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Resonance Raman scattering in photonic band-gap materials
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We study the resonance Raman scattering of light from a three-level atom embedded in a photonic band-gap
material or in a frequency dispersive medium whose photon spectrum exhibits a gap due to photon coupling to
medium excitations such as excitons and optical phonons. We demonstrate that the one-particle spectrum of the
system consists of either a continuous part with energy lying outside the gap or a single discrete mode with
energy lying inside the gap. The discrete mode, which occurs when both of the allowed atomic transitions of
the A configuration lie inside the gap, can be treated as a photon-atom bound state in which the radiation is
localized in the vicinity of the atom. In the case of the continuous spectrum, the Rayleigh and Stokes lines are
shifted as well as narrowddr broadenegdas the corresponding transition frequencies are shifted relative to the
upper band edge, providing a distinctive experimental signature of atom-photon interactions near a photonic

band edge.
DOI: 10.1103/PhysRevA.63.013814 PACS nuntber42.50.Gy, 42.70.Qs
I. INTRODUCTION lying outside the gap and a single discrete m@o®vided

the two allowed atomic transitions of the configuration lie

The prediction[1,2] and experimental observatigB] of  inside the gapwith energy lying inside the gap. The discrete
photonic band-gagPBG) materials have opened a door to mode can be treated as a photon-atom bound state in which
new effects in the quantum optics of atom-photon interacthe radiation is localized in the vicinity of the atom. In con-
tions. These materials are artificial periodic dielectric structrast to the case of a two-level atd@13-1, in the present
tures exhibiting a gap in the photon density-of-states for alcase there are two scattering channels, the eléRtgleigh
directions of electromagnetic propagation. This absence ctnd inelastiqStokes or anti-Stokg¢shannels. The radiation
propagating photon states within the photonic band gap leadé!d is bound to the atom as a result of two-channel scatter-
to the inhibition of single-photon spontaneous emisgibp ~ ing, while the atom switches between the ground level and
classical light localizatior{2,4], photon-atom bound state the next excited level via the upper most excited level. In the
[5], fractionalized single atom inversidB], and anomalous case of the continuous spectrum, the Rayleigh and Stokes
vacuum Rabi splitting6,7]. In the presence of many atoms, lines are shifted as well as narrowéar broadenedas the
it also leads to anomalously fast collective spontaneou§orresponding transition frequencies are shifted relative to
emission rates near the band edgé and photon hopping the upper photonic band edge.
conduction deeper within the g48]. The sharp variation of It is well known that a frequency gap for propagating
the density of photon states near the band edges leads lhotons also exists in certain natural dielectric materials. Un-
non-Markovian atom-photon interactiofi$0] and may be like artificial PBG materials, the gaps in natural frequency
used to advantage for fast optical switching and optical trandispersive media=DM) are caused by electromagnetic cou-
sistor action 11,17 at low-field intensities. pling to elementary excitation@xcitons, optical phonons,

The photon-atom bound state describes the one-particletc) of the media[16,17]. In this paper we also investigate
spectrum of an atom plus photon system with an eigenfreRaman scattering from a three-level atom embedded in a
quency lying within the band gap. A photon emitted by anFDM. We demonstrate that the condition for occurrence of a
atom in such a dressed state tunnels within the PBG materi@hoton-atom bound state is much more stringent in the FDM
on length scale given by the localization length, only to becase than in the PBG case. We also show that the spectral
Bragg reflected back to the emitting atom and re-excite itsplitting observed in the PBG casahen one of the transi-
Experimental investigation of the photon-atom bound statdion frequencies is near the upper band edge of the ap
have been hampered by the fact that its eigenfrequency liggbsent in the FDM case. These differences are explained by
within the PBG, forcing the mode-light coupling to be off considering the near band-edge behavior of the density of
resonance. A search for optical phenomena that exhibit speg@hoton states in the two different materials.
troscopic signatures of a photon-atom bound state and pro-

vides_experime_nfcal information on thg electromggnetig spec- Il. MODEL HAMILTONIAN
trum in the vicinity of the gap is an important issue in the
characterization of PBG materials. Consider a physical system consisting of a single three-

In this paper we study the problem of Raman scatterindevel atom embedded in a PBG matefiat a FDM). Let |0)
for a three-level atom in thd configuration embedded in a denote the ground level of the atom and|l&} and|2) be
PBG material. Using an exact solution of the one-particlethe two excited levelgsee Fig. 1. Normalization and or-
Schralinger equation, we demonstrate that the spectrum athogonality require tha{i|j)=&;, where §; is the Kro
the system consists of both a continuous part with energyecker delta. We designate the energy of an atomic léyel
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FIG. 1. Schematic representations of a three-level system in the
A configuration. Dashed lines with arrows denote dipole allowed ¢
transitions. In theA configuration, level§1) and|0) are of the
same symmetry and the transitifi) —|0) is not dipole allowed.

i
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by A w; and the frequency separation between leyiélsand 0
[j) by wj; = wj— ;. Transitions between the atomic levels /o,
can be described using the atomic operatqys-|i)(j| with
the propertyo;|k) = 8jc|i) from which the commutation re-
lation

FIG. 2. The photon density-of-stategw) in a PBG material
described by the isotropic dispersion relati(d). The dashed
curve represents the free space density of photon states)

1) = w?/27r. For isotropic PBGp(w) exhibits singularities at both
band edges behaving likg w)~ (w0, — ) “*? for w<w,, and like

can readily be obtained. The three-level atom is assumed &)~ (@~ wc) ¥ for 0>w, . Far from the band edges(w) is

be in theA configuration where the upper most atomic level essentially the same as that of free space, as expected. A typical

|2> is dipole coupled to the lower Ievel|i) and |0> by !sotroplc dispersion relation for a PBG material is shown in the

radiation modes(photon reservojrin a three-dimensional 'Nset.

PBG or FDM. The transitionl)—|0) is dipole forbidden. . . .
We consider the resonamnc>e I|?a>man _5cattering of a lasQENts. Associated with the Rayleigh and Stokes modes are

pulse of frequencys, = w,, from the three-level atom. The the radiation field annihilation and creation operatarg,w)

radiation scattered by the atom consists of Stokes and r&nd az(“’)' obeying the commutation rules
leigh components with frequenciess=w, —w and wg
=w_, respectively. Accordingly, we divide the photon res-
ervoir into two parts, one consisting of the Raleigh mode
(identified by the subscrig®) and the other consisting of the
Stokes modesidentified by the subscri@).

