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We describe the spectral characteristics of the radiation scattered by two-level atoms(quantum dots) driven
by a strong external field, and coupled to a photonic crystal radiation reservoir. We show that in the presence
of strong variations with the frequency of the photonic reservoir density of states, the atomic, Mollow, sideband
components of the scattered intensity can be strongly modified. Consequently, a weak optical probe field
experiences a substantial differential gain in response to slight variations in the intensity of an optical driving
field. We suggest that these effects may be of relevance to all-optical transistor action in photonic crystals.
Using a specific photonic crystal heterostructure, we suggest that an all-optical microtransistor based on
photonic crystals may operate at less than 100 nW switching threshold power. CollectiveN-atom effects
substantially enhance this optical switching effect. Near the switching threshold intensity, collective effects are
manifest in theN2 scaling of the intensity spectrum(reminiscent of superradiance). Above and below this
critical region, the gain spectrum widens(linearly with N). This correspondingly reduces the switching time
scales of the atomic system in response to external fields. Furthermore, the quantum degree of second-order
coherence exhibits unusual features. Scattered photons display a variable degree of antibunching as function of
driving laser field intensity and the photonic density of states discontinuity. We analyze the effects of the
inhomogeneous atomic line broadening on the amplification process. We show, using suitable photonic density
of states engineering, that it is possible to select a narrow spectral range around the central frequency of the
atomic frequency distribution over which amplification and switching occur. This is done either by spectral
decoupling of the active elements from the electromagnetic field(through the introduction of band gaps at
specified spectral locations) or through incoherent pumping to selectively saturate atoms outside the spectral
region chosen for amplification.
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I. INTRODUCTION

Photonic band gap(PBG) material crystals constitute a
class of periodically ordered dielectrics that carry the concept
of moulding and controlling the flow of light to its most
microscopic level. This is entailed in a fundamentally optical
principle, namely the localization of light. The synergetic
interplay between the microcavity resonances of individual
dielectric unit cells and the Bragg scattering resonances of
the overall dielectric array[1] controllably alters the basic
electromagnetic interaction over certain frequency and
length scales. This leads to a range of frequencies(PBG) for
which no propagating electromagnetic modes are allowed
[2,3]. The presence of the photonic band gap in the disper-
sion relation of the electromagnetic field gives rise to phe-
nomena, such as the inhibition of the spontaneous emission
[4], strong localization of light[5], formation of atom-photon
bound states[6], single-atom and collective atomic switching
behavior by coherent resonant pumping, and atomic inver-
sion without fluctuations[7–9].

In this paper, we present a detailed analysis of the dynam-
ics and the spectral properties of the radiation emitted by a

single atom or a collection ofN atoms, coherently driven by
an external laser field and coupled to the radiation reservoir
of a photonic crystal. The phenomenon of resonance fluores-
cence has attracted considerable experimental interest over
the years and has been a test bed for the development of
quantum theories of matter-radiation interaction. Of particu-
lar interest is the highly nonlinear character of this phenom-
enon. If the intensity of the driving field is sufficiently high,
the atom laser field interaction is dominated by multiphoton
photon scattering processes. The presence of the frequency-
dependent radiation reservoir of a photonic crystal provides
an opportunity to engineer the resonance fluorescence pro-
cess. We show that the competition between the driving-
field-induced nonlinearities and the feedback provided by the
photonic crystal gives rise to phenomena in the response of
the atomic system to the external excitation. In particular, we
demonstrate that the character of the absorption spectrum of
a probe(signal) field can be switched by small variations in
intensity of the driving(control) field.

A suitably doped PBG material may, in the sense de-
scribed above, exhibit ultrafast all-optical switching and all-
optical transistor action. Similar to other all-optical transistor
proposals[10], the transition between the absorptive and the
amplifying regime can be modulated with a weak second
control laser field(in phase and in resonance with the main
strong pump field). Using a specific architecture(presented
in Fig. 1), involving two waveguide modes within a photonic
band gap, we suggest that(in contrast to earlier proposals)
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switching is not limited by the conventional(inverse) rela-
tionship between the switching(cavity buildup) time and the
switching intensity threshold[10]. Instead of a narrow cavity
resonance, the PBG based switching effect requires the cou-
pling of light emitters to a pair of electromagnetic waveguide
modes. As schematically presented in Fig. 2, one waveguide
exhibits a sharp cutoff over a narrow frequency interval
within the three dimensional(3D) PBG. The low group ve-
locity of this mode is suitable for conveying a steady-state
holding field to the atomic system. Another waveguide mode
with high group velocity in the frequency range of the
atomic resonance is suitable for coupling light from a modu-
lation (control) field and a probe beam to the same atomic
system. As we show, a probe laser field of prescribed wave-
length will experience a substantial differential gain by slight
modulations in the weak control laser field. The high group
velocity of the second waveguide mode facilitates fast
switching without compromising the low switching threshold
provided by the sharp cutoff of the first waveguide mode.

The ability of an external pump laser to switch the spec-
tral characteristics of the atomic system across the band edge
[or near any other discontinuous density of states DOS pro-
file] leads to coherent all-optical switching and transistor ac-
tion. In order to estimate the intensities required to observe
all-optical switching and transistor action in photonic crys-
tals, it is useful to introduce the concept of “quality factor of
a band edge.” Analogous to the qualityQ factor of a conven-
tional microcavity, we define the quality factor of a band
edge as the ratio between the central frequency and the fre-
quency range over which the photonic DOS presents a pre-
determined variation(see Fig. 3). Preliminary calculations

[12] show that in a microstructure consisting of a waveguide
channel in a 3D PBG heterostructure, it is possible to achieve
very large band-edge quality factors. For example, for a
sample of 20 unit cells in length and a jump in local density
of states(LDOS) of a factor of 100, the band-edge quality
factor is about 105, and, by increasing the length of the struc-
ture, the quality factor may be further increased(i.e., the
density of states changes by a factor of 100 on a spectral
range of 1–10 GHz). In this case,(for frequencies in the
optical domain) a 1 mW continuous-wave laser field guided
through a waveguide channel of cross section 131 mm2

produces an intensity of 0.1 kW/cm2 and will generate the
holding intensity required to observe all-optical transistor ac-
tion (the Rabi frequency associated with this driving field is
in the 10-20 GHz range). For such small areas, it is likely
that the most efficient way of coherently driving the active
elements may be using a microlaser[14] built into the pho-
tonic crystal. Moreover, in a photonic crystal, due to field
focusing effects, it is possible to achieve very large local-
field enhancement(at certain positions inside the photonic
crystal, the intensity of specific electromagnetic modes can
be increased from its empty space value by factors as large
as 600[15]). These effects may reduce the holding power
required to observe transistor action on the 10–nW scale,
while the switching power(intensity modulation) may be as
low as 500 pW.

We also analyze the higher-order optical correlation func-
tions as they are modified by resonance fluorescence near the
waveguide cutoff in the photonic crystal. A comparison be-
tween our model results and experimentally measured degree

FIG. 1. Photonic band gap waveguide architecture for all-optical
switching and transistor action. The microstructure consists in a
waveguide channel in a two-dimensional photonic crystal, which is
embedded in a 3D photonic crystal[11].

FIG. 2. Dispersion relation of a photonic crystal heterostructure
similar to one presented in Fig. 1 for propagation along the wave-
guide. The two-dimensional photonic crystal consists of Si cylin-
ders with aspect ratior /a=0.3 (here r is cylinder radius anda
dielectric lattice constant), and cylinder height ofh=0.4 a. The lin-
ear waveguide is generated by removing three rows of cylinders in
the longitudinal direction. The three-dimensional photonic crystal is
assumed to be an inverted square spiral structure(Si infiltrated) that
presents a photonic band gap of 23.6%[13]. For these parameters,
the linear defect supports two waveguide modes, one of which ex-
periences a sharp cutoff in the middle of the 3D PBG, same spectral
range for which the second guided mode has a very large disper-
sion. Source: Ref.[12].
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of second-order coherence could be used in extracting the
magnitude of the jump of the photonic DOS and the amount
of dipolar dephasing present in the system. When the system
consists of a single atom(or a collection ofN identical at-
oms) exhibiting only natural linewidth, the gain spectrum of
the probe beam is relatively narrow. The important effects
associated with the inhomogeneous line broadening of the
atomic (or quantum dot) ensemble are investigated as well.
We show that for various inhomogeneously broadened en-
sembles, the gain spectrum may be either broadened or
washed out, depending on the details of the pump field and
the details of the engineered vacuum density of states.

II. DYNAMICS OF ATOMIC VARIABLES

Consider a two-level atomic system interacting with a ra-
diation field reservoir of a confined photonic crystal, and
driven by a “strong”s10 nW–1mWd classical laser field[8].
The atomic system is characterized by the statesu1l (ground
state) u2l (excited state), the resonant atomic transitionvA,
and may interact with the lattice vibrations of the dielectric
host material. In a rotating wave approximation basis[7–9]
corresponding to the laser frequencyvL and in the interac-
tion picture, the Hamiltonian of the system has the form

H = H0 + HAF + HAL + Hdeph. s2.1d

Here H0=HA+HR characterizes the free evolution of the
atomic system and photonic reservoir in the absence of atom-
radiation interaction,HAF represents the coupling between
the atomic system and the radiation reservoir of the photonic

crystal, andHdeph describes additional dephasing effects
that may arise from atomic collisions or the scattering of
phonons from quantum dots embedded in a solid part of
the dielectric structure. The noninteracting system is de-
scribed by

H0 = "DALs3 + o
l

"Dlal
†al, s2.2d

the interaction of the atomic collection with the electromag-
netic modes of the photonic reservoir is given by

HAF = − i"o
l

glsal
†s− − s+ald, s2.3d

and the interaction of the atomic system with the external
laser field has the form

HAL = "ess− − s+d. s2.4d

Here,s−, s+, ands3 describe the excitation, the deexcita-
tion, and the atomic inversion operators of the atomic sys-
tem, respectivelyf7–9g; al ,al

† are the radiation annihila-
tion operators for photons of the allowed modessl
;hkl ,elj, where kl is the wave vector of the radiation
model ,el are the two transverse unit polarization direc-
tionsd. Dl=vl−vL andDAL=vA−vL arel-mode frequency
detuning and the atom frequency detuning with respect to
the laser field frequency,vL, respectively.gl is the cou-
pling constant between the atom and the reservoirl mode,

gl =
vAm

"
S "

2«0vlVD
1/2

el ·u, s2.5d

whereu andm are the unit vector and the absolute value of
the dipole moment of the atom. Also,V is the volume of the
sample and«0 is the Coulomb constant. Finally,e=m ·E /" is
the resonant Rabi frequency of the atom andE is the applied
laser field amplitude. The Hamiltonians2.1d presents two
types of radiation field-matter interaction: a coherent inter-
action sHALd between the external applied field and the
atomic system, and an incoherent interactionsHAFd between
the atom and the electromagnetic modes of the photonic
crystal reservoir. The latter describes the dissipation of
atomic deexcitation energy into the radiation fieldsconsist-
ing of a “bath” of quantum fluctuations of the photonic crys-
tal vacuumd.

The analysis is simplified under the assumption that the
photonic mode density, while discontinuous at specific fre-
quencies, is constant over the spectral regions surrounding
the dressed resonant frequenciesvL , vL−2V, and vL+2V
(whereV=fe2+DAL

2 /4g1/2 is the generalized Rabi frequency),
as shown in Fig. 4. However, as a result of the frequency-
dependent character of the photonic reservoir DOS, is is not
possible to write a master equation in the bare atomic pic-
ture. Consequently, we introduce an atomic basis change
from the bare atomic stateshu1l , u2lj to the dressed atomic

stateshu1̃l , u2̃lj, defined by

FIG. 3. A schematic description of the local density of states
(LDOS) generated by the structure presented in Figs. 1 and 2,
which illustrates the concept of band-edge quality factor. The spec-
tral range used here roughly corresponds to the middle of the gap in
Fig. 2, and the large dispersion mode(continuous curve in Fig. 2)
generates a relatively small contribution to the LDOS, while the
sharp frequency cutoff of the second guided mode(the dashed
curve in Fig. 2) gives rise to the apparent jump in the LDOS. The
band-edge quality factor is defined(analogously to the quality fac-
tor of a cavity) by the ratio between the central frequencyvC and
the frequencyDvC range over which the LDOS jumps to half of its
peak, i.e.,QB=vC/DvC.
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u1̃l = cu1l + su1l,

u2̃l = − su1l + cu1l. s2.6d

The corresponding dressed atomic operatorsR±, R3 are
related to the bare atomic operators by the relations

s− = csR3 + c2R− − s2R+,

s+ = csR3 − s2R− + c2R+,

s3 = sc2 − s2dR3 − 2cssR− + R+d, s2.7d

with s andc defined by

sin2sfd ; s2 =
1

2
F1 −

1

2

DAL

V
G ,

cos2sfd ; c2 =
1

2
F1 +

1

2

DAL

V
G . s2.8d

In the dressed basis, the total Hamiltonian is now given
by H=H0+HI, with

H0 = o
l

"Dlal
†al + "VR3,

HI = i"glfal
†scsR3 + c2R− − s2R+dg + H.c. s2.9d

Furthermore, we introduce the time-dependent interaction
picture generated by the unitary operator exps−iH0td, such
that the interaction Hamiltonian becomes

H̃Istd = i"glfal
†scsR3e

iDlt + c2R−eisDl−2Vdt− s2R+eisDl+2Vdtdg

+ H.c. s2.10d

The dressed atomic operators in this interaction picture ex-

hibit the time dependence given byR̃−std=R−s0de−2iVt,

R̃+std=R+s0de2iVt, and R̃zstd=R3s0d. Hereafter, we drop the

tilde on the interaction picture operators. Formally, the influ-
ence of the driving field on the atom-radiation interaction is
embedded in the memory functions

G0st − t8d = o
l

gl
2e−iDlst−t8d,

G±st − t8d = o
l

gl
2e−isDl72Vdst−t8d, s2.11d

which, in turn, are determined by the radiation field density
of states. For a broadband, smoothly varying density of states
(as in ordinary vacuum), the dependence of the memory
functions on the external field can be ignored andG0st− t8d
=G±st− t8d<sg /2ddst− t8d. However, the density of states of
the photonic crystals exhibits band-edge and other Van Hove
singularities. In systems with fast variations of the density of
states in the spectral range given byhvL−2V ,vL+2Vj
(shown in Fig. 4), the distinctive memory functions intro-
duced in Eq.(2.11) lead to qualitatively different behavior
from ordinary vacuum.

We consider that the atomic system is driven by a
“strong” s10 nW–1mWd (focused into a submicron wave-
guide channel) [7], such that the dressed frequenciesvL,
vL−2V, andvL+2V are pushed away from the DOS discon-
tinuities, even though the original atomic transition may co-
incide with a discontinuity. The “strong-field” assumption
simplifies the analysis by ensuring that the Mollow spectral
components are well separated and the overlap between them
is negligible. In this case, the spectral components of the
scattered spectrum will experience very different densities of
states and the memory functions in the Markov approxima-
tion are given by G0st− t8d=sg0/2ddst− t8d ,G±st− t8d
=sg± /2ddst− t8d [8]. The spontaneous emission decay rates
g0=2polgl

2dsvl−vLd ,g±=2polgl
2dsvl−vL72Vd are pro-

portional to the density of modes at dressed-state resonant
frequencies.

Under these conditions, the usual formalism of open sys-
tems [16] can be employed to obtain the reduced master
equation describing the evolution of the atomic system. In
order to obtain a more realistic picture, we assume that, in
addition to the radiative coupling of the atomic system to the
electromagnetic reservoir of the photonic crystal, the atomic
system interacts with a nonradiative reservoir that describes
additional dephasing interactions. These may arise from scat-
tering of phonons(if quantum dots are embedded in the solid
part of a photonic crystal) or from interatomic collisions(if
“cold” atoms are trapped in the voids of the dielectric struc-
ture). The dephasing is characterized by a phenomenological
decay rategp=1/T2

nr. We assume that the radiative and the
dephasing reservoirs are statistically independent, such that
we can evaluate separately their contributions to the master
equation describing the temporal evolution of the atomic sys-
tem. We also consider the interaction between the atomic
system and the reservoirs to be turned on att=0 (i.e., ini-
tially, there are no correlations between the system and the
reservoir) and make the Born approximation[16] (in which
we discard terms containing contribution higher than second
order in the atomic system-reservoir interaction). In the in-

FIG. 4. Relevant frequencies and frequency scales in the case of
a steplike density of states.

M. FLORESCU AND S. JOHN PHYSICAL REVIEW A69, 053810(2004)

053810-4



teraction picture, the evolution of the atomic system is de-
scribed by the following reduced master equation[16]:

F ] r̃std
] t

G
rad

= −
1

"2E
0

t

dt8trRh†H̃SRstd,fH̃SRst8d,r̃st8dR0g‡j.

s2.12d

Here,r̃std is the reduced density operator of the atomic sys-
tem sobtained after summation over the reservoir degrees of
freedom has been performedd. HSRstd represents a generic
interaction Hamiltonian between the atomic system and the
reservoirfin our analysis,HSR is given by Eq.s2.10dg. R0 is
the initial density operator of the photonic reservoirsthe res-
ervoir state is assumed to be virtually unchanged by the its
coupling to the atomic systemd, which, for simplicity, is con-
sidered to be the vacuum state. The modal density of states
depicted in Fig. 4 allows us to make a simplifying Markov
approximation, in which we replacer̃st8d by r̃std
in Eq. s2.12d.

The reduced master equation for the atomic system in the
dressed atomic basis is given by[17]

drstd
dt

= Udrstd
dt

U
sec

+ Udrstd
dt

U
±2V

+ Udrstd
dt

U
±4V

,

s2.13ad

where

U2
drstd

dt
U

sec
= − A0frstd − R3rstdR3g − A−fR11rstd + rstdR11

− 2R21rstdR12g − A+fR22rstd + rstdR22

− 2R12rstdR21g, s2.13bd

U2
drstd

dt
U

±2V

= cs e−2iVths2g0fR12rstd − R3rstdR12g

+ c2g0fR12rstdR3 + rstdR12g − c2g+fR3rstdR12

− rstdR12g+ s2g−fR12rstd − R12rstdR3gj + H.c.,

s2.13cd

U2
drstd

dt
U

±4V

= c2s2e4iVtsg− + g+dR12rstdR12 + H.c.,

s2.13dd

with A0=g0c
2s2+gpsc2s2d2, A−=g−s4+4gpc

2s2, and A+

=g+c4+4gpc
2s2. In deriving Eq. (2.13), we have assumed

that the spontaneous decay rates experienced by the spectral
components of the scattered radiation are proportional to the
density of modes at the dressed-state transition frequencies
vL ,vL±2V (g0 and g±, respectively), and we have isolated
the fast oscillating terms at frequencies ±2V, ±4V. More-
over, we have neglected the small energy shifts caused by
atom-reservoir interaction.

Using the master equation, Eq.(2.13), the expectation val-
ues of atomic operators obey the following equations of mo-
tion:

d

dt
kR21stdl = −

4A0 + A− + A+

2
kR21stdl + csFc2g+

2

− s2g−

2
Ge−2iVtkR3stdl+ csFc2g+

2
+ s2g−

2

+ g0Ge−2iVt − c2s2Fg−

2
+

g+

2
Ge−4iVtkR12stdl,

s2.14ad

d

dt
kR3stdl = − fA− + A+gkR3stdl + fA− + A+g+ g0csfc2

− s2ge−2iVtkR12stdl + g0csfc2 − s2ge2iVtkR21stdl.

s2.14bd

For “strong” external laser fields(as defined above) or
large detuningsse or DAL@g0,±d, the atoms undergo many
stimulated emission and absorption processes before sponta-
neously emitting a photon. In this case, the terms in Eq.
(2.14) that oscillate at the frequencies ±2V and ±4V will
average to zero on the characteristic atomic time scale. In the
secular approximation, we neglect the fast oscillating terms
at frequencies ±2V, ±4V. In this approximation, the equa-
tions of motion can be solved analytically, and the results are
cast in a very simple form:

kR±stdl = kR±s0dle−Gcoht, s2.15ad

kR3stdl = fkR3s0dl − kR3lstge−Gpopt + kR3lst. s2.15bd

Here we have introduced the decay rates for the atomic
populations and the atomic coherences, respectively[18]:

Gpop= A− + A+, s2.16ad

Gcoh=
4A0 + A− + A+

2
, s2.16bd

kR3lst =
A− − A+

A− + A+
, s2.16cd

and used the shorthand notationsR21=R+ andR12=R−.
As shown in Ref.[9], when the electromagnetic density of

states varies abruptly with the frequency, the population rate

of the dressed excited stateu2̃l may become smaller than its
depopulation rate. In this case, there are values of the Rabi

frequency for which the dressed stateu2̃l is less populated in
the steady-state regime. In turn, this determines an accumu-
lation of atomic population on the bare excited stateu2l, and
the atomic system becomes inverted. This occurs when

A+ . A− ⇒ g+c4 . g−s4. s2.17d

The atomic switching threshold is obtained from the equa-
tion A+=A−. The resulting threshold Rabi frequency can be
expressed as

RESONANCE FLUORESCENCE IN PHOTONIC BAND GAP… PHYSICAL REVIEW A 69, 053810(2004)

053810-5



ethr

uDALu
=

Î4g+g−

Îg+ − Îg−

. s2.18d

Remarkably, the threshold Rabi frequency does not depend
on the decay rateg0, nor on the dephasing rategp.

In this Markov approximation[9], the magnitude of inver-
sion is smaller than in the non-Markovian treatment[8], and
the threshold laser intensity required is greater. Also, the
switching threshold is not sharply defined. On the other
hand, sharpness and magnitude of atomic switching can be
greatly enhanced[7,9], if the single atom is replaced by a
collection of sN@1d identical atoms, all confined to a cubic
wavelength.

III. FLUORESCENCE SPECTRUM NEAR A PHOTONIC
BAND EDGE

A. The scattered radiation spectrum

In this section, we evaluate the fluorescence spectrum of
the atomic system. The steady-state spectrum radiated by the
driven atomic system is defined as

Ssvd = qlim
t→`

ReFE
0

`

e−isv−vLdtkE−st + tdE+stddtlG ,

s3.1d

where

E+std = io
k,l
Î "vk

2e0V
ek,lak,lstd

=
i

2e0V
e−ivLto

k,l
vkek,lsek,l ·d21d

3E
0

t

dt8s12st8desvk−vLdst−t8d. s3.2d

E±std(E−std=fE−stdg†) are the positive and negative frequency
component operators of the scattered electric fieldf20g, and
q is a constant containing geometric and atomic factorsf21g.
In Eq. s3.2d ak,lsak,l

† d is the annihilationscreationd operator
of a reservoir mode with wave vectork and polarizationl,
ek,l is the polarization of this mode,vk corresponds to an
arbitrary dispersion relation, andd21 is the dipole moment
of the atomic transition. In the ordinary vacuum case
fvskd=ckg, the positive and negative frequency compo-
nents of the scattered electric field become proportional to
the atomic dipole operators,s±std. However, in the case of
a photonic crystal, the atomic dipole moment has compo-
nents which encounter different photonic density of state,
and, implicitly, have different radiative ratesf20g
sg0,g−,g+d. In particular,

s− ; s12std = csR3e
−ivLt − s2R12e

−isvL−2Vdt+ c2R21e
−isvL+2Vdt.

s3.3d

As a result, the operator of the scattered electric field has the
form

E+std = AFÎg0

2
csR3std +Îg−

2
c2e−2iVtR12std

−Îg+

2
s2e2iVtR21stdG , s3.4ad

E−std = fE−stdg†, s3.4bd

whereA is a frequency-independent constant.
In the presence of realistic nonradiative dephasing, the

off-diagonal steady-state elements of the density operator
vanish. The scattered radiation spectrum may then be sepa-
rated into elastic and inelastic components

Ssvd = Selsvd + Sinsvd, s3.5d

where

Selsvd = qg0c
2s2 ReFE

0

`

dt e−isv−vLdtkR3stdls
2G , s3.6d

and

Sinsvd = S0svd + S−svd + S+svd, s3.7d

with

S0svd = qg0c
2s2 ReFE

0

`

dt e−isv−vLdtkR3stdsR3 − kR3lsdlsG ,

s3.8ad

S−svd = qg−s4 ReFE
0

`

dt e−isv−vL+2VdtkR12stdR21lsG ,

s3.8bd

S+svd = qg+c4 ReFE
0

`

dt e−isv−vL−2VdtkR21stdR12lsG .

s3.8cd

Here the indexs indicates averages over the steady-state dis-
tribution, and the atomic operators without argument refer to
the t=0 values.

We assume that the photonic DOS surrounding the
dressed state frequenciesvL−2V ,vL ,vL+2V is smoothly
varying(Markov model). In this case, we utilize the quantum
regression theorem[22] to evaluate the correlation functions
kO1stdO2ls, for O1 and O2 arbitrary atomic operators. The
quantum regression theorem facilitates the evaluation of two-
time averages by using equations that have the same struc-
ture as the ones obeyed by one-time operator averages. The
two-operator products appearing in the spectrum[Eqs.(3.8)]
are then given by[compare with Eq.(2.15a)]

kR±stdR7ls = kR±R7lse
−Gcoht, s3.9d

kR3stdsR3 − kR3lsdls = kR3sR3 − kR3lsdlse
−Gpopt, s3.10d

with Gpop,coh given by Eq.s2.16ad. Performing the time inte-
gral in Eq.s3.8d yields
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Selsvd =
qp

2
g0c

2s2f1 − 4p2p1gdsv − vLd, s3.11ad

S0svd = 2qpg0c
2s2p2p1

Gpop

Gpop
2 + fv − vLg2 , s3.11bd

S−svd =
qp

2
g−s4p1

Gcoh

Gcoh
2 + fv − svL − 2Vdg2 , s3.11cd

S+svd =
qp

2
g+c4p2

Gcoh

Gcoh
2 + fv − svL + 2Vdg2 ,

s3.11dd

where we introduced the shorthand notationsp2=kR21R12ls

=kR22ls andp1=kR12R21ls=kR11ls. The inelastic scattered ra-
diation exhibits a Mollow spectrum, with three bands, cen-
tered at the frequenciesvL ,vL−2V ,andvL+2V. The dis-
tinction from ordinary vacuum is found in the details of the
peak heights and widths.

In the sharply colored vacuum of a photonic crystal, the
spectral characteristics of the scattered radiation change con-
siderably. While maintaining the three-peaked structure, the
heights and the widths of the spectral components are
changed from their free space values. In the absence of the
phonon mediated dephasing, the symmetry of the Mollow
spectrum is preserved, despite the asymmetry of the under-
lying density of states.

This spectral symmetry is consistent with the detailed bal-
ance condition(valid in the absence of the nonradiative
dephasing mechanisms), which states that

p1G1→2 = p2G2→1, s3.12d

where p1 and p2 denote the stationary populations of the
dressed lower and upper states, respectively.G1→2 andG2→1

are the transition rates between dressed statesu1̃l→ u2̃l and

u2̃l→ u1̃l, respectively. They are given by

G1→2 = g−uk2̃us+u1̃lu2 = g−s4, s3.13ad

G2→1 = g+uk1̃us+u2̃lu2 = g+c4. s3.13bd

In the absence of dipolar dephasingsgp/g+=0d, the equilib-
rium dressed-state populations[Eqs.(2.16a)] are given by

p2 =
g−s4

g−s4 + g+c4 , s3.14ad

p1 =
g+c4

g−s4 + g+c4 , s3.14bd

and the detailed balance condition, Eq.(3.12), is verified.
The weight of a sideband is given by the number of photons
emitted per second in this line, which, in turn, is determined
by the product between the population of the specific atomic
state and the corresponding transition probability. The de-
tailed balance condition[Eq. (3.12)] expresses the fact that

the sidebands have the same spectral weight. The left side-
band is determined by transitions originating from the

dressed stateu1̃l, and has a spectral weight ofp1G1→2,
whereas the right sideband appears as a result of transition

from the dressed stateu1̃l, and has a spectral weight of
p2G2→1. It follows from Eq. (3.12) that in the absence of
other(nonradiative) dephasing mechanisms, the spectrum of
the scattered radiation is symmetrical regardless of the fre-
quency dependence of the photonic reservoir density of
states.

On the other hand, spectral asymmetry arises in the pres-
ence of nonradiative dephasing[18]. This breakdown of the
detailed balance condition can be associated with the nonra-
diative redistribution of system energy among different states
caused by the interaction with an additional external reser-
voir. In this case, the system(atom ^ driving field ^ photo-
nic reservoir) becomes an open system. Dipolar dephasing
can transfer the atom from a dressed state to another dressed
state without the emission of a photon. This process results
in a redistribution of the population among different dressed
states, which, in turn, affects the relative magnitude of the
spectral components of the emitted radiation. In the presence
of dipolar dephasing, the weight of the left sideband is given
by

WvL−2V = p1G1→2 = g−s4 g+c4 + 4gpc
2s2

g+s4 + g+c4 + 8gpc
2s2 ,

s3.15d

whereas the weight of the right sideband is now given by

WvL+2V = p2G2→1 = g+c4 g−s4 + 4gpc
2s2

g+s4 + g+c4 + 8gpc
2s2 .

s3.16d

Clearly, the relative weight of the sideband components can
be controlled by variations in the driving field intensity. For
example, the right sideband weight becomes larger than the
weight of its left counterpartsWvL+2V.WvL−2Vd for Rabi
frequencies for whichg+c4.g−s4. This is precisely the in-
version threshold condition investigated in Ref.f9g. For
negative detunings of the atomic frequencysDAL,0d and
below the threshold,e,ethr fsee Eq.s2.18dg, the weight of
the left sideband is larger than its right counterpartsabove-
threshold behavior is the mirror image of below-threshold
behaviord. This influence of the dipolar dephasing on the
relative weight of the spectral components is presented in
Figs. 5 and 6. We also note that for ordinary vacuum, for
negative detunings, the weight of the left sideband is always
larger than the weight of the right sidebandssince in this case
g+c4.g−s4, for any value ofed.

We now discuss the specific influence of the photonic
DOS discontinuity on the spectral characteristics of the ra-
diation emitted by the atomic system. In Fig. 7, we plot the
peak height of the central Mollow component as a function
of the Rabi frequencye / uDALu and the jump in the photonic
DOS g−/g+, for negative detuningsDAL, and no dipolar
dephasing in the system. We obtain that, instead of the
monotonic saturation of the spectral intensity with the ap-

RESONANCE FLUORESCENCE IN PHOTONIC BAND GAP… PHYSICAL REVIEW A 69, 053810(2004)

053810-7



plied laser field obtained in the ordinary vacuum case, the
switching effect in a photonic crystal is accompanied by a
resonance like behavior in the central Mollow line(more
pronounced for small ratiosg−/g+). Also, while the central
component is enhanced in the immediate vicinity of the
switching threshold, the sidebands are strongly suppressed.
This characteristic feature of the switching threshold appears
also in an exact multiphoton treatment of resonance fluores-
cence in colored vacuum[17,19]. The dependence of the
widths of the spectral components,Gpop,coh, on the decay
constant ratiog−/g+ can also be inferred from Eq.(2.16a).
All of the spectral components exhibit a slight narrowing for
large jumps in the photonic density of states. Finally, we
remark that the nonradiative dephasing has a deleterious in-
fluence on the Mollow spectrum, by strongly reducing the
heights and increasing the widths of the individual
components.

B. Photon antibunching

The measurements of photon correlation functions have
become a major tool in quantum optics and the spectroscopy
of single-quantum systems[23]. The second-order correla-
tion function of the light scattered from the resonant atom
gives the probability of detecting two photons with a tempo-
ral separation oft [16], and is defined by

Gs2dstd ~ kEs−ds0dEs−dstdEs+dstdEs+ds0dls. s3.17d

The normalized version of this correlation function is the
degree of second-order coherence of the scattered field,

gs2dstd =
Gs2dstd

lim
t→`

Gs2dstd
. s3.18d

FIG. 5. Scattered radiation spectrum as a
function of the detuning frequency,D=v−vL (in
units of g+), for different values of the Rabi fre-
quency in the presence of dipolar dephasing. All
Rabi frequencies used here are below the thresh-
old value, which, for the specific choice of the
parameters used in this figure, is«thr /DAL=0.35.
The atomic system is negatively detuned from the
laser field frequency,uDALu /g+=3, and g−/g+

=0.01. The dipolar dephasing rate isgp/g+=0.1.

FIG. 6. Scattered radiation spectrum in the
presence of dipolar dephasing, as a function of
the detuning frequency,D=v−vL (in units of
g+), for different values of the Rabi frequency.
All Rabi frequencies used here are above the
threshold value, which, for the specific choice of
the parameters used in this figure, isethr /DAL

=0.35. The atomic system is negatively detuned
from the laser field frequencyuDALu /g+=3, and
g−/g+=0.01. The dipolar dephasing rate is
gp/g+=0.1. The inset shows an expanded(on the
y axis) view of the sideband peak region.
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In this section, we evaluate the second-order correlation
function of the light scattered from the resonant atom
coupled to the radiation reservoir of a photonic crystal. In
principle, the evaluation of the degree of second-order coher-
ence(in the Markovian formalism used in this paper) does
not bring with it new theoretical difficulties nor does it re-
quire new approximations: it follows a similar path to the
evaluation of the spectral properties of the scattered light
presented in the preceding section. Since the off-diagonal
elements of the density matrix vanish in the stationary limit,
four operator products in Eq.(3.17) can be simplified using
the quantum regression theorem. We obtain after a tedious
but straightforward calculation(see the Appendix for details)

gs2dstd = 1 − 2g0e
−Gcohtcoss2Vtd

3
Îg−

Îg+c2s2 + g+c4p2 + g−s4p1

sg0
2 + g−g+dc2s2 + 2g0sg+c4p2 + g−s4p1d

.

s3.19d

In ordinary vacuum casesg0=g+=g−d and in the absence of
dipolar dephasing,gph=0, this reduces to

gs2dstd = 1 −e−Gcohtcoss2Vtd, s3.20d

where nowGcoh=g /ss1+2s2c2d. In the on-resonance case
sDAL=vL−vA=0d s2=c2=1/2, and we obtain the usual
strong-field limit of the second-order correlation function

gs2dstd = 1 −e−3/4gtcoss2«td. s3.21d

In Fig. 8, we plotgs2dstd for more general Rabi frequency,
e / uDALu, in the ordinary vacuum case, and in the absence of
dipolar dephasing. The second-order correlation function ex-
hibits the well-known antibunching character, limt→0g

s2dstd
=0 [16], which shows that the probability to simultaneously
detect two photons(time separationt=0) vanishes and the
photons tend to scatter individually. As shown in Fig. 9, for
small temporal separations, the probability to simultaneously
detect two photons may increase slightly in a photonic crys-

tal. Also, the second-order coherence function shows impor-
tant features, such as a larger amplitude of oscillations and a
slower rate of decay of the oscillatory behavior. In Fig. 10,
we show that the probability to simultaneously detect two
photons,gs2ds0d, increases with the density of states jump
g+/g−. While for ratios g−/g+ close to unity, the strong
fgs0ds0d=0g antibunching effect characterizing the ordinary
vacuum case is regained, for larger jumps in the photonic
DOS, the scattered photons exhibit a vanishingly small anti-
bunching character. In the limit of a full band gap in the
photonic DOS,g−/g+=0, the second-order coherence func-
tion reaches unity, i.e., the atom becomes a source of fully
coherent radiation(in this regime[20], the atom scatters pho-
tons only elastically, similar to a perfect classical scatterer).
A physical interpretation of these effects is provided below.
In the presence of dipolar dephasing(Fig. 11), while the
second-order correlation function maintains similar features,
important details emerge, such as a nontrivial dependence on
the applied field Rabi frequency.

The dressed-state diagram together with the spectral prop-
erties of the scattered radiation from the dressed system(ana-
lyzed in Sec. III) provide a simple explanation of the photon
antibunching effects described above. In the ordinary
vacuum case, the correlations between the emitted photons
(which give rise to the antibunching effect) have two equiva-
lent interpretations. In the bare picture, after the atom has
spontaneously emitted a photon, it takes a certain amount of
time to be reexcited(by the absorption of a laser field pho-
ton). Thus two spontaneous emission events are separated by
a finite time interval and the probability to detect simulta-
neously two photons is zero. In the dressed-state picture, the
correlations among emitted photons are apparent as well.

The bare(dressed) picture diagram is presented on the left
(right) panel of Fig. 12. We denote the state in which the
atom is in itsith statesi =1,2d and there aren photons in the
background by the ket vectorui ,nl. The splitting between the
statesu1,n+1l and u2,nl is given by the detuning between
the atomic and laser frequency,DAL=vA−vL. The states

FIG. 7. The peak heightHmax
0 of the central

component of the scattered spectrum(in arbitrary
units) as a function of the Rabi frequencye / uDALu
for uDALu /g+=3, sgnsDALd=−1, and the magni-
tude of the jump in the photonic DOS,g−/g+, in
the absence of the dipolar dephasing,gp/g+=0.
The atomic resonant frequency is detuned nega-
tively from the laser field frequencyDAL=vA

−vL,0.
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u1,n+1l and u2,nl are coupled by the laser field-atom inter-
action HamiltonianHAL, and we associate the interaction ma-
trix element with the Rabi frequencye : k2,nuHALu1,n+1l
<"«. Provided thatDAL and« are small compared tovL, we
can neglect all the couplings between different atom^ laser
manifolds, characterized by different number of photons in
the laser field,n (see left panel of Fig. 12).

If the “atom” is initially in the stateu2̃,nl on the left panel
of Fig. 12, then, it can only decay by the emission of a
“high” photon (at the frequencyvL+2V) or a “medium”
photon(at the frequencyvL). These processes place the atom

in either stateu1̃,n−1l or stateu2̃,n−1l. Assume now the

atom is in the stateu1̃,n−1l. Then it can decay by either
emitting a “low” photon(at the frequencyvL−2V) or a “me-
dium” photon. In the first case the atom will decay into the
stateu2̃,n−2l, whereas in the second case will decay in state

u1̃,n−2l. This is the dressed picture of the so called “radia-
tive cascade.” Clearly, between the emissions of two high
(low) photons, there must be an emission of a low(high)
photon. These correlations between high and low photons
have been investigated theoretically[18] and have been ob-
served experimentally[25]. In this picture, the only uncorre-
lated photons are the medium photons, which contribute to
the central(both elastic and inelastic) components of the

FIG. 8. Second-order correlation function
gs2dstd as a function of the scaled timet=g t and
the Rabi laser field frequency,e / uDALu, for ordi-
nary vacuum caseg−/g+=g0, and in the absence
of the dipolar dephasing,gp/g+=0. The atomic
resonant frequency is detuned negatively from
the laser field frequency,DAL=vA−vL,0.

FIG. 9. Second-order correlation function
gs2dstd as the function of the scaled timet=g+ t
and the Rabi laser field frequency,e / uDALu, for a
photonic crystal characterized byg−/g+=0.001,
g0/g+=1, and in the absence of the dipolar
dephasing,gp/g+=0. The atomic resonant fre-
quency is detuned negatively from the laser field
frequency,DAL=vA−vL,0.
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Mollow spectrum. In the presence of the photonic crystal, we
show that the decay rates involving low and high photons
suffer an important reduction. Therefore, the emission will
consist primarily of medium photons among which there are
no correlations(in the dressed emission cascade, there are no
restrictions about the subsequent emission of medium pho-
tons). In the case of a full photonic band gapsg−=0d, the
only possible emission process is that of medium photons
(the probability of high and low photon emission vanishes if
g−=0). Therefore, in this case, there are no correlations be-
tween the emitted photons[20] andgs2ds0d=1.

C. Collective atomic effects and ultrafast atomic switching

We consider a collection ofN identical two-level atomic
systems with a transition frequency near a discontinuous
change in the electromagnetic DOS coherently driven by an

external laser field. We assume the atoms are(i) confined to
a volume smaller than the cube of the radiation wavelength
or (ii ) placed in a lattice of nearly equivalent positions in a
photonic crystal. Consequently, the atoms experience the
same field amplitude(Dicke model). We also assume that the
atom-laser field coupling is strong compared to any direct
dipole-dipole interaction between atoms.

In Ref. [7] it was shown that, for large jumps in the pho-
tonic DOS, the atomic ensemble exhibits collective switch-
ing and atomic inversion without fluctuations. The width of
the switching region is of orderOs1/Nd. This implies that for
a large number of atoms, the switching effect is extremely
sudden(i.e., the required modulation in the intensity of the
external driving field is very small).

The spectral properties of the scattered radiation from the
atomic ensemble can be obtained analogously to that of the
single atom. In the Heisenberg equation of motion approach,

FIG. 10. Second-order correlation function
gs2ds0d as a function of the Rabi laser field fre-
quency, e / uDALu, in the absence of the dipolar
dephasing,gp/g+=0, for different magnitudes of
the jump in the photonic DOS. The atomic reso-
nant frequency is detuned negatively from the la-
ser field frequency,DAL=vA−vL,0.

FIG. 11. Second-order correlation function
gs2ds0d as a function of the Rabi laser field fre-
quency,e / uDALu, in the presence of the dipolar
dephasing,gp/g+=0.2, for different magnitudes
of the jump in the photonic DOS. The atomic
resonant frequency is detuned negatively from
the laser field frequency,DAL=vA−vL,0.
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the time rate of change of any product ofk collective atomic
operators involves products ofk+1 atomic operators. This
leads to a hierarchy of equations that contain an ever-
increasing number of atomic operators. In order to solve this
system of equations for the operator expectation values, one
can either assume a relatively small number of atoms in the
ensemble and deal with it numerically, or introduce a suitable
factorization scheme(mean-field approximation) for the
product of atomic operators[24]. Both approaches have their
own merits and drawbacks. The numerical approach can be
used to investigate the whole parameter space of the prob-
lem, but is limited to a relative small number of atoms. In the
approach based on decorrelation schemes, the number of at-
oms can be arbitrary large, but the range of parameters is
limited to the domain of validity of the mean-field approxi-
mation. In this section, we use a relatively simple decorrela-
tion scheme, suggested by Compagno and Persico[24]. In a
natural generalization of the single-atom resonance fluores-
cence problem, the reduced master equation that governs the
evolution of the atomic collection is given by

drstd
dt

= Udrstd
dt

U
sec

+ Udrstd
dt

U
±2V

+ Udrstd
dt

U
±4V

,

s3.22ad

with

2F ] r

] t
G

sec

= A0fR3rR3 − R3
2rg + A−fR21rR12 − R12R21rg

+ A+fR12rR21 − R21R12rg + H.c., s3.22bd

2F ] r

] t
G

±2V

= cs e−2iVths2g0fR12rstd − R3rstdR12g

+ c2g0fR12rstdR3 + rstdR12g − c2g+fR3rstdR12

− rstdR12g+ s2g−fR12rstd − R12rstdR3gj + H.c.,

s3.22cd

2F ] r

] t
G

±4V

= c2s2 e4iVtsg− + g+dR12rstdR12 + H.c.

s3.22dd

The master equation(3.22) yields the following equations
of motion for the scaled atomic operatorsr ij ;Rij /N si , j
=1,2d ,andr3;R3/N,

2kṙ21stdl ; 2TrF ] rstd
] t

r21G = −
4A0 + A+ + A−

4
kr21stdl

+ N
A+ − A−

2
khr3std,r21stdjl s3.23ad

2kṙ3stdl ; 2TrF ] rstd
] t

r3G =
A+ + A−

2
kr3stdl + NsA+ − A−d

3khr21std,r12stdjl=
A+ + A−

2
kr3stdl + NsA+ − A−d

3fkr3std2l − NsN + 2dg, s3.23bd

wherehA,Bj denotes the anticommutator of the operatorsA
and B. In the single-atom casesN=1d ,hr3std ,r21stdj
=0,hr21std ,r12stdj=1, etc., but forN.1, the hierarchy of
equations needs to be closed by a factorization scheme.

The steady-state behavior of the collective atomic vari-
ables was analyzed in Refs.[7,9]. As in the single-atom case,
for large deviations of the photonic mode density between
the components of the scattered radiation spectrum(Mollow
spectrum), the inversion in the atomic population occurs at
low threshold. Unlike the single-atom case, for a large num-
ber of atoms in the cubic wavelength(or otherwise identi-
cally placed atoms), the collective switching from the ground
state and the excited state becomes very sharp even within
the Markov approximation. In particular,N-atom collective
switching occurs over a very narrow range(of order 1/N) of
intensities of the external laser field. Under certain condi-
tions, the excited atoms exhibit strong sub-Poissonian statis-
tics and the switching speed exhibits a collective enhance-
ment proportional toN. The average number of atoms in the
excited dressed state is given by[7]

knl =
sN + 1djN+1

jN+1 − 1
−

j

j − 1
, s3.24d

wherej;A−/A+.
We start by analyzing the dynamics of the atomic opera-

tors in the immediate vicinity of the threshold intensity. For
e=ethr, we haveA+=A−, and the equations of motion become

2kṙ21stdl = −
4A0 + A+ + A−

4
kr21stdl, s3.25ad

2kṙ3stdl =
A+ + A−

2
kr3stdl. s3.25bd

The equations of motion for the dressed operators(3.25) are
essentially linear and decoupled from each other. They admit
a simple solution

FIG. 12. Bare atom and dressed atom states diagram.
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kr21stdl = kr21s0dle−Gcoht, s3.26d

kr3stdl = kr3s0dle−Gpopt, s3.27d

where Gcoh,pop are the single-atom widths of the spectral
components calculated in Sec. IIIfsee Eq.s2.16adg. In this
case, the dressed-atom collective variables are damped to
zero on time scales corresponding to the single-atom sponta-
neous decay constants. The response time scale of the col-
lective atomic systemsgiven by the inverse of the decay rates
Gcoh,popd is the same as in the single-atom case. For atomic
transitions in the optical regime, this is of the order of nano-
seconds. Using the quantum regression theorem and the pro-
cedure developed in Sec. IIIssingle-atom cased, Eqs.s3.25d
yield the scattered spectrum fromN-atoms:

SsNdsvd < N2Ssvd, s3.28d

where Ssvd is the single-atom spectrum calculated in Sec.
III. The N2 factor arises from the 1/N scaling of the collec-
tive atomic operators. At the threshold intensity, the collec-
tive scattered spectrum consists of the three usual Mollow
lines with widths Gcoh

sNd =Gcoh ssideband componentsd and
Gpop

sNd =Gpop scentral componentd. We conclude that in the
threshold regime the shape of the spectrum remains un-
changed from the single-atom case. However, the scat-
tered intensity scales asN2.

We now investigate the scattered spectrum outside the
threshold regime. In this case,A+ÞA− and the solution of
Eqs.(3.23a) will strongly depend on the number of atoms. In
order to proceed, we use a relatively simple decoupling
scheme[24], which corresponds to the approximation

khr3,r ijjl = 2kr3lskr ijl, s3.29d

where thek ls denotes steady-state expectation values, and
i , j =1,2. For simplicity, we concentrate on the sideband
spectra. The equation of motion forr21 is now given by

2kṙ21stdl = − F4A0 + A+ + A−

4
− N

A+ + A−

2
kr3lsGkr21stdl.

s3.30d

Here, we use the steady-state solution for the collective
atomic inversion operator evaluated in the preceding section,
kr3ls=2knl /N−1.

The width of the sideband components of the scattered
spectrum is then given by

Gcoh
sNd = Gcoh+ N sA+ − A−dkr3ls <

N→`

N sA+ − A−dkr3ls.

s3.31d

In contrast to the threshold regime, the sidebands are now
considerably broadened, with widths proportional to the
number of atoms. The sideband contributions to the scattered
spectrum are given by

S−
sNdsvd ~ kR12R21lsg− s4 Gcoh

sNd

sGcoh
sNdd2 + fv − svL − 2Vdg2 ,

s3.32ad

S+
sNdsvd ~ kR21R12lsg+c4 Gcoh

sNd

sGcoh
sNdd2 + fv − svL + 2Vdg2 .

s3.32bd

Using the steady-state solution of the master equation(3.22),
we obtain

kR12R21ls = sN − knldsknl + 1d, s3.33ad

kR21R12ls = knlsN − knl + 1d, s3.33bd

where the atomic population inversionn is given by Eq.
(3.24). The collective response time of the active medium to
a secondary pump pulse is inversely proportional to the num-
ber of atoms. This suggests that, for appropriate concentra-
tions of active atoms, the atomic switching could take place
on sub-picosecond time scales, rather than the nanosecond
time scale of a single atom.

IV. ABSORPTION AND GAIN SPECTRUM OF A WEAK
PROBE BEAM

A. Single-atom optical susceptibility

In this section, we consider that, in addition to the strong
driving laser field, the atomic system is probed by a second
laser field. The probe field is assumed to be weak so as not to
disturb the dressed state of the atomic system. The linear
susceptibility is given in terms of a field correlation function
evaluated in the absence of the probe field[18,26,27]:

xsvd = iAE
0

`

kfE+std,E−gls eivtdt, s4.1d

where A is a normalization constant, the indexs indicates
that the average is evaluated in the steady-state limit, and the
operatorsE± fgiven by Eq.s3.4dg correspond to the positive
and negative frequency components of the scattered electric
field ssimilar to the scattered spectrum calculations presented
in Sec. III A and Ref.f20g, we define the linear susceptibility
in terms of the field correlation functiond. In the strong-field
limit, it can be shownfusing Eq.s4.1d and the fact that the
off-diagonal elements of the density matrix vanish in the
stationary limitg that the central component ofxsvd at the
frequencyvL disappears from the absorption spectrum. The
probe field “probes” the dressed transitionsspresented on the
right panel of Fig. 12d, and the contribution of a given tran-
sition, say between the statesi and j , is proportional tosp j

−pidG ji . Here,pi,j denote the populations on thei , j states
andG ji is the probability of the transitioni → j . In general the
absorption spectrum wouldssimilar to the scattered spec-
trumd consist of three components at the Mollow compo-
nents,vL, vL±2V. The central line contains contributions

from the transitionsu1̃,nl→ u1̃,n−1l, u2̃,nl→ u2̃,n−1l, and
so forth. However, in the case of large number of photons
slarge ed, the dressed diagram becomes periodic, i.e., the

statesuĩ ,nl and uĩ ,n−1l have roughly the same population.
As a result, the central component of the absorption signal
sproportional to the population difference between these
statesd vanishes in this limit. The linear susceptibility has
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two well separated components, at the frequenciesvL±2V
f21g,

xsvd = xs+dsvd + xs−dsvd. s4.2d

Using Eq.s3.4d, these components are given by

xs+dsvd = iAg+c4E
0

`

kfR12std,R21gsleifv−svL+2Vdgtdt,

s4.3ad

xs−dsvd = iAg−s4E
0

`

kfR21std,R12gsleifv−svL−2Vdgtdt.

s4.3bd

The correlation function present in Eq.(4.3) is then evalu-
ated using the quantum regression theorem in a manner
analogous to that used to derive Eq.(3.6). We obtain

fR21std,R12g = fR21,R12g e−Gcoht, s4.4ad

fR12std,R21g = fR12,R21g e−Gcoht. s4.4bd

Here, for simplicity we have omitted the zero-time argument
of the atomic operatorsRk;Rks0d. Finally, the real and
imaginary parts of components of the linear susceptibility
xsvd are cast in the form

xs+d
R svd = A g+c4sp2 − p1d

v − svL + 2Vd
fv − svL + 2Vdg2 + Gcoh

2 ,

s4.5ad

xs−d
R svd = A g−s4sp1 − p2d

v − svL − 2Vd
fv − svL − 2Vdg2 + Gcoh

2 ,

s4.5bd

xs+d
I svd = − A g+c4sp2 − p1d

Gcoh

fv − svL + 2Vdg2 + Gcoh
2 ,

s4.5cd

xs−d
I svd = − A g−s4sp1 − p2d

Gcoh

fv − svL − 2Vdg2 + Gcoh
2 .

s4.5dd

The spectrum experienced by the probe beam(given by
the imaginary part of the linear susceptibility) consists of one
absorptive sideband and one amplifying sideband[note the
sign difference between the components in Eqs.(4.5)]. The
discontinuous photonic DOS of the photonic crystal opens a
possibility of controlling the absorptive or amplifying char-
acter of the components through small variations in the in-
tensity of the driving laser field. The main difference be-
tween the fluorescence spectrum and the absorption spectrum
[as seen from Eqs.(3.11) and (4.5)] is that the absorption
signal is proportional to the difference of the population be-
tween the dressed levels involved in the transition, whereas
the fluorescent signal depends only on the population of the
initial state of the transition(see also Refs.[18,28]). Clearly,
the character of the absorption signal components is deter-
mined by the sign of the dressed atomic inversion, which, in
turn, is determined by the intensity of the driving field.

In both free space and the photonic crystal, one sideband
is absorptive and the other sideband is amplifying(negative
absorption). However, in the photonic crystal(as opposed to
ordinary vacuum), the magnitude of the amplifying compo-
nent is comparable to that of the absorbing component and is
readily detectable in a pump-probe spectroscopy experiment.
The spectral separation of the two components is propor-
tional to the intensity of the driving field and their relative
magnitude can be optimized by adjusting the driving field
intensity. In particular, as shown in Fig. 13, the absorptive or
amplifying character of the sidebands becomes extremely

FIG. 13. The imaginary part of the linear sus-
ceptibility of the probe beam(absorption spec-
trum) as a function of the detuning of the probe
beam frequency from the driving laser field fre-
quency v−vL, for g−/g+=0.001, g0/g+=1,
gp/g+=0.2, uDALu /g+=10. The two curves corre-
spond to different Rabi frequencies,e / uDALu, one
of them (continuous curve) below the inversion
threshold se / uDALu=0.176d, and the other one
(dashed curve) above the threshold intensity
se / uDALu=0.190d. The atomic resonant frequency
is detuned negatively from the laser field fre-
quency, sgnsDALd=−1, and, for this choice of pa-
rameters, the inversion threshold isethr / uDALu
=0.183.
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sensitive to variations in the driving laser field near the
switching threshold intensityethr.

The frequency-dependent character of the photonic reser-
voir facilitates the inversion of the atomic population(in the
bare picture) and the switching of the linear response(of the
dressed system) to a weak probe laser field.

The predicted gain spectrum can be optimized by appro-
priate choices of the control parameters. To facilitate this
optimization process, we introduce the peak height to width
ratio value as a measure of the efficiency of the amplification
process

A± ;
WvL±2V

abs

Gcoh
, s4.6d

whereWvL±2V
abs are the weights of the sideband spectral com-

ponents fWvL+2V
abs =sp1−p2dG1→2 and WvL−2V

abs =sp2

−p1dG2→1g and Gs±d=Gcoh is their width. As we show in
Fig. 14, the peak height to width ratio of the components
of the probe beam absorption spectrumsa measure of the
efficiency of the amplificationd reaches a maximum of
24% sthe negative minima in Fig. 14d, about four times
larger than the ordinary vacuum valuef28g. In Fig. 15, we
compare the widths of the absorption spectrum sidebands
as a function of the Rabi driving field laser frequency for
the photonic crystal and ordinary vacuum. Clearly, the
sideband components of the spectrum are appreciably nar-
rowed in the presence of a strong jump in the DOS of the
photonic crystal.

B. Collective atomic effects and gain broadening

The evaluation of the absorption spectrum of a probe
beam for a collection ofN atoms follows closely the deriva-
tion of the fluorescence spectrum presented in Sec. III C. We
obtain for the sideband components

xs−d
sN,Rdsvd ~ kfR12R21,R21R12glsg− s4

3
Gcoh

sNd

sGcoh
sNdd2 + fv − svL − 2Vdg2 , s4.7ad

xs+d
sN,Rdsvd ~ kfR21R12,R12R21glsg+c4

3
Gcoh

sNd

sGcoh
sNdd2 + fv − svL + 2Vdg2 , s4.7bd

with

kfR12R21,R21R12gls = − s2knl − Nd = − kR3l, s4.8d

FIG. 14. The peak height to width ratio[Eq. (4.6)] of the com-
ponents of the absorption spectrum of the probe field as a function
of the Rabi frequency of the driving fielde / uDALu, for g−/g+

=0.001,g0/g+=0.001, and in the absence of the dipolar dephasing,
gp/g+=0. The atomic resonant frequency is detuned negatively
from the laser field frequency,DAL=vA−vL,0.

FIG. 15. The widths of the components of the
absorption spectrum of the probe field in the pres-
ence of a photonic crystal,Gcoh

PC, and in free space
Gcoh

FS , as a function of the Rabi frequency of the
driving laser field e / uDALu, for g−/g+=0.001,
g0/g+=0.001, and in the absence of the dipolar
dephasing,gp/g+=0. The atomic resonant fre-
quency is detuned negatively from the laser field
frequency,DAL=vA−vL,0.
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kfR21R12,R12R21gls = 2knl − N = kR3l. s4.9d

Clearly, the switching and amplification of the probe field
exhibit collective enhancement. The gain spectrum is broad-
ened by a factor ofN relative to the single-atom spectral
width, and the driving field modulation required to switch
the system from the absorbing to the amplifying regime is
reduced by a factor ofN fthe width of the transition region is
of orderOs1/Ndg.

V. SWITCHING IN AN INHOMOGENEOUSLY
BROADENED ATOMIC SYSTEM

The application of the population inversion effect to an
all-optical switch or transistor device will invariably require
an ensemble of atoms(quantum dots) interacting resonantly
with coherent laser fields[9]. Such an ensemble will involve
spatial distribution(and size distribution of quantum dots) of
resonators which experience different local environments or
which have different inherent resonance frequencies. This
will lead to an inhomogeneous broadening of the spectrum
that may be very useful if the optical device is intended to
have a gain spectrum that covers a telecommunication band
of 60 nm. On the other hand, random detunings of the atomic
resonance from the photonic band edge(discontinuity in the
density of states) may wash out the overall switching effect,
since individual atomic switching is very sensitive to the
detuning. In this paper, we discuss in detail the effects of
inhomogeneous line broadening on the probe beam spectrum
and switching effect. We describe how further electromag-
netic density of states engineering within a PBG(combined
with photobleaching techniques to remove those absorbers
that degrade the switching effect) can be effectively utilized
to both offset the deleterious effects of inhomogeneous
broadening and provide an enlarged all-optical switching
bandwidth. We explicitly show that, under certain conditions,
the amplification and the switching of a probe beam can be
fully recovered even in the presence of a broad distribution
of atomic resonance frequencies(Fig. 16).

A. Weak inhomogeneous broadening

Consider an active medium consisting of a gas of trapped
atoms in the void regions of a PBG crystal. Such an en-
semble will exhibit a small amount of inhomogeneous broad-
ening caused by the Doppler effect. For the sodium 3S1/2
→3P3/2 transition, in free space, at room temperature, and
for a density ofN=631014 atoms/cm3, typical experimen-
tal quantities are[29] g=0.031 GHz,DAL=1.5 GHz, andV
=2.6 GHz. The width of the Doppler broadened atomic line
shape isDvI =7.14 GHzsDvI <5DALd. For the correspond-
ing cooled atomic system, we useDvI <0.1−uDALu. In Fig.
17, we plot the absorption spectrum as a function of the
probe field frequency for inhomogeneous broadening in the
rangeDvI / uDALu=0.1−0.9. Clearly, not only does the ampli-
fying (absorbing) component become wider, but it also de-
velops an absorbing(amplifying) wing, whose relative
weight increases withDvI. This wing can be easily traced to
the threshold condition for the atomic inversion. In the pres-
ence of random detuningsDAL, the effective threshold for

inversion (ethr / uDALu) varies randomly from atom to atom.
Therefore, instead of a sharp amplifying(absorbing) peak,
we obtain a smeared feature. Moreover, some members of
the ensemble may contribute oppositely from others, chang-
ing their character from amplifying(absorbing) to absorbing
(amplifying). As clearly seen in Fig. 18, this mutual cancel-
lation effect is less severe away from the switching threshold
intensity of the driving field, and the absorption/gain features
are simply broadened. However cold atom systems may be
impractical for many important applications.

To conclude, small amounts of inhomogeneous broaden-
ing may improve the switching characteristics by enlarging
the spectral range over which the switching occurs. Practical
applications, however, may require systems that operate at or
above room temperature. In general, this leads to stronger
broadening as discussed below.

B. Vacuum engineering in the case of
strong inhomogeneous broadening

If the active medium consists of quantum dot layers in a
planar waveguide sandwiched inside a 3D PBG crystal, in-
homogeneous broadening arising from the size distribution
of dots may be considerably larger than for cold, trapped,
atoms. In this case, a simple step discontinuity in the photon
density of states is generally insufficient to realize an overall
switching effect on the probe susceptibility. As a simple es-
timate, the inhomogeneous broadening present in ensemble
of quantum dots may be no smaller than few percent of the
central frequency, i.e., on the order of tens of THz(covering
roughly 75 nm of bandwidth). In this case, additional engi-
neering of the vacuum density of states is required to recap-
ture a transistor function. We discuss below the required pho-
tonic crystal density of states architectures for this situation.

C. Density of states engineering
within the photonic band gap

By suitable engineering of the photonic DOS, it is pos-
sible to quench those parts of the inhomogeneous broadened

FIG. 16. Weakly inhomogeneously broadened Mollow spectrum
near a steplike discontinuity in the electromagnetic density of states.
We assume that the density of states is constant over spectral ranges
larger than the inhomogeneous linewidthDvI, surrounding the Mol-
low triplet frequenciesvL, vL±2V.
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atomic distribution which hinder the overall switching effect.
The ideal photonic DOS is presented in Fig. 19. The upper
diagram depicts the simple steplike DOS(the staircase
curve) used in the absence of the inhomogeneous broaden-
ing. The solid curves depict the evolution of the Mollow
sideband peaks for a particular quantum dot, as its deviation
DvA from the center of the inhomogeneous distribution is
increased. This evolution is simply given by:

vL ± 2V = vL ± 2Îe2 +
sDAL + DvAd2

4
. s5.1d

We note that whenDAL and DvA have opposite signs, the
trajectory of the sideband undergoes a reversal at
vL±2VMIN.

The engineered photonic DOS presented in the lower part
of Fig. 19 provides a filter effect on the very broad inhomo-
geneous atomic distribution. It introduces a new frequency
scaleVMIN that represents the effective width of the active
ensemble that contributes to amplification. Atoms with reso-
nant frequencies farther away from the center of the distri-
bution than this given spectral distance cannot couple to ei-
ther the driving field or the probe field. This scale is
determined by the robustness of the switching process with
respect to detuningDvA. As an example, for the parameters
used in the preceding section, the switching effect survives
for DvA up to 20% of the threshold intensity valueethr. Ac-
cordingly, we chooseVMIN=0.2 ethr. This atomic quenching
effect relies crucially on the ability to microfabricate the ap-

FIG. 17. The imaginary part of the linear sus-
ceptibility of the probe beam(absorption spec-
trum) as a function of the detuning of the probe
beam frequencyv with respect to the driving la-
ser field frequencyvL, for g−/g+=0.001,g0/g+

=1, e / uDALu=0.178 and in the absence of the pho-
non mediated dephasingsgp/g+=0d. The width
of the inhomogeneous line distribution varies
from DvI / uDALu=0 (no inhomogeneous broaden-
ing) for the solid curve toDvI / uDALu=0.9 for the
double-dot-dashed curve. The center of the
atomic frequency distribution is detuned nega-
tively from the laser field frequency,DAL=vA

−vL,0.

FIG. 18. The imaginary part of the linear sus-
ceptibility of the probe beam(absorption spec-
trum) as a function of the detuning of the probe-
pump detuning frequency,v−vL and the driving
field Rabi frequency,e / uDALu, for g−/g+=0.001,
g0/g+=1, e / uDALu=0.178, andgp/g+=0. The in-
homogeneous frequency distribution has a width
DvI / uDALu=0.1 and is centered below the laser
field frequency,DAL=vA−vL,0.
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propriate microcavity architecture within the 3D PBG mate-
rial.

We present below a more detailed picture of our fre-
quency selective atomic quenching mechanism. We denote
the center of the inhomogeneous distribution byv̄A and its

detuning from the pump laser field frequency byD̄AL; v̄A
−vL. We have

vA = v̄A + DvA, s5.2ad

DAL = D̄AL + DvA, s5.2bd

V̄ ;Îe2 +
D̄2

AL

4
, s5.2cd

V =Îe2 +
DAL

2

4
=Îe2 +

sD̄AL + DvAd2

4
. s5.2dd

Figure 20 presents the evolution of the Mollow peaks
(thick dashed lines), and the atomic frequency(measured
from the laser field frequency) for a specific atom as its de-
tuning (from the center of the inhomogeneous distribution)
increases(along they axis). The shaded vertical regions cor-
respond to the engineered DOS presented in Fig. 19(the left
region corresponding to a decay constantg−, and the central
and right regions corresponding to a decay constantg+).
Starting from the center of the inhomogeneous distribution,
vA=v̄A, and increasing negative detuningsvA,v̄Ad, the left
and right sidebands diverge from the central component ac-
cording to Eq. (5.2a). For small positive detunings
svA.v̄Ad, the sidebands initially converge towards the cen-
tral component, up to a minimum spectral distance equal to
e, but then diverge for larger positive detunings. For a spe-
cific atom to contribute to the amplification process, its rel-
evant Mollow components must lie in a region of nonzero
density of states and thereby couple to pump and probe
fields. This occurs in the horizontal shaded regions in Fig.
20. In the lower shaded region, the atomic detuningsDALd is
negative, as required for switching. In the upper shaded re-
gion, the atomic detuning is positivesDAL.0d, and no
switching occurs. These atoms only cause absorption of the
probe beam and tend to offset the gain provided by the atoms
in the lower shaded region. This cancellation effect can be
alleviated by means of an incoherent pump that “bleaches”
the positively detuned atoms in this upper region.

FIG. 19. The engineered photonic DOS proposed to quench the
unfavorable members of the inhomogeneous quantum dot distribu-
tion. The upper panel shows the steplike density of states(the stair-
case curve) used in the absence of inhomogeneous broadening. The
dot-arrow curves depict the evolution of the Mollow sideband peaks
for a particular quantum dot as its deviationDvA from the center of
the inhomogeneous distribution is increased. The lower panel de-
picts a simple engineered photonic DOS, which quenches dots de-
tuned byuDvAu.VMIN. This quenching prevents the smearing out
of the switching effect.

FIG. 20. The evolution of the atomic fre-
quency detuning with respect to the laser field
frequency(the thick continuous curve) and the
spectral features(the left, central, and right com-
ponents of the Mollow spectrum) (the thick
dashed lines) as a function of the position of the
atomic frequency with respect to the central fre-
quency of the inhomogeneous distribution. To
simplify the interpretation, the plot is rotated by
90°. The numerical values correspond to the pa-
rameters used above(with a negative detuning of
the central frequency of the inhomogeneous
broadening with respect to the laser field fre-
quency). The driving field Rabi frequency ise

=ethr and D̄AL=5 ethr.
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D. Band gap engineering and incoherent pumping

Incoherent pumping can be done using a third density of
states band that bleaches the positively detuned atoms whose
lower Mollow sideband(in the absence of bleaching) would
contribute only to absorption within the probe spectrum. The
pump profile needed is presented in Fig. 21. Detailed calcu-
lations show that the absorption of the probe field(Fig. 22) is
almost identical to the one presented in Fig. 17, and the
incoherent pump rate required is aboutr+=50 g+.

VI. CONCLUSION

We have analyzed the spectral response properties of two-
level atoms embedded in a photonic crystal and driven by an

external laser field. This may have relevance to all-optical
transistor action. As a function of the intensity of the pump
(control) laser, the active region of a photonic material(the
atomic system) switches from an absorptive medium(the
atom spends most of its time in the ground state) to a gain
medium (higher probability to find the atom in its excited
state). The ability to invert a two-level atomic system in a
photonic crystal, a phenomenon strictly forbidden in free
space, is brought about by the additional degree of freedom
present in the resonance fluorescence problem as a result of
the structured radiation reservoir. The frequency dependence
of the dressed-atom spectral features causes a “symmetry”
breaking of the decay processes in the atomic relaxation cas-
cade presented in Fig. 12. This is similar to the case of a

FIG. 21. Same as Fig. 20, but now we intro-
duce a colored incoherent pump that saturates
some members of the atomic distribution. The
frequency profile of the pump rate is represented
by the criss-crossed region(centered on the right
sideband component of the Mollow spectrum),
and its presence has as consequence the elimina-
tion of the upper permitted region in Fig. 20.

FIG. 22. The full recovery of the amplifica-
tion effect in the presence of inhomogeneous
broadening by band gap engineering and incoher-
ent pump saturation mechanisms. The dashed
curve represents the signal in the absence of in-
homogeneous broadening. The continuous curve
is obtained using the photonic DOS and the inco-
herent pump presented in Fig. 21. The width of
the allowed passbands of the DOS isDvPB

<ethr=0.183uDALu, and their magnitude is given
by g−/g+=0.001, g−/g+=1. The incoherent
pump is characterized byDvP=DvPB<ethr,
r+/g+=50, r−/g+=0.
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three-levelatom in free space, where by introducing a spe-
cific structure in the atomic system(different decay rates for
different relaxation channels), one breaks the “symmetry” of
field assisted excitation and relaxation processes which char-
acterizes a two-level atomic system, and makes possible the
presence of positive atomic inversion[30].

We have investigated the spectral properties of the scat-
tered radiation by the atomic system. We showed that in the
presence of a colored vacuum, the sideband components of
the scattered intensity can be strongly reduced and slightly
narrowed. The dipolar dephasing influence on the scattered
spectrum depends on the magnitude of the driving field in-
tensity. For intensities below the switching threshold, the
relative weight of the right sideband component is reduced,
whereas for intensities above the threshold value, the dipolar
dephasing has a more deleterious influence on the left side-
band. We have also shown that a weak second probe laser
beam experiences a substantial differential gain when the
pump(control) laser intensity is near the switching threshold.
This switching of the response of a probe beam(at a given
frequency) to a small change in the pump(control) beam is
absent in ordinary vacuum, and may offer a new approach to
all-optical transistor action in photonic crystals. The switch-
ing power and the response time of an all-optical transistor
can be dramatically decreased by including collective atomic
effects (analyzed in Sec. III C) and non-Markovian effects
[8]. We have shown that the correlations between the pho-
tons emitted by the atom are determined by the relative val-
ues of the photonic DOS at the dressed atomic frequencies.
The degree of “antibunching” of the scattered photons can be
controlled by the driving field intensity and may provide
valuable information about the local environment encoun-
tered by the atom.

Collective atomic effects may further enhance the optical
switching effect in photonic crystals. One enhancement is in
the sharpness of the switching threshold. ForN-atom switch-
ing, the change in the pump intensity required to pass
through threshold scales linearly with 1/N. The spectral
properties of the radiation emitted by the atomic ensemble
also differ from those of a single atom. While in the imme-
diate neighborhood of the threshold intensity the collective
effects are manifest only in theN2 scaling of the intensity
spectrum(reminiscent of superradiance), above and below
this critical region the gain spectrum widens(linearly with
N). This correspondingly reduces the time scales for the re-
sponse of the atomic system to external fields. We have
shown that the sharpness of the switching threshold and the
response time of an all-optical transistor can be dramatically
reduced by including collective effects. This also provides a
natural mechanism of broadening of the gain spectrum. As
argued in the Introduction, such an all-optical device may
have very low power requirements, with holding power in
the nonowalt range and switching power of about 500 pico-
watt, and may achieve sub-picosecond switching times.

The application of the population inversion effect to an
all-optical switch or transistor device will invariably require
an active medium(ensemble of atoms or quantum dots),
placed in a photonic crystal and interacting resonantly with
coherent laser fields. Such ensembles exhibit a random spa-
tial distribution of resonators, which experience different lo-

cal environments or have different inherent resonance fre-
quencies. We have analyzed the effects of inhomogeneous
atomic line broadening on the all-optical switching effect.
For small amounts of inhomogeneous broadening and away
from the threshold intensity, we find that the amplifying
spectral range simply becomes broader. For a large amount
of inhomogeneous broadening, it is necessary to select a nar-
row spectral range around the central frequency of the dis-
tribution, in order to retain the amplification and the switch-
ing phenomena. This can be done through carefully
engineered waveguide modes, which enable quenching of
those parts of the atomic spectrum that degrade the amplifi-
cation process. The development of appropriate photonic
crystal architectures for “engineering the vacuum” in this
manner may prove very rewarding for basic science and
practical applications.

APPENDIX: EVALUATION OF QUANTUM DEGREE OF
SECOND-ORDER OPTICAL COHERENCE

The evaluation of the second correlation function(3.17),

Gs2dstd ~ kEs−ds0dEs−dstdEs+dstdEs+ds0dls, sA1d

follows an analogous path to the evaluation of the scattered
spectrum. It proceeds by using the electric-field operators,
Eq. s3.2d, and the temporal dependence of the dressed-atomic
operators found in Sec. II,

kR±stdl = kR±s0dle−Gcoht, sA2ad

kR3stdl = fkR3s0dl − kR3lstge−Gcoht + kR3lst, sA2bd

whereGpop,coh are given by Eq.(2.16a). The explicit evalu-
ation of Eq. (A1) involves 81 terms, but only 18 of them
have a nonvanishing contribution(using the fact that the off-
diagonal terms vanish in the long-time limit). We write the
general result in the form

Gs2dstd ~ o
k=1

18

Tk
s4d, sA3d

whereTk
s4d is a generic four-atomic-operator average gener-

ated by the electric-field product appearing in Eq.sA1d. For
simplicity, we present here the evaluation of only four of
such terms. For instance,

T1
s4d = g0

2s4c4kR3s0dR3stdR3stdR3s0dls, sA4ad

T2
s4d = g0g+s2c6kR3s0dR+stdR−stdR3s0dls, sA4bd

T4
s4d = − g0

Îg−
Îg+s4c4kR3s0dR3stdR−stdR+s0dlse

−2iVt,

sA4cd

T7
s4d = g0g+s2c6kR3s0dR+stdR3stdR−s0dlse

+2iVt. sA4dd

By collapsing the two-operator product to single operators,
we obtain

T1
s4d = g0

2s4c4kR3s0dR3s0dls, sA5ad
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T2
s4d = g0g+s2c6kR3s0dR22R3s0dls, