve! of the self-energy@Eqs.~22a! and~22b!#
for a PBG material as functions of the scaled frequencye/vo .
Here, r 515%, vv50.925vo , vc51.075vo , and the band-gap
width is D50.15vo . Also v105D/1050.015vo andv2050.95vc

51.012vo so thatv20PG8 and v2151.006voPG. We also take
g205g215D/100. In the frequency rangeG8 the imaginary part of
the self-energy is identically zero whereas the real part is a mo
tonically increasing function of frequency. Both the real and ima
nary parts of the self-energy exhibit singularities at the frequen
vv , vv1v10, vc , andvc1v10. The dotted curve represents th
imaginary part of the free space self-energy given by (g20

1g10/2). The real part of the free space self-energy is identica
zero @see Eq.~26b!#. The dot-dashed curve represents the strai
line y(e)5v202e. This line intersectsS8(e) at e'1.02voPG8.
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As discussed in Sec. III D, a discrete bound state can oc
only whenv20PG8 andv21PG, which in turn requirev10

to satisfy condition~37!, i.e., v10 should be less than th
width D5vc2vv of the gap. The discrete bound state
given by the intersection of the straight liney(e)5v202e
with the curveS8(e), provided that this intersection lie
within the frequency rangeG8 whereS9(e)50.

Using the samev10 and PBG parameters as in Sec. IV A
we investigate the occurrence of a discrete bound state w
v20 ~and hencev21) is varied with respect to the upper ban
edgevc . A discrete bound state occurs only if the curv
y(e)5v202e and S8(e) intersect within the frequency
rangeG8.

In Fig. 3 we plot the curvesS8(e) andy(e)5v202e ~as
functions of the scaled frequencye/vo) for the case when
v20 lies just below the upper band edge (v2050.95vc

51.021) so thatv20PG8 and v2151.006PG. In this case
we see that the straight liney(e)5v202e intersects the
curvesS8(e) at e'1.02vo , which lies within the frequency
intervalG8. This intersection point then represents the eig
value of a nondecaying photon atom bound stateuCd& given
by Eq.~43! with ed'1.02. Asv20 ~and hencev21) is pushed
further towards the upper band edgevc , the bound state is
also pushed towardsvc . Whenv20 lies outside the gap, the
straight liney(e) no longer intersects the real partS8(e) of
the self-energy within the frequency rangeG8, where
S9(e)50. This means that the solution ofv202e2S(e)
50 has a nonzero imaginary part that serves to damp
system. Thus any initial population on the excited levelsu2&
and u1& will eventually decay to the ground levelu0&.

C. Continuous spectrum in PBG

We now analyze the spectrum equation~53! in the case of
PBG. In what follows we fixv20 to a value far abovevc and
plot the Rayleigh spectrumsR(v) versusv2v20 for various
values of the Stokes transition frequencyv21.

From Eqs.~10! and ~53! we see thatsR(v)50 for v
PG. Thus in all plots ofsR(v) versusv2v20, the Ray-
leigh spectrum will vanish completely in the ‘‘spectral gap
regionv2v20PGs[(vv2v20,vc2v20). From Eqs.~52b!
and ~55! we observe that the imaginary partSS9(v) of the
self-energy exhibits square-root singularities atv5vv
1v10 and v5vc1v10 leading to ‘‘dark lines’’ atv2v20

5vv2v21 and v2v205vc2v21 in sR(v). These dark
lines represent complete quenching of spontaneous emis
at the respective frequencies and are separated exactly b
width D5vc2vv of the gap. They are shifted to highe
frequencies whenv21 is decreased.

The dark lines here are artifacts of the isotopic dispers
relation ~54!, which leads to the atomic form factorz(v)
being singular at the band edgesvv andvc as shown in Eq.
~55!. In real photonic crystals, the dispersion relation is a
isotropic andz(v) is not singular at the band edges@24#.
Moreover, in realistic situations, relaxation processes in
medium should be taken into consideration@5,24#. One way
to do this is to rewrite Eq.~55! in the form
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z~v!5H uv2vou

A~v2vv!~v2vc!1k2
, v¹G

0, vPG,

~57!

where k is a constant characteristic of the medium, intr
duced phenomenologically to account for relaxation p
cesses. Thus in realistic situations, the Rayleigh spect
will exhibit significant suppressions atv5vv1v10 and v
5vc1v10 but not dark lines.

The dark lines atv5vv1v10 and v5vc1v10 split
sR(v) into triplets. These are ‘‘band A,’’ which lies to th
left of vv1v10, ‘‘band B,’’ which lies betweenv5vv
1v10 and v5vc1v10, and ‘‘band C,’’ which lies to the
right of vc1v10. Band B measures the fractionalize
steady-state atomic population on the excited stateu2& due to
the presence of the photonic band gap@6# and, therefore, can
be used to experimentally probe this steady-state popula
On the other hand, bands A and C measure the fraction o
excited-state populationu2& that decays to the lower level
u1& and u0&.

Spectral splitting was derived by John and Wang@5# in
the effective-mass approximation to the dispersion rela
~54! near the upper band edgevc , totally disregarding the
effect of the lower band edgevv . One dark line and splitting
into a doublet~bands B and C! was reported in the absenc
of an external field~vacuum Rabi splitting!. The splitting
was caused entirely by strong interaction between the a
and its own radiation field. More recently, dark lines ha
also been reported in Refs.@26,28#.

For illustration, we consider an isotropic PBG with a g
to midgap ratio ofr 515%. In units of the midgap frequenc
vo , the bandwidth isD50.15 and the band edge frequenci
are at vv512r /250.925 andvc511r /251.075 so that
G5(0.925,1.075). Also we chooseg205g2150.01v20 for
the decay constants@27#. We fix the Rayleigh transition fre
quency tov2051.2vc51.29 so thatv20 is far from the band
edge by more than the widthD of the gap. Having fixedv20,
we plot the Rayleigh spectrumsR(v) versusv2v20 for
various values of the Stokes transition frequencyv21 in the
neighborhood of the upper band edgevc . In all of these
plots sR(v)50 in the regionGs5(20.340,20.215).

We are mainly interested in the behavior ofsR(v) in the
neighborhood of the resonancev2v2050. In regions far
from resonance, the value ofsR(v) is negligibly small com-
pared its values in the resonance region. For instance, for
choice v2051.2vc , the spectral gap Gs5(20.340,
20.215) lies far to the left the resonance regionv2v20
50 and is not shown in the plots.

First we consider the case whenv21 also lies far above
the upper band edge. We takev2151.15vc51.236 so that
v21 is removed from the upper band edgevc by the widthD
of the gap. We then havev105v202v2150.054 andg20
5g215v10/1050.0054. Thus the dark lines ofsR(v) occur
at v5vv1v1050.979 andv5vc1v1051.129 or at v
2v20520.311 andv2v20520.161. The left-dark line
lies within the spectral gapGs5(20.340,20.215). The
spectrum corresponding to this choice ofv21 is shown by the
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dot-dashed curve in Fig. 4. The left- and right-dark lin
occur far to the left of the resonance regionv2v2050 and
are not shown in the plot. From the plot we see that,
v2151.15vc , sR(v) practically consists only of band C
implying that all the population on the excited levelu2&
eventually decays to the lower levelsu1& and u0&. The plot
also shows that band C is a Lorentzian with FWHMG
5g201g1050.011. On the scale of this figure, the Rayleig
spectrum derived from Eq.~53! is indistinguishable from the
free space spectrum@Eq. ~49a!#.

The effect of the band gap is negligible for transition fr
quencies removed from a band edge by at least the widtD
of the gap. This can be explained as follows. Whenv21 lies
far above the band edgevc , we can apply the Wigner-
Weisskopf~WW! approximation for the Stokes channel an
write SS850, SS95g21/2. Sincez(v)51, Eq.~53! reduces to
the free space equation~49a!. Thus when both transition fre
quenciesv20 andv21 lie far above the upper band edgevc ,
we expect the Rayleigh line to be a Lorentzian of FWH
G5g201g10 centered at the frequencyv5v20, just like in
free space. On the other hand, whenv21 is near the upper
band edge, the density of electromagnetic modes chan
rapidly in the vicinity of the atomic transition frequenc
v21, rendering the WW approximation to the self-ener
SS(e) inadequate. In this case, we must perform an ex
integration in Eq.~52a!, which is then used in Eq.~53! to
evaluate the spectrumsR(v).

Next we consider the case whenv21 is close to the upper
band edgevc . We takev2151.05vc51.129 so thatv10
50.161. Thus the left- and right-dark lines occur atv
2v20520.204 and v2v20520.054, respectively. The

FIG. 4. The spectrum of spontaneous emissionsR(v) for the
Rayleigh transitionu2&→u0& in the case of PBG described by th
isotropic dispersion relation~54!. We taker 515%, v2051.2vc ,
andg205g2150.01v20. Thusv20 is removed from the band edg
vc by more than the width of the gap. We plotsR(v) for different
values of the Stokes frequencyv21, solid curve (v2151.05vc),
dotted curve (v215vc), and dashed curve (v215vo). The dot-
dashed curve represents both Eqs.~53! and ~49a! when v21

51.15vc . Thus the effect of the gap is negligible for transitio
frequencies removed from the band edge by at least the widthD of
the gap.
4-9
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spectrum for this case is shown by the solid curve in Fig
The left-dark line occurs far to the left of the resonance
gion v2v2050 and is not shown in the plot. Forv21
51.05vc , sR(v) practically consists only of two bands
bands B and C. The existence of band B shows that the
a fractionalized steady-state population on the excited le
u2& even thoughv20 lies outside the gap. The linewidth o
band B is much smaller than the natural linewidthg20 of the
spontaneous transitionu2&→u0& whereas the linewidth o
band C is roughly the same as that of free space. W
v2151.05vc most of the initial population onu2& decays to
the lower levels and only a very small part is retained a
fractionalized steady-state population. Asv21 is pushed fur-
ther towardsvc , the dark lines are shifted to the right an
the width of the band B increases, implying that more a
more of the initial population is now retained as a fractio
alized steady state-population. The dotted-curve in Fig
represents the spectrum whenv21 coincides with the band
edge,vc . In this case the left-dark line occurs atv2v205
20.15 and is not shown in the figure, whereas the right-d
line occurs at the resonancev5v20.

Finally we consider the case whenv21 lies inside the gap.
We takev215vo51, the midgap. Thenv1050.29 and the
left- and right-dark lines occur atv2v20520.075 andv
2v20520.075, respectively, equidistant from the res
nance frequencyv5v20. The spectrum for this case i
shown by the dashed curve in Fig. 4. From the plot we
that by far the dominant contribution tosR(v) comes from
band B, implying that forv215vo most of the initial popu-
lation onu2& is retained as a fractionalized steady-state po
lation, and only a very small part decays to the lower leve

V. SYSTEM IN A DISPERSIVE MEDIUM

In this section we briefly discuss the case when the th
level atom is embedded within a FDM. It is well known th
a frequency gap for propagating electromagnetic modes
ists in many natural dielectrics and semiconductors. Un
in artificial PBG materials, where a suppression of the p
ton density-of-states over a narrow frequency range res
from multiple photon scattering by a periodic array of sc
terers, the gaps in dispersive media are caused by pho
coupling to elementary excitations of the media such as
citons and optical phonons@16,17#. The ‘‘normal’’ electro-
magnetic modes in frequency dispersive media are de
mined by the Maxwell equations with a frequency depend
dielectric permeability and are treated as ‘‘photons in a m
dium,’’ i.e., photons dressed by the interaction with a m
dium excitation. Their spectrum consists of two branches
allowed states separated by a gap in which propagating
ton modes are completely forbidden.

A simple model dispersion relation for a frequency d
persive medium can be written as@15#

v6~k!5 1
2 @~V1k!6A~V2k!214kD#, ~58!

whereV represents the longitudinal frequency of an opti
phonon in the medium andD is the width of the frequency
gap. The1(2) sign applies for the upper~lower! branch of
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the photon spectrum. The dispersion relation~58! is plotted
in the inset in Fig. 5. It exhibits an isotropic band gap ce
tered about the frequencyvo5V2D/2. The lower and up-
per band-edge frequencies arevv5V2D and vc5V, re-
spectively. The lower band edge occurs atk→`, whereas
the upper band edge occurs atk50. The gap to midgap ratio
is r[D/vo5D/(V2D/2).

As shown in Appendix A, the dispersion relation~58!
gives

z~v!5H v222vvv1vvvc

~v2vv!21k2
, v¹G

0, vPG,

~59!

for the form factor in a dispersive medium. Here we ha
added a phenomenological damping constantk to account
for relaxation processes in the medium. From Eq.~59! we
see that at the upper band edgez(vc)5vc /D, whereas near
the lower band edgez(v);(v2vv)22. Unlike the PBG
case, wherez(v) exhibits singularities at both band edge
z(v) in a dispersive medium is singular only at the low
band edgevv and the square singularity here is much stro
ger than the square-root singularity of the isotropic PB
From Eqs.~59! and ~9! we obtain

r~v!5H v2~v2vc!
2

2p2 Fv222vvv1vvvc

~v2vv!4 G , v¹G

0, vPG
~60!

for the density of photon modes in a dispersive medium~see
Appendix A!.

FIG. 5. The photon density-of-states in a dispersive medi
described by the dispersion relation~58!. The dashed curve repre
sents the free space density of photon states. We see thatr(v) is
highly singular at the lower band edgevv behaving liker(v)
;(vv2v)24, but is identically zero at the upper band edg
r(vc)50. This should be contrasted with the PBG case shown
Fig. 2 wherer(v) exhibits square-root singularities at both ba
edges. In the inset, the photon spectrum for a dispersive med
described by the dispersion relation~58! is shown.
4-10
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The density-of-states 60 is plotted in Fig.~5!. For regions
far removed from the band gap, Eq.~60! shows thatr(v)
;v2/2p, as expected. Near the lower band edgevv , r(v)
behaves asr(v);(vv2v)24 for v,vv . On the other
hand, near the upper band edgevc , r(v) behaves asr(v)
;(v2vc)

2 for v.vc . Thusr(v) is highly singular at the
lower band edgevv but is identically zero at the upper ban
edge,r(vc)50. These near band-edge behaviors ofr(v)
can easily be understood from the slope of the dispers
curve~58!. For both the upper and lower branches we obt

S dv

dk D
6

5
1

2 F16
~2D2V!1k

A~V2k!214Dk
G , ~61!

where the1(2) sign applies for the upper~lower! branch.
For k→`, where the lower band edge occurs, we ha
(dv/dk)2→0, which means thatr(v) is singular atvv .
On the other hand atk50, where the upper band edge o
curs, (dv/dk)15D/V, which means that the group velocit
is finite at the upper band edgevc ~unless the widthD of the
gap is zero!. The photon density-of-states, which behaves
r;k/(dv/dk)1 @see Eq.~A5!# will then be zero atvc ,
sincek50 there. The strong singularity ofr(v) at the lower
band edge can be explained by the fact that we have allo
the wave vectork→` while, in reality, only wave vectors
within the first Brillouin zone are relevant. This unrealist
singularity in the photon density-of-states is removed wh
we take relaxation processes in the medium into accoun

Using Eq.~59! in Eq. ~22b!, we obtain the imaginary par
S9(e) of the self-energy for a dispersive medium describ
by the isotropic dispersion relation~58!. Likewise, the real
part S8(e) is determined by substituting Eq.~59! into Eq.
~22a! and evaluating~numerically! the integral. Both the rea
and imaginary parts of the self-energy are plotted in Fig
where we chooser 515%, v105D/10, v2050.95vc , and
g205g215D/100. The frequency intervalsG and G8 are
given by (0.925,1.075) and (0.95,1.075), respectively. A
cording to Eq.~38!, S9(e)50 for ePG8 and, according to
Eqs. ~22b! and ~59!, S9(e) exhibits singularities atvv
50.925 andvv1v1050.94. Likewise, the real partS8(e) is
singular atvv and atvv1v10. In the frequency range (vv ,
vv1v10), S8(e) monotonically increases form2` to 1`
whereas outside this rangeS8(e) asymptotically approache
the free space value of zero.

The differences between a PBG and a FDM described
the isotropic dispersion relations~54! and~58!, respectively,
can be observed by contrasting Figs. 3 and 6. In the P
case, bothS8(e) and S9(e) are singular atvv , vc , vv
1v10, andvc1v10. In the FDM case, however,S8(e) and
S9(e) are not singular atvc andvc1v10 but rather exhibit
relatively large values~compared to the free space case! at
these frequencies. In both the PBG and FDM casesS9(e)
50 for ePG85(0.94,1.075). However, in this frequenc
range, the real partS8(e) behaves differently in the FDM
from the PBG case. As we traverseG8 from left to right~i.e.,
from e50.94 toe51.075), in the PBG case,S8(e) mono-
tonically increases from a very large negative value to a v
large positive value passing through the free space valu
01381
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S8(e)50. On the other hand, in the FDM case,S8(e) in-
creases from2` to aboutS8(e)5220 and is entirely nega
tive in the frequency rangeG8.

In what follows we briefly discuss the discrete bou
states and the continuous spectra of Secs. III D and III E
frequency dispersive medium described by the dispersion
lation ~58!. First we investigate the condition for the occu
rence of a photon-atom bound state. As shown in Eq.~42!, a
discrete bound state is given by the eigenvaluee satisfying
S8(e)5v202e provided thatePG85(0.94,1.075). How-
ever, as shown in Fig. 6, in the frequency rangeG8, S8(e)
,220. Thus to satisfy the equalityS8(e)5v202e, we
must havee.v20120, which means thate¹G8. In other
words, Eq. ~42! does not have a solution within the fre
quency rangeG85(0.94,1.075), whereS950. In conclu-
sion, for the choice of parameters in Sec. IV B used to s
port a photon-atom bound state in a PBG, a freque
dispersive medium does not support a photon-atom bo
state.

Next we investigate equation~53! in the case of FDM.
We choose the relevant parametersD, v20, g20, andg21 just
like in the PBG case~see Fig. 4!. In Fig. 7 we plot the
Rayleigh spectrumsR(v) versusv2v20 for various values
of the Stokes transition frequencyv21 (v2151.15vc ,
1.05vc , vc and vo). On the scale of the figure, all case
give the same spectral distribution which is ‘‘hal
Lorentzian’’ cutoff atv2v2050.365 ~that is, atv50.925
5vv). The peak value of this spectrum is less than that
free space~shown in the inset! by about three orders of mag
nitude.

Figure 7 is the FDM analog of Fig. 4. Comparing the tw
figures, we notice a number of differences. In the FDM ca

FIG. 6. The real partS8(e) ~solid curve! of the self-energy for
a frequency dispersive medium as a function of the scaled
quencye/vo . The quantitiesr, v10, v20, g20, and g21 are the
same as those in Fig. 3. The dotted line represents the real pa
the free space self-energy, which is identically zero@see Eq.~26a!#.
In the inset is shown a plot of the imaginary partS9(e) ~solid
curve!. The dashed line in the inset represents the imaginary pa
the free space self-energy given by Eq.~26b!. The scale used for
plotting S9(e) is much smaller than that used for plottingS8(e).
4-11
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~unlike in the PBG case! there is no spectral splitting whe
v21 lies close to the upper band edgevc . This can be ex-
plained by comparing the density-of-states nearvc in the
PBG and FDM cases, Figs. 2 and 5, respectively. In the P
case the photon density-of-states nearvc ~on the upper side!
is much greater than that of free space leading to str
atom-field interaction, resulting in level splitting. On th
other hand, in the case of FDM the photon density-of-sta
in the neighborhood ofvc is less than that of free space.
this case atom-field interaction in this frequency region
partially suppressed.

Another difference between Figs. 4 and 7 is that, in
PBG case the spectral distributionsR(v) is very sensitive to
small changes inv21, whereas in the FDM case all consid
ered values ofv21 give essentially the same result. This c
again be explained by referring to Figs. 2 and 5. As shown
Eq. ~34!, sR(v) is proportional tor(v) and therefore re-
flects the variation of the photon density-of-states with f
quency. In the FDM caser(v) varies little nearvc whereas
in the PBG case it is singular atvc . Finally, the peak of the
spectral distribution is much larger in the PBG than in t
FDM case. This can be explained by the fact thatsR(v)
}r(v), as shown in Eq.~34!.

The sensitivity of the Raman scattering cross section n
the band edge of an isotropic dispersion relation is due to
rapid variation of the density-of-states near the band edg
divergence in the density-of-states at both band edges o
isotropic PBG model, and at the lower band edge of
FDM model leads to large vacuum Rabi splitting@5#. This
vacuum Rabi splitting is absent near the upper band edg
the FDM. Similarly, in a more realistic anisotropic PB
model, vacuum Rabi splitting is absent. However, both R
splitting and non-Markovian radiative dynamics reapp
when an infinitesimal electromagnetic field is applied to

FIG. 7. The spectrum of spontaneous emissionsR(v) for the
Rayleigh transitionu2&→u0& in the case of FDM described by th
isotropic dispersion relation~58!. The parametersr 515%, v20,
g20, andg21 have the same values as in Fig. 4. We plotsR(v) for
different values ofv21 (v2151.15vc , 1.05vc , vc , andvo) of the
Stokes frequency. On the scale of this figure, all cases give the s
spectral distribution cutoff atv5vv and a peak value that is les
than the free space case~shown in the inset! by about three orders
of magnitude.
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system. This may occur in the case of superradiance~collec-
tive light emission from a number of atoms! @8# or in the
case of a very weak external field@12#.

In conclusion, Raman scattering from a three-level at
in a PBG material sensitively depends on the positions of
Stokes transition frequencyv21 and the Rayleigh transition
v20 relative to the band-edge frequencyvc . When bothv21
andv20 are far abovevc , the corresponding spectra are bo
Lorentzian as in free space. However, if either of the tran
tion frequencies are close tovc , the spectra will be mark-
edly different from the free space case. For example, ifv20
lies far abovevc , while v21 is nearvc , the Rayleigh spec-
trum is split into triplets. The middle band that lies betwe
vv1v10 and vc1v10 measures the fractionalized stead
state atomic population on the excited levelu2&. As v21

→vc
1 , the dark lines shift upward in frequency and th

width of the middle band increases. In this manner, re
nance Raman scattering can be used as a direct experim
probe of the photon-atom bound state.
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APPENDIX: PHOTON DENSITY-OF-STATES IN PBG
MATERIALS AND IN FREQUENCY DM

The photon density-of-states in a medium is defined b

r~v!5
1

Ld (
k

d@v2v~k!#, ~A1!

whereLd is the sample volume ind-dimensional space an
v(k) is the photon dispersion relation in the medium. In t
limit of large L, we may replace the sum by the integral:

r~v!5
1

~2p!dE ddk d@v2v~k!#. ~A2!

When the dispersion relation is isotropic@i.e., whenv(k)
depends only on the magnitudek of k] we can perform the
angular integration in Eq.~A2! to obtain

r~v!5
Sd

~2p!dE kd21dk d@v2v~k!#, ~A3!

whereSd is the surface area of a unit sphere ind dimensions
(Sd52,2p or 4p for d51,2 or 3, respectively!. Using Eq.
~8! in Eq. ~A3! we obtain

d@v2v~k!#5z~v!d@k2k~v!#, ~A4!

and inserting this in Eq.~A3! we finally obtain

r~v!5
Sd

~2p!d
kd21~v!z~v! ~A5!

me
4-12
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for the density-of-states ind dimensions. In free spac
k(v)5v so that z(v)51. In d53 this yields r(v)
5v2/2p2 for the free space photon density-of-states.

For a PBG, we use the dispersion relation~54! to obtain

z~v!5
uv2vou

A~v2vv!~v2vc!
. ~A6!

Clearly, z(v) exhibits square-root singularities at the ban
edge frequenciesvv andvc . From Eqs.~54! we obtain

k~v!5Avvvd6A~v2vc!~v2vv!, ~A7!

where the1(2) sign applies forv.vc (v,vv). Equa-
tion ~A7! shows that, for the frequency rangeG[(vv ,vc)
spanning the gap, the wave vectork(v) is complex, indicat-
ing that the wave is nonpropagating. Outside the PBG~that
is, for v¹G) Eqs.~A7!, ~A6!, and~9! give

r~v¹G!5
uv2vou

2p2 Fv222vov12vvvc

A~v2vv!~v2vc!
62AvvvcG ,

~A8!

where the1(2) sign applies forv.vc (v,vv).
For a dispersive medium, described by the dispersion

lation ~58! we obtain
v.

Re

-

01381
-

e-

k~v!5vS v2vc

v2vv
D , ~A9!

wherevv5V2D andvc5V are the band-edge frequencie
The form factorz(v) of the medium is then given by

z~v!5
v222vvv1vvvc

~v2vv!2
. ~A10!

Unlike in the PBG case, wherez(v) is singular at both band
edge frequencies, in the FDM casez(v) is singular only at
the lower band-edge frequencyvv . Moreover, the singular-
ity at vv is much strongerz(v);(v2vv)22 than that in the
PBG case.

The wave numberk, being the magnitude of a vector (k),
is positive definite. However, Eq.~A9! shows that, for fre-
quenciesvPG, k(v) is negative, indicating that this rang
corresponds to the PBG region. Outside the photonic b
gap, Eqs.~A9!, ~A10!, and~9! give

r~v¹G!5
v2~v2vc!

2

2p2 Fv222vvv1vvvc

~v2vv!4 G ,

~A11!

for the density-of-states in a frequency dispersive mediu
el

n
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