Our consideration in this paper is restricted to the case
isotropic photonic band gaps where the band edge is asso
ated with a sphergk|=k, in k space(spherical Brillouin
z_one..The spectrgm of .elementary electromagnetic Pfxc'tailtonians. The third term describes the interaction between
Flons n sych an isofropic PBG has the form shown in th he atom and the Rayleigh part of the photon reservoir,
mset'of Fig. 2. Due to the spherical symmetry O.f the prOb'whereas the fourth term describes the interaction between the

tation for d ical variable of th ; In thi bttom and the Stokes part of the photon reservoir. These in-
ation for dynamicaj variabie ot the system. In tis représense 5 ooy Hamiltonians are written in the electric dipole ap-
tation, the model Hamiltonian H of our atom-field system

. proximation. They are also written in the rotating wave ap-
can be written a§14] proximation [18] in which virtual processes of excitation
do (de-excitation of the atom with simultaneous creatitmni-
H= 2 wjo0j+ E f Z—wal(w)aa(w) hilation) of a photon([i.e., terms of the formi;;(w)a'zo and
i=12 a=RS JC 2T ag(w) oo, are neglected.
dew As shown in the inset of Fig. 2, the photon frequency
— f —\/zzo(w)[a;&(w)oofr o@R(w)] varies from zero taw, within the lower branch and frore,
Cr2T to +o within the upper branch, where, and w. are the

Loij ,on]= 6jioi— dikTy;

[ay(®),a] (0')]=27 80y S(0— ). &)

SWe assume that the Rayleigh and Stokes components are
well separated in frequency so that their corresponding op-
rators commute. We also assume that atomic operatprs

Ogommute with the field operatoes,(w) and az(w) for the
(ﬂhantized Stokes and Rayleigh modes.
The last two terms in Eq2) represent interaction Ham-

dw lower and upper band-edge frequencies, respectively. The
—f 2—\/221(w)[a§(w)012+ or8s(w)], (2)  gap width isA=w.—w, and the gap to midgap ratio is
CseT =A/w,, Wherew, is the midgap frequency. We denote by

where we choose units in whidgh=c=1. The first term in G the frequency range spanning the gap:

Eq. (2) represents the Hamiltonian of the bare atom, taking G=(w,,0). (4)
the zero of energy to be at levfd) so thatw,=0. The

second term represents the Hamiltonian of the photon resefhus, the integration conto@,, in Eq. (2) are subsets of the
voir which is decomposed into Rayleigh and Stokes compofull contour
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C=[0,0,]U[w¢,*)=[0%)—G. (5) IIl. ONE-PARTICLE PROBLEM

_ . A. One-particle eigenstates
Within the band gap, there are no propagating photon modes

in any direction in space so that the density of photon modes W€ 100k for one-particle eigenstates of the number opera-
tor N in the form

p(@)=0, weG. (6) do
o ) |W)= §Uzo+f2—[¢s(w)ag(w)010
In the Hamiltonian(2), the frequency dependent coupling cem
constantyz,;(w), between the atomic transitiof2)—|j)
and the corresponding photon reservoir is given by + wR(w)aE(w)]} lvac), (14)

Zi(@)=7z(@)2(@), @ Where the vacuum stateac) is defined as the state in which

wherey,;(w) represents the coupling constant of the atomicthe atom is in the ground stat@) and there is no photon in

transition|2)—|j) with the free space photon reservfiiat the system so thal,(w)|vac)=0. The amplitudet gives

is, v,j(w) gives the free space spontaneous emission rate f&Pe probability of fmdmg_ thg atom in the excited stag
the transition|2)—|j)] and and both photon reservoirs in the vacuum state. The operator

productag(w)crlo acting on the vacuum stafeac) excites
do! 1 the atom to the upper levél) while creating a Stokes pho-
Z(w)= (W) (8)  ton of frequencyw, andys(w) gives the amplitude for this

process. On the other harwﬁ(w) acting onjvac) creates a
is the “atomic form factor.” As shown in Appendix A(w)

Rayleigh photon of frequency but leaves the atom in the
can be expressed in terms of the photon density-of-stat round stat0) andy(w) gives the amplitude for this pro-

€ss.

p(w) as The statd¥,) is a one-particle eigenstate of the number
) operatorN|¥,)=|¥,). Now let|¥,) also be an eigenstate
_27°p(w) of the Hamiltonian(2) with the eigenvalue:
w

HIW ) =¢[¥y). (15

Clearly,z(_w) is proportiona}l tgo(“’) and v_anishes wherever Projecting this time-independent ScHilnger equation onto
p(w) vanishes, such as within a photonic band gap: a;;(w)|vaC>, a;(w)alo|vac>, and opdvac), respectively,

2(0)=0, weG. (19 e obtin
- = , 16
In the resonance approximation we replaeg(w) in Eq. (7) (0= €)Yr(w| €)= Vzo ) (€) (163
by the constant value (- e+ 010 s(w|e)=VZu(w)Ee), (16D
Y2j= 50505, 11 do
(wyo—€)&(€)= J E[szo(w)lﬂR(wk)
whered,; represents the magnitude of the dipole moment for Cer
t(g;att(;an3|tlor12>—>|1) and we extend the contou®, in Eq. +\Zog(@) s w]€)]. (160

The general solutions of Eg&l6a and (16b) are
Com(—0,0,]U[wg, @) =(—,2)~G.  (12) ’ 46163 and (16D

VZao( @)
The operator for the number of excitations of our model Yr(w|e)=2mxR(€)6(w—€)+ e iotle (179
system(atom plus radiation field
Zy(w)
d - et oY@
N= 0+ z f —waZ(w)aa(w) (13 Ys(wl€)=2mxs(€) (et wo w— €+ wlo—log(e)'
a=R,S c2m (17b)

commutes with the model Hamiltoniaji\,H]=0. Thus all where xg(€) and xs(e) are as yet undetermined arbitrary
eigenstates of the model can be classified with respect to tHanctions that can be fixed by specifying asympt¢tound-
number of excitations or eigenvalues of the oper&taand  ary) values for g and 5. In Egs. (178 and (17b), the
we can separately study the sectors of Hilbert space contaiigenvaluee is made slightly complex by adding a small
ing different number of excitations. In this paper we dealpositive imaginary partiQ) to it. This is a standard proce-
only with the one-excitation problem. Two-excitation prob- dure in scattering theorj20] to get around the singularities
lems are discussed elsewh¢id). associated with both 1d(—e) and 1/w—e+wyg. The
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choice of sign before the small imaginary peitdepends on ds’(e) do | y,2(®) yyZ()
the system’s initial configuration. The minus sign corre- dc - j > >+ 5 ,
sponds(as in our caseto an initially incident(incoming € CeT|(w—€)” (w—et+wy)

photon. (24)

which indicates thaft’(€) is a monotonically increasing
function of e.
Substituting Eqs(178 and (17b) into Eq. (16) to elimi- The imaginary pars”(e) of the self-energy gives the
nate the wave functiong,(w|e€), we obtain decay rate of the upper levi2). In other words, the atom
decays from the excited stat2) with a lifetime of 15" (¢).
[woo— e—2(€)]€(€)=\Zyo(€) xr(€) + VZzl(E—wlo)Xs(é)g.) From Egs.(9) and (22b) we see that

B. Self-energy

where S7(e)~ %’p(ew%ﬂp(e— ©10). 25)
g(e)zf do ZZO(w)_ Zas( @) : } (19  Like the real part’(e), the imaginary part”(e) is pro-
c.2mw=€e~10  w—etwy—il0 portional to the decay rateg,; and is very small except in

regions where the local photon density-of-states is very
?arge. However, unlike’(€), " (€) cannot possibly be ne-
glected since this would lead to infinite lifetime for the ex-

is referred to as the self-energy of the system. Using th
identity

cited atomic staté2).
lim <x+i = P(;) Fimd(x), (20 The electromagnetic vacuum is characterized by the dis-
n—0\ =17 persion relationw(k)=k. For such a dispersion relation,

Egs.(7) and (8) give z,j(w) = v,j(w) for the coupling con-
stant which, in the resonance approximation, is replaced by
the constant value given by E@L1). Moreover, since there

whereP denotes the Cauchy principg21], we can decom-
pose the self-energy(¢€) into real and imaginary parts as

S(e)=3"(e)+i3"(e), (22) is no gap in the free space photon density-of-states, the con-
tour C., in Eq. (229 extends over the entire real axiS=
where (—o0,0). Equations(223 and (22b) then give
, do z(w) do z(w) L [ de| vy Vo1 B
E (6)_’)/20P Cxﬂ (U_6+’y21pfcxﬂ (D_6+(,010, 2 (E)_Pffw% w—6+w—6+w10 _O’ (266)
(2239
. 2" (€)= (y20t v20/2 (26b)
2"(e)=5lraoz(€) + vaz(e=wio)], (22 for the real and imaginary parts of the self-energy in free

space. Thus the real part of the free space self-energy is
and we have used E€7) in the resonance approximation. identically zero, while the imaginary part is half the sum of
The real par’ () gives the energy shift of levé2) due  the decay rates for the two allowed decay channi,
to the atom-field interaction. Assuming that the main contri-—|0) and|2)—|1). Note that the principal part in E263
bution to 2’ (e) comes from the region near the transition vanishes because we have extended the lower limit of inte-
frequencyw,y, We can evaluat®’(€) at e= w,o and incor-  gration to —o by applying the resonance approximation.
porate this value in the definition of the energy of lej@). Had we not done so, the principal part would have given rise

Accordingly, we introduce to a nonzero contributiortin fact, divergent contribution,
which has to be corrected by introducing a cu{@®2,23 on
V0= w0~ %' (w30) (23)  the energy of photonswhich is associated with the Lamb

shift of the atomic levels. Even in this case, however, we can

€set the principal value term to zero by assuming that the
Lamb shifts are incorporated into the definition of our state
energies.

as the new transition frequency when the atom is in the m
dium. The first integral on the right-hand side of E223 is

of the ordery,, except in the neighborhood @~ € or in
regions wherez(w) [or equivalently the photon density-of-
statesp(w)] is very large. On the other hand, the decay rate
v, IS smaller than optical transition frequenaysg by at
least six orders of magnitudeyfy~10® s ! whereasw,g The amplitude functiong,(w|€) can be cast into a more
~10' s71). Thus, whatever the value of the first integral, it familiar form by introducing ar space[15], which is auxil-
cannot offset the smallness g§, and we can safely assume iary to the w space. This auxiliary space is defined by the
that the first term on the right-hand side of EB23 is very  Fourier transforms

small compared to an optical transition frequency. The same )

applies for the second term. It follows that (w,g) << wsg. a,(w)= fﬁ dra,(r)e 1@ (273
From Eq.(22a we obtain “ e '

C. Auxiliary space
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solo= | drloe e @m
The inverse Fourier transforms are given by
1 (= .
a,(n= —f dwa,(w)e'’, (283
2’7T —o0
_ 1 fx d ioT 28b
wa(T|6)_E o wwa(w|€)e . ( )

Taking the Fourier transforms of Eq6l78 and (17b) we
obtain

Yr(7l€)=[xr(e) +igr(€)O(7)]€"", (299
Us(7l€)=[xs(e)+iqe)O (el @07 (29h
where
dr(€)=zzo(€) &(€), (309
ds(€) =VZa1(e~ w19 £(€), (30b)
and¢(e) is given by Eq.(18):
go = VA IXR(OF Vza(e—wrdxs(e) o

wzo_f_z(f)

In Egs. (2939 and (29b) ©(7) represents the unit step func-

tion defined by

1 for >0

6(n= 0 for 7<O0.

(32

From Eqgs.(29a and(29b) we identifyiqg(€) andiqg(e) as

the scattering amplitudes for the Rayleigh and Stokes modes,
respectively. The scattering cross sections, i.e., the probabi

ity for an incident photon of frequenay to be scattered in
the Rayleigh or the Stokes channel are given by

(339
(33b

or(®)%igr(w)[*= yaz(w)|é(w)[?,

os(®)|igs(w)|?= y212( 0 — w19)|&(w)]?,

where we have used E7) in the resonance approximation.

Using Eqg.(9) in Eqg. (339 we notice that
(34

or(w)*p(w), og(w)*p(w—wig)

D. Discrete mode

Equations(17a and(17b), together with a choice of val-
ues for the arbitrary functiongg(e) and yg(e) [depending
on the boundary conditions fafg(w|€) and y5(w|e)] com-

pletely determine the one-particle spectrum of the system. In
this section we look for a discrete mode of the system with

frequencyey such that bothey and e4— w1 lie within the
frequency gapG. This requires that

€qeG’, (35

PHYSICAL REVIEW A 63013814

where

G'=(w,+ w19, wc) (36)

is a subinterval ofG=(w, ,w.). Thus for bothey and ¢4
— w1g to lie within the gapG, we must havev, + wg< . Or

(37

In other words, the transition frequeney = w,g— w,; Must
be less than the width of the gap. When beth and ¢4
— w1 lie within the gap, Eq(10) shows that botlz(e4) and
z(eq— wq9) are zero so that, according to E@®2b), the
imaginary partX”(e) of the self-energy is also zero:

E”( éd) = 0,

(1)10< (,UC_(UU:A.

€qcG'. (39)

Within the band gap, single-photon spontaneous emission is
completely inhibited[5]. When bothey and e4— w4 lie
within the gap, we have # ¢4 andw # e4— w19 and the first
terms on the right-hand side of both E¢%73 and(17h) do

not contribute to Yr(w|eg) and ¥g(w|ey), respectively.
Therefore, when conditiofB85) is satisfied, we can choose

Xr(€q)=xs(€9)=0, €4eG’. (39

This choice can then be used in E¢7a), (17b), and(18) to
obtain

VZoo( @)

w— €g

VZpi(w)

w— €4t wg

Yr(w|eq)= £(€q), (403

Ys(w|eg)= £(eq), (40b)

and

[wa0— €9— 2" (€g)]1é(€q) =0. (41)
Jn Eq. (41) we have used E(38) to replace(eq4) by the
real partY’(eg)-

Apart from the trivial solutioné(eq) =0, Eq.(41) has a
nontrivial solutioné(e4) # 0 provided that an eigenenergy
is found such that

Wy~ €g—2'(€9)=0, €4eCG’. (42
Since,X ' (€) is a monotonically increasing function ef{see
Eq.(24)], Eq.(42) can have only one roet= €4 given by the
intersection of the curv&’(e) with the straight linew,
— €. Clearly, a discrete bound state occurs only if the straight
line y(€) = w,p— € intersects the curvE”(e) within the fre-
quency rangés’ where, according to Eq38), 2"(€)=0.
Substituting Eqs(409 and (40b) into Eq. (14), we find
this discrete eigenstate of the system:

VZpi( )

w—ed-l- [OFT)

dow
|‘I’d>:§(€d)| o0t fc o

\J 220((1)) t
ar

w— €g

ag(w)Ulo

+

() (43

|vac ] .
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The function &(ey) is determined from the normalization E. Continuous spectrum

condition(Wy|Wq)=1. We obtain In this section we consider the case when the eigenvalue

of Eqg. (15 does not satisfy the discrete bound-state condi-
1+ f do  Z(w) tion (35). This requires thaé ¢ G’. We investigate the scat-
Y20 C.2T (w— €g)? tering of a single incident laser photon of frequengyfrom
the three-level atom initially in the ground state. This initial
dow Z(w) condition (atom on level0), a laser photon and no Stokes
+ya J w2 (44 photon determines the asymptotitarge distancevalues of
ST (0= €gt w10) the amplitudesyr and ¢ uniquely and therefore fixes the
functions yr(€) and xs(e) of Egs.(178 and(17b) to

|£(eg)|?=

When the systenfatom + field) is in the discrete bound
state|¥y), the probability to find the atom in the excited xr(6)=1, xs(€)=0. (47)
state|2) is given by

Using this choice in Eq(31) and substituting the result in

Py=|¢(eq)|?. (45  Egs.(333 and(33b) we obtain
The integrals in Eq(44) are not principal value integrals yaZ2 ()
since bothey and eg— w;q lie within the band gapG and oR(w)*—— S (o P TS ) (483
therefore do not lie on the contour of integratiGn . Thus [wa0—w (@) "+[2"(w)]
Po~(1+ yoot+ v21) *~1, (46) (@) Y20Y212( @) Z( 0 — w10) (a8b)

. o [wa— =3 (o) +[2"(w)]?

since y,;<1. It follows that, when the system is in the
photon-atom bound statd ), the atom spends most of its as the scattering cross sections for the Rayleigh and Stokes
time on the excited stat®). Once in a while, the atom drops channels. Her& ' (») andX"(w) are the real and imaginary
to the lower statél) by emitting a Stokes photon or to the parts of the self-energy given, respectively, by Eg&a and
ground statg0) by emitting a Rayleigh photon. However, (22b). Equations(48a and (48b) are written as functions of
the emitted photon is quickly re-absorbed by the atom, whichihe incident laser photon frequenaey The frequency of the
is then re-excited to leveR). scattered Rayleigh photons isg= w, whereas that of the

The discrete modd43) describes the three-level atom Stokes photons i&s=w— w1p.
analog of the photon-atom bound state predicted by John and Equations(488 and(48b) show that scattering cross sec-
Wang[5] for a hydrogenic atom. In the present case there aréons for the Rayleigh and Stokes components of the scat-
two scattering channels, the elagtiRayleigh and the inelas- tered light are strongly dependent on the atomic form factor
tic (Stokes or anti-Stokeshannels. A photon of frequency z(w) and on the self-energy(w). In the case of free space,
o incident on an unexcited atofatom on leve|0)) can be  z(w)=1 and the self energies are given by E(®6a and
scattered in the Rayleigh channel preserving its frequency d26b). Using them in Eqs(48a and(48b) we obtain the free
in the Stokes channel, in which the atom is excited to levebpace scattering cross sections:
|1) and a Stokes photon of frequeneg=w— w4 is cre-
ated. Alternately, the photon can be scattered from an excited Ya0
atom on level|1) accompanied by the creation of an anti- or(w) EURY: 21
Stokes photon of frequencywas=w+ w,, and the de- (@20~ @)™+ (720t 721)
excitation of the atom to the ground lev@). Thus, in the
three-level atom case, the radiation field is bound to the atom V20721

; . i og(wg)« . (49b)

as a result of two-channel scattering, while the atom switches (w1~ w5) 2+ (Yoot Y21) 24
between level$0) and|1) via the intermediate sta{@).

According to Eq.(23) the solution of Eqg.(42) can be In Eq. (49b we have used the relation,;= w,g— w4 10
written in terms of the shifted atomic transition frequencywrite o5(wsg) as a function of the Stokes frequeney= w
v, 8S €4= vyo. There will be a discrete bound state only if —w;. Equations(498 and (49b) represent two Lorentzian
v, (Or roughly w,) lies in the frequency range between distributions of full width at half maximumFWHM) T’
w,twyo and .. Moreover, condition(35) for the occur- = y,5+ y,; peaked at the two transition frequencieg, and
rence of a discrete bound state requires that the transition,;. The linewidthI" is determined by the total lifetime of
frequency w;o= w0~ w,; be less than the widttA=w, level |2), which can decay via eithgR)— |0) (with decay
— w, of the gap. Thus for a discrete bound state to occur weate y,o) or |2)—|1) (with decay ratey,,).
must havew,,e G andw,oe G', where the frequency inter- In a reservoir with a modified density of photon modes,
vals G andG’ are given by Eqs(4) and (36), respectively. the spectra of both the Rayleigh and the Stokes components
If, for instance, w,;¢ G, the bound state becomes quasi-of the scattered light will depart from a Lorentzian distribu-
bound. Its lifetime is determined by the possible irradiationtion in as much as the form factozéw) and the self-energy
of a photon of frequency,, in resonance with the escape X (w) in the medium deviate from their corresponding free
channel|2)—|1). space forms. In analyzing the continuous spectrum in such

(493
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modified reservoirs, we assume that the Rayleigh transitios w,+7y. The width of the photonic band gap B5=w.

frequencyw,q lies far above the upper band edge and —w,=2y and the gap to midgap ratio is=A/w,
consider cases when the Stokes transition frequengyies zzy/w/k02+ ¥2. In the context of photonic band-gap materi-

in the neighborhood ofv;. Thus the Rayleigh transition als, the loweruppe) branch of the photon spectrum is more
|2)—|0) can be considered to be occurring in a normal freeappropriately called the dielectriair) band[24].
space(Markovian reservojr whereas the Stokes transition ~ As shown in Appendix A, for a PBG material described

|2)—|1) occurs in a modified non-Markovian reservoir. Our by the dispersion relatiofb4) the atomic form factoz(w)
main interest is to investigate effects on the Rayleigh spectakes the form

trum due to the coupling of the Stokes transit|@— |1) to
the modified reservaoir. |w— w,|

When w, lies far above the gap, the real and imaginary , 0¢G
parts of théoself—energy 2(w)=1 J(0—0,)(0— o) (55)
0, weG,
do 2z(w)
SR(€)=7v20 f c2m@—ei0 (30 which, when used in Eq9), gives
corresponding to the Rayleigh component of the photon res- |w—wo|| 02— 2wo0+ 20,0,
ervoir can be approximated by the free space valig) 272 | J(0—w,)(0—w) FEN®Oc |,
=0 andX}(e)=iy,02. The real and imaginary parts of the  p(w)= Y ¢
total self-energy(19) will then be weG
0, weG
' (e)=34(e), (513 (56)
3"(€)=y,02+2&(€), (51b)  for the density of photon modes. Here tihd—) sign apply
for 0> 0. (0<w,).
where The density-of-state6) is plotted in Fig. 2. For regions

far removed from the band edgesw) differs little from its

Sie)= ,),21pf d_w Z(—w) (529  free space value ab?/2m, as expected. Near the band edges
C.2T w— €t wy w, and w;, Eq. (56) shows that,p(w) behaves ap(w)
~(w,— ) Y2 for w<w, and asp(w)~(0—w;) 2 for

Y21 w>w., the square-root singularities being characteristic of a

25(6):72(6_w10) (52b) one-dimensional phase spd&. These singularities are ar-

tifacts of the isotropic dispersion relati@f4) which associ-
are the real and imaginary parts of the Stokes componengtes the band-edge wave vector with a spher& Bpace,
The Rayleigh scattering cross section becomes |k|=ko (spherical Brillouin zongand thereby artificially in-
creases the true phase space available for photon propagation
near the band edge. In a real three-dimensional dielectric
crystal with an allowed point-group symmetry, the gap is
highly anisotropic and the band edge is associated with a
We investigate specific features of this cross section for th@oint k=K, (or a finite collection of symmetry related
case of PBG and FDM separately in the following sectionspoints in k space[24], rather than with the entire sphere
|k|=1ko|. In this case the density of photon states is finite at

Y322 (w)
[wao— 0—S& ) *+[ Yoot 234 ) ]%/4

(53

oR(w)x

IV. SYSTEM IN A PBG MATERIAL the band-edge frequencif25].
_ _ _ Using Egs(7) and(55) in Eq. (22b), we obtain the imagi-
A. Model dispersion relation nary partS”(e) of the self-energy for a PBG described by

We first consider the case where the three-level atom i§he isotropic dispersion relatiofd4). Likewise the real part
embedded in an isotropic PBG. A simple model dispersior® ' (€) is determined by using Eqé7) and (55) in Eqg. (223
relation, which exhibits a gap in the photon density-of-statesand evaluatingnumerically the integral. For illustration, we

is given by[8] consider an isotropic PBG with a gap to midgap ratior of
=15%, a ratio that can be achieved in practical PBG mate-
w(k)= K5+ y2*+ \[(k—ko) >+ 9, (54)  rials [25]. Thus, in units of the midgap frequenay,, the

bandwidth isA =0.15, and the band-edge frequencies are at

wherek= k| is the modulus of the wave vector, akgand  © =1-r/2=0.925 andw,=1+r/2=1.075. In what fol-

y are parameters related to the periodic dielectric structurdows, we fix the transition frequency taw,;,=A/10
The+ (—) applies for the uppeflower) branch of the pho-  =0.0150,. Then the frequency interva@@ andG’ are given

ton spectrum. Physically modéb4) corresponds to placing by G=(0.925,1.075) andG’=(0.94,1.075). Also we
an isotropic band gap of the form shown in the inset in Fig.choosey,y= y,,= w110 for visualizaton purposes. In real-
2 centered about the frequeney= \/k02+ ¥, the lower and ity, y,g<w1o if wyg is in the optical regime. However, as
upper band-edge frequencies being=w,—y and o,  seen in Eqs(22b and(223, the constanty,; appear only as

013814-7
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L e A T L As discussed in Sec. Il D, a discrete bound state can occur
1

L \ ' - only whenw,,e G’ andw,;e G, which in turn requirewqq

voisl 3;2(1)51‘20 b yer=oye i | to satisfy condition(37), i.e., w;o should be less than the
0y =0950, i I width A=w.—w, of the gap. The discrete bound state is
- Yoo =1y, = 0014 \ ” B ¢ v

i | given by the intersection of the straight liyge) = w,o— €
0.01 - ! ! — with the curve’(€), provided that this intersection lies
| i within the frequency rang&’ whereX"(e)=0.
i Using the sama o and PBG parameters as in Sec. IV A,
: we investigate the occurrence of a discrete bound state when
w4 (@and hencew,,) is varied with respect to the upper band
: edgew.. A discrete bound state occurs only if the curves
| W i | y(€)=w,y—€ and X'(€) intersect within the frequency
rangeG’'.
Tz In Fig. 3 we plot the curvel’(e) andy(e)=w,o— € (as
el functions of the scaled frequeneyw,) for the case when
wyo lies just below the upper band edge,=0.95w,

— ! — 1
3."(e) (long-dashed curyeof the self-energyEqgs.(223 and(22b)] =1.021) 0 thatwzpe G an_d le__l'OOGE G-' In this case
for a PBG material as functions of the scaled frequerty, . we see that the straight Im?(e)._wzo._e. intersects the
o !
Here, r=15%, w,=0.925,, w,=1.0750,, and the band-gap f:urvesE ge) a?e.% 1.02(»0., wh|c.h lies within the frequenf:y
width is A=0.15w, . AlSO w;o=A/10=0.015m, and w,=0.95w, intervalG'. This intersection point then represents the eigen-
=1.0120, SO thatw,pe G' and w,,=1.006v,c G. We also take Value of a nondecaying photon atom bound sfitg) given
¥20= ¥21=A/100. In the frequency rang@’ the imaginary part of by Eq.(43) with e4~1.02. Asw,q (and hencev,y) is pushed
the self-energy is identically zero whereas the real part is a moncfurther towards the upper band edag, the bound state is
tonically increasing function of frequency. Both the real and imagi-g|so pushed towards.. Whenw, lies outside the gap, the
nary parts of the self-energy exhibit singularities at the frequenciegtraight liney(€) no longer intersects the real pait(e) of

w,, 0, w1, o, andw+wyo. The dotted curve represents the o self-energy within the frequency rang®’, where

imaginary part of the free space self-energy given bys( "oy — ; ; o
+¥102). The real part of the free space self-energy is identically2 (€)=0. This means that the solution afz—€—2(¢)

zero[see Eq.(26b)]. The dot-dashed curve represents the straight:0 has a nonzerq llr?naglnary part that Serve.s to damp the
line y(€) = wyg— €. This line intersectS ' () at e~1.020, € G'. system. Thus any initial population on the excited levals
and|1) will eventually decay to the ground levi).

i
0.005 — I'

\
~ P RN R A VR R S
0.005 0.88 0.92 0.96 1 1.04

FIG. 3. The real part’(€) (solid curve and the imaginary part

prefactors in the expressions f&'(e) and X"(e), and,

therefore, their only effect is to change the scale of plots.
In Fig. 3 we plot the real pa’(e) (solid curve and the

imaginary par”(e) (dashed curveof the self-energy () We now analyze the spectrum equatié8) in the case of

as functions of the scaled frequeneiw, for the case when PBG. In what follows we fixw,, to a value far above . and

both w,g and wy, lie inside the gap. The dotted curve repre- plot the Rayleigh spectrumig(w) versusw — w,q for various

sents the imaginary part of the free space self-energy givealues of the Stokes transition frequensy; .

%y th- (I2I6b). Th[e reaIEpaEtzg;ﬁheAfree ds'paci s%f-e&%r)gy IS From Egs.(10) and (53) we see thatog(w)=0 for

identically zerolsee Eqg. - According 10 £Q.(59), < G, Thus in all plots ofor(w) Versusw— w,g, the Ray-

2"(€)=0 for €€ G'=(0.94,1.075). Near the band edges, o, spectrum will vanish completely in the “spectral gap”

w, andw., X"(€) grows steadily from its free space value . B G.= B B F Eqs.(52b)

of unity, exhibiing singularities atw,=0.925, w,+ @y, 'CION®~ @20& Gs= (0, = w20, 0c— ®5). rom £qs

=0.94, w.=1.075, andw.+ w,0=1.09. The singularities at and (55) we 0bS§‘er that the imaginary p&.fs(“’) of the

the band-edge frequencies, and w. are due to the term Self-energy exhibits square-root singularities at=w,

containingz(e) [see Egs(22h) and (55)], whereas the sin- + 1 and o= w.+ w;q leading to “dark lines” atw— wyg

gularities at the shifted frequencies, + w.g and w.+wyy =w,— wy; and w— wy=w.— wy; IN og(w). These dark

are due to the term containireje — w,o). Likewise, the real lines represent complete quenching of spontaneous emission

part2'(e) of the self-energy is singular at the frequenciesat the respective frequencies and are separated exactly by the

w,, 0, +twy, o and w.+wp. In the frequency range  width A=w.—w, of the gap. They are shifted to higher

e G’, X'(e) is a monotonically increasing function ef It frequencies whem,; is decreased.

is negative fore<e, and positive fore> ey, wheree, de- The dark lines here are artifacts of the isotopic dispersion

notes the zero ok ’(e). Far from the band gag,’(€) and  relation (54), which leads to the atomic form facta(w)

2”(6) -are practically indistinguishable from their corre- being Singu'ar at the band edg@§ and g as Shown in Eq

sponding free space values, as expected. (55). In real photonic crystals, the dispersion relation is an-

isotropic andz(w) is not singular at the band edgga4].

Moreover, in realistic situations, relaxation processes in the
In this section we investigate the photon-atom bound statenedium should be taken into considerat{@24]. One way

in a PBG described by the isotropic dispersion relatfe).  to do this is to rewrite Eq(55) in the form

C. Continuous spectrum in PBG

B. Discrete modes in a PBG

013814-8
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duced phenomenologically to account for relaxation pro- -
cesses. Thus in realistic situations, the Rayleigh spectrun
will exhibit significant suppressions ai= w,+ w1y and o
= w:+ w1 but not dark lines. | :
The dark lines atw=w,+wg and w=w.+ wy Split AN
or(w) into triplets. These are “band A,” which lies to the L oy X
left of w,+wqp, “band B,” which lies betweenw=w, J I
+ w0 and w=w.+ w9, and “band C,” which lies to the %7 -ol.ox 006 :0.04 ‘ -r)l‘oz — o.loz 004 006 oAlns 0.1
right of w.+wi9. Band B measures the fractionalized (= @y oy,
steady-state atomic population on the excited $@telue to o
the presence of the photonic band ¢épand, therefore, can FIG. 4. The spectrum of spontaneous emissigifw) for the
be used to experimentally probe this steady-state populatioffaY€igh transitiori2)—|0) in the case of PBG described by the

On the other hand, bands A and C measure the fraction of thg°troPic dispersion relatiotb4). We taker =15%, wz=1.2u,
and y,p= v21=0.01w,y. Thusw,g is removed from the band edge

Fﬁcg?gfg?te populaﬂth} that decays to the lower levels . by more than the width of the gap. We plog(w) for different
' . . . values of the Stokes frequen , solid curve =1.050,),
Spectral splitting was d,e”V?d by John and V\(a[ﬁﬁ; N dotted curve 021= ), acild d(;yszklled curvewh= EZS The dcc))t-
the effective-mass approximation to the c_Jlsperspn relationyashed curve represents both EqS3 and (493 when w,,
(54) near the upper band edge, totally disregarding the  _j 15, . Thus the effect of the gap is negligible for transition
effect of the lower band edge, . One dark line and splitting  frequencies removed from the band edge by at least the widih
into a doublet(bands B and Cwas reported in the absence the gap.
of an external fieldivacuum Rabi splitting The splitting
was caused entirely by strong interaction between the atomdot-dashed curve in Fig. 4. The left- and right-dark lines
and its own radiation field. More recently, dark lines haveoccur far to the left of the resonance regier- w,,=0 and
also been reported in Refi26,28. are not shown in the plot. From the plot we see that, for
For illustration, we consider an isotropic PBG with a gap w,;=1.150., or(w) practically consists only of band C,
to midgap ratio of =15%. In units of the midgap frequency implying that all the population on the excited levid)
0, , the bandwidth isd =0.15 and the band edge frequencieseventually decays to the lower levdls) and|0). The plot
are atw,=1-r/2=0.925 andw,=1+r/2=1.075 so that also shows that band C is a Lorentzian with FWHM
G=(0.925,1.075). Also we choosg,=y,1=0.0lw,, for = y,4+ y,0=0.011. On the scale of this figure, the Rayleigh
the decay constanf&7]. We fix the Rayleigh transition fre- spectrum derived from E@53) is indistinguishable from the
quency tow,p=1.2w.=1.29 so thaw,, is far from the band free space spectrufiEq. (493].
edge by more than the width of the gap. Having fixed,, The effect of the band gap is negligible for transition fre-
we plot the Rayleigh spectrurog(w) versusw—w, for  quencies removed from a band edge by at least the wdth
various values of the Stokes transition frequengy in the  of the gap. This can be explained as follows. When lies
neighborhood of the upper band edge. In all of these far above the band edge., we can apply the Wigner-
plots og(w) =0 in the regionG;=(—0.340,-0.215). Weisskopf(WW) approximation for the Stokes channel and
We are mainly interested in the behavioraf(w) inthe  write $£=0, %= v,,/2. Sincez(w)=1, Eq.(53) reduces to
neighborhood of the resonanee— w,,=0. In regions far the free space equati@gd9a. Thus when both transition fre-
from resonance, the value of(w) is negligibly small com-  quenciesw,, and w,, lie far above the upper band edge,
pared its values in the resonance region. For instance, for owe expect the Rayleigh line to be a Lorentzian of FWHM
choice wy=1.2w;, the spectral gap Gs=(—0.340, TI'=1y,5+ y,0centered at the frequeney= w,g, just like in
—0.215) lies far to the left the resonance regior- wy,  free space. On the other hand, whep, is near the upper
=0 and is not shown in the plots. band edge, the density of electromagnetic modes changes
First we consider the case wherp; also lies far above rapidly in the vicinity of the atomic transition frequency
the upper band edge. We takg;=1.150.=1.236 so that w,,, rendering the WW approximation to the self-energy
w»,q IS removed from the upper band edggby the widthA 2 4(€) inadequate. In this case, we must perform an exact
of the gap. We then havey=w— w,;=0.054 andy,, integration in Eq.(523, which is then used in Eq53) to
= v,1= w1o/10=0.0054. Thus the dark lines ofz(w) occur  evaluate the spectrumz(w).
at w=w,+w1g=0.979 andw=w;+w1p=1.129 or atw Next we consider the case when, is close to the upper
—wy=—0.311 andw— w,,=—0.161. The left-dark line band edgew.. We take w,;=1.050.=1.129 so thatwq
lies within the spectral gagss=(—0.340,-0.215). The =0.161. Thus the left- and right-dark lines occur at
spectrum corresponding to this choicewf; is shown by the  —w,y=—0.204 and w— w,y=—0.054, respectively. The

,, = 1.050,

i
’l
1
i
1
1
1
i
A
where k is a constant characteristic of the medium, intro- i
P
i
¥
[}
[}
I
!
!
!
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spectrum for this case is shown by the solid curve in Fig. 4. > - | - |
The left-dark line occurs far to the left of the resonance re- | :
gion w—w,,=0 and is not shown in the plot. Fav,, -~
=1.050., or(w) practically consists only of two bands, ¢ o=k
bands B and C. The existence of band B shows that there i e .
a fractionalized steady-state population on the excited leve .
|2) even thoughw, lies outside the gap. The linewidth of e
band B is much smaller than the natural linewidtl of the i
spontaneous transitiof2)—|0) whereas the linewidth of 2| o s -
band C is roughly the same as that of free space. Wher | Ka
w,1=1.050, most of the initial population of2) decays to
the lower levels and only a very small part is retained as a '
fractionalized steady-state population. As; is pushed fur-
ther towardsw,, the dark lines are shifted to the right and o
the width of the band B increases, implying that more and ¢
more of the initial population is now retained as a fraction-
alized steady state-population. The dotted-curve in Fig. 4 £ 5. The photon density-of-states in a dispersive medium
represents the spectrum when, coincides with the band gescribed by the dispersion relati¢58). The dashed curve repre-

r
L

T
(k)
\
|

e
A
e
I
e
,

p(w)
N

Do —

edge,w.. In this case the left-dark line occurs @t-wx0=  sents the free space density of photon states. We seg (thitis
—0.15 and is not shown in the figure, whereas the right-darkighly singular at the lower band edge, behaving like p(w)
line occurs at the resonanae= wo. ~(w,—w)~* but is identically zero at the upper band edge,

Finally we consider the case when, lies inside the gap. p(w:)=0. This should be contrasted with the PBG case shown in
We takew,1= w,=1, the midgap. Them,,=0.29 and the Fig. 2 wherep(w) exhibits square-root singularities at both band
left- and right-dark lines occur ab— w,,=—0.075 andw edges. In the inset, the photon spectrum for a dispersive medium
—wyo=—0.075, respectively, equidistant from the reso-described by the dispersion relatits8) is shown.
nance frequencyw= w,y. The spectrum for this case is ) ) )
shown by the dashed curve in Fig. 4. From the plot we seéhe photon spectrum. The dispersion relati68) is plotted
that by far the dominant contribution () comes from N the inset in Fig. 5. It exhibits an isotropic band gap cen-
band B, implying that forw,;,= w, most of the initial popu- tered about the frequencz_yozﬂ—A/Z. The lower and up-
lation on|2) is retained as a fractionalized steady-state popuP€r band-edge frequencies ang=0—A and w.={}, re-

lation, and only a very small part decays to the lower levelsSPectively. The lower band edge occurskat o, whereas
the upper band edge occurskat 0. The gap to midgap ratio

isr=Alw,=AI(Q—A/2).
As shown in Appendix A, the dispersion relatigb8)
In this section we briefly discuss the case when the threegives

level atom is embedded within a FDM. It is well known that

V. SYSTEM IN A DISPERSIVE MEDIUM

a frequency gap for propagating electromagnetic modes ex- ®? = 20,0+ 0,0, G

ists in many natural dielectrics and semiconductors. Unlike Z(w)= (0—w,)2+ K> ©e (59)
in artificial PBG materials, where a suppression of the pho- ’

ton density-of-states over a narrow frequency range results 0, weG,

from multiple photon scattering by a periodic array of scat-

terers, the gaps in dispersive media are caused by phoné?\r the form factor in a dispersive medium. Here we have

coupling to elementary excitations of the media such as e ddded a phenomenological damping constartb account

citons and optical phonord6,17. The “normal” electro- %rer;ek:gz;t;?ﬂepsoci?s;;n:jn;gtja)m)eii |urr;.AFrV<\)/Lner§a9; \rllveGar
magnetic modes in frequency dispersive media are detef— PP c) = Gl S

~(— -2 i
mined by the Maxwell equations with a frequency dependent € lower band edga(w)~(w—w,) * Unlike the PBG

dielectric permeability and are treated as “photons in a me’ase wherez(w) exhibits singularities at both band edges,

dium,” i.e., photons dressed by the interaction with a me—z(“’) in a dispersive medium is singular only at the lower

dium excitation. Their spectrum consists of two branches Opand edgav, and the square singularity here is much stron-

allowed states separated by a gap in which propagating ph%er than the square-root singularity of the isotropic PBG.

ton modes are completely forbidden. rom Eqs.(59) and (9) we obtain

A simple model dispersion relation for a frequency dis- 2 2[ y2— 7
persive medium can be written Ek5] o (0= 0" 0~ 20,0+ 0,0 weG
plw)= 27 (0—,)* ’
0+ (K=3[(Q+k) = (Q—k)2+4KkA], (58 0, weG
(60)

where() represents the longitudinal frequency of an optical
phonon in the medium and is the width of the frequency for the density of photon modes in a dispersive medi{gge
gap. The+(—) sign applies for the uppdtower) branch of  Appendix A).

013814-10
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The density-of-states 60 is plotted in Fi&). For regions
far removed from the band gap, E@0) shows thatp(w)
~ w?/2m, as expected. Near the lower band edgg p(w)
behaves agp(w)~(w,—w) * for w<w,. On the other
hand, near the upper band edgg, p(w) behaves ap(w)
~(w—w.)? for o> w,. Thusp(w) is highly singular at the
lower band edge, but is identically zero at the upper band
edge,p(w;)=0. These near band-edge behaviorspbd)

can easily be understood from the slope of the dispersior
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curve(58). For both the upper and lower branches we obtain - \L—=" | /| .. R
A=0.150,
dw) 1 (2A—Q)+k 61 0,=0.14
_ —_ + ——|, (;02:0.95(1)c
dk/, 2 (Q—k)Z+4Ak To=1, =001
_ v Il e b b e b e b e b b
where the+(—) sign applies for the uppéower) branch. B O R TS 0988/ ! L2 14 106 108
For k—o, where the lower band edge occurs, we have %

(dw/dk) ——0, which means thap(w) is singular atw, .

On the other hand d=0, where the upper band edge oc-

curs, dw/dk) . =A/Q, which means that the group velocity
is finite at the upper band edge: (unless the widti\ of the

FIG. 6. The real park’(€) (solid curve of the self-energy for
a frequency dispersive medium as a function of the scaled fre-
quency e/ w,. The quantitiesr, wqg, wy, Y29, and y,, are the
same as those in Fig. 3. The dotted line represents the real part of

gap is zerd. The photon density-of-states, which behaves ashe free space self-energy, which is identically Ze®e Eq(263)].

p~kl/(dw/dk), [see Eq.(A5)] will then be zero atw,,
sincek=0 there. The strong singularity p{ w) at the lower

In the inset is shown a plot of the imaginary pait(e) (solid
curve. The dashed line in the inset represents the imaginary part of

band edge can be explained by the fact that we have allowelfie free space self-energy given by EB6h). The scale used for

the wave vectok— o while, in reality, only wave vectors

within the first Brillouin zone are relevant. This unrealistic

plotting " (€) is much smaller than that used for plottidg(e).

singularity in the photon density-of-states is removed wherk,’(e)=0. On the other hand, in the FDM cas®/(e) in-

we take relaxation processes in the medium into account.
Using Eq.(59) in Eqg. (22b), we obtain the imaginary part

3" (€) of the self-energy for a dispersive medium described

by the isotropic dispersion relatiai®8). Likewise, the real
part 3 ’(€) is determined by substituting E¢59) into Eq.
(223 and evaluatingnumerically the integral. Both the real

creases from- to abouty,’ (€)= —20 and is entirely nega-
tive in the frequency rang&’.

In what follows we briefly discuss the discrete bound
states and the continuous spectra of Secs. [l D and lll E in a
frequency dispersive medium described by the dispersion re-
lation (58). First we investigate the condition for the occur-

and imaginary parts of the self-energy are plotted in Fig. 6rence of a photon-atom bound state. As shown in(Eg), a

where we choose=15%, w;o=A/10, wy;=0.95%0., and
v20=¥21=A/100. The frequency interval& and G’ are

discrete bound state is given by the eigenvatusatisfying
3 (€)= wyo— € provided thatee G’ =(0.94,1.075). How-

given by (0.925,1.075) and (0.95,1.075), respectively. Ac-ever, as shown in Fig. 6, in the frequency ram@g X' (€)

cording to Eq.(38), 3"(e)=0 for ee G’ and, according to
Egs. (22b and (59), X"(e) exhibits singularities atw,
=0.925 andw, + w1,="0.94. Likewise, the real pal’(e) is
singular atw, and atw,+ wqg. In the frequency rangeu, ,
w,+ wqg), 3’ (€) monotonically increases form o to -+ oo
whereas outside this ran@€ (e) asymptotically approaches
the free space value of zero.

<—20. Thus to satisfy the equalitY’(e)=w,y—€, we
must havee> w,g+ 20, which means tha¢¢ G’. In other
words, Eq.(42) does not have a solution within the fre-
quency rangeG’=(0.94,1.075), wher&"=0. In conclu-
sion, for the choice of parameters in Sec. IV B used to sup-
port a photon-atom bound state in a PBG, a frequency
dispersive medium does not support a photon-atom bound

The differences between a PBG and a FDM described bygtate.

the isotropic dispersion relatiori§4) and (58), respectively,

Next we investigate equatiofb3) in the case of FDM.

can be observed by contrasting Figs. 3 and 6. In the PBGVe choose the relevant paramet&rsw,q, v29, andy,, just

case, both’(e) and X"(e) are singular atw,, w;, o,

+ w19, andw.+ wqp. In the FDM case, howeveE,’ (€) and
3" (€) are not singular ab. and w.+ w,o but rather exhibit
relatively large valuescompared to the free space cas¢
these frequencies. In both the PBG and FDM casé&e)
=0 for ee G'=(0.94,1.075). However, in this frequency
range, the real parft'(e) behaves differently in the FDM
from the PBG case. As we traver&é from left to right(i.e.,
from €=0.94 toe=1.075), in the PBG case&,’(€) mono-

like in the PBG casdsee Fig. 4 In Fig. 7 we plot the
Rayleigh spectrunaz(w) versuse — w,q for various values

of the Stokes transition frequencw,; (w21=1.150,
1.05%»., w; and w,). On the scale of the figure, all cases
give the same spectral distribution which is *“half-
Lorentzian” cutoff atw— w,,=0.365 (that is, atw=0.925
=w,). The peak value of this spectrum is less than that of
free spacéshown in the insgtby about three orders of mag-
nitude.

tonically increases from a very large negative value to a very Figure 7 is the FDM analog of Fig. 4. Comparing the two
large positive value passing through the free space value digures, we notice a number of differences. In the FDM case
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0.006 - : S : system. This may occur in the case of superradidockec-

tive light emission from a number of atoing8] or in the

14 case of a very weak external fild2].

In conclusion, Raman scattering from a three-level atom

] in a PBG material sensitively depends on the positions of the

Stokes transition frequenay,; and the Rayleigh transition

i ] o relative to the band-edge frequeney. When bothw,q

e Ry T andw,q are far abovev,, the corresponding spectra are both

(@ @y, Yoy, Lorentzian as in free space. However, if either of the transi-

tion frequencies are close 0., the spectra will be mark-

edly different from the free space case. For example,if

] lies far abovew., while w,, is nearo., the Rayleigh spec-

trum is split into triplets. The middle band that lies between

05 : i : o6 w, t w1 and we+wyo measures the fractionalized steady-
(= 0,0, state atomic population on the excited leya). As wy;

—w, , the dark lines shift upward in frequency and the

width of the middle band increases. In this manner, reso-

nance Raman scattering can be used as a direct experimental

probe of the photon-atom bound state.

Opl®)
G(®)

=4

5

0.003

FIG. 7. The spectrum of spontaneous emissigifw) for the
Rayleigh transitior{2)—|0) in the case of FDM described by the
isotropic dispersion relatiof58). The parameters=15%, wyq,
v20, andy,, have the same values as in Fig. 4. We piafw) for
different values ofv,; (w,1=1.150., 1.05%0, w., andw,) of the
Stokes frequency. On the scale of this figure, all cases give the same ACKNOWLEDGMENTS
spectral distribution cutoff ab=w, and a peak value that is less
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of magnitude.
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wyq lies close to the upper band edge. This can be ex-

plained by comparing the density-of-states nearin the APPENDIX: PHOTON DENSITY-OF-STATES IN PBG
PBG and FDM cases, Figs. 2 and 5, respectively. In the PBG MATERIALS AND IN FREQUENCY DM

case the photon density-of-states nearnon the upper side

is much greater than that of free space leading to strong
atom-field interaction, resulting in level splitting. On the 1
other hand, in the case of FDM the photon density-of-states p(w)=— > So—wk)], (A1)
in the neighborhood ob. is less than that of free space. In L™ k

this case atom-field interaction in this frequency region is h dis th | | - ional
partially suppressed. whereL® is the sample volume id-dimensional space and

Another difference between Figs. 4 and 7 is that, in the‘f’(l,‘) is the photon dispersion relation in the medium. In the
PBG case the spectral distribution(w) is very sensitive to Imit of large L, we may replace the sum by the integral:
small changes iw,1, wWhereas in the FDM case all consid-
ered values ofv,; give essentially the same result. This can p(w)=
again be explained by referring to Figs. 2 and 5. As shown in (2m)¢
Eq. (34), or(w) is proportional top(w) and therefore re-
flects the variation of the photon density-of-states with fre-When the dispersion relation is isotrodice., whenw(k)
quency. In the FDM casg(w) varies little nearw, whereas  depends only on the magnitudteof k] we can perform the
in the PBG case it is singular at,. Finally, the peak of the angular integration in EA2) to obtain
spectral distribution is much larger in the PBG than in the
FDM case. This can be explained by the fact tha{ ) S J' k4~ 1dk 8] 0 — w(K)], (A3)

The photon density-of-states in a medium is defined by

f d% S w—w(k)]. (A2)

«p(w), as shown in Eq(34). plo)= (27r)¢

The sensitivity of the Raman scattering cross section near
the band edge of an isotropic dispersion relation is due to thevhereS; is the surface area of a unit spheredidimensions
rapid variation of the density-of-states near the band edge. ASq= 2,27 or 47 for d=1,2 or 3, respectively Using Eq.
divergence in the density-of-states at both band edges of tH&) in Eq. (A3) we obtain
isotropic PBG model, and at the lower band edge of the
FDM model leads to large vacuum Rabi splittifig]. This Jo—w(k)]=2z(w)d k—k(w)], (A4)
vacuum Rabi splitting is absent near the upper band edge of . . . o , .
the FDM. Similarly, in a more realistic anisotropic PBG and inserting this in EqA3) we finally obtain
model, vacuum Rabi splitting is absent. However, both Rabi S
splitting and non-Markovian radiative dynamics reappear p(w)= d k3~ 1(w)z(w) (A5)
when an infinitesimal electromagnetic field is applied to the (2m)d
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for the density-of-states ird dimensions. In free space

kK(w)=w so that z(w)=1. In d=3 this yields p(w)
= w?/27 for the free space photon density-of-states.
For a PBG, we use the dispersion relati®4) to obtain

|w_wo|

Vo—o,)(0—o)

(AB)

Clearly, z(w) exhibits square-root singularities at the band-

edge frequencies®, andw.. From Egs.(54) we obtain

k(w)=Vw,04% (0= 0)(0—,), (A7)

where the+ (—) sign applies foro>w. (0<w,). Equa-
tion (A7) shows that, for the frequency ran@=(w, ,o.)

spanning the gap, the wave vecldw) is complex, indicat-
ing that the wave is nonpropagating. Outside the RBfat
is, for w ¢ G) Egs.(A7), (A6), and(9) give

|w—we| | w2—2wo0+ 20,0,

212

*2Vw,w¢|,

Vw—o0,)(0—w;)
(A8)

plw¢G)=

where the+ (—) sign applies forw> 0w, (0<w,).

PHYSICAL REVIEW A 63013814

w— wc)
w—w,]’
wherew,=0—A andw.=() are the band-edge frequencies.
The form factorz(w) of the medium is then given by

k(w)=w( (A9)

0’ = 20,0+ 0,0,

2(w)= (A10)

(w_wv)z

Unlike in the PBG case, whe® w) is singular at both band-
edge frequencies, in the FDM cazgw) is singular only at
the lower band-edge frequenay, . Moreover, the singular-
ity at w, is much strongez(w)~ (w— w,) ~ 2 than that in the
PBG case.
The wave numbek, being the magnitude of a vectdk),

is positive definite. However, EQA9) shows that, for fre-
quenciesw € G, k(w) is negative, indicating that this range

corresponds to the PBG region. Outside the photonic band

gap, Eqs(A9), (A10), and(9) give

00— 0y)?| 0 - 20,0+ 0,
(G ( o) |

212 (w—wu)4

(A11)

For a dispersive medium, described by the dispersion re-

lation (58) we obtain

for the density-of-states in a frequency dispersive medium.
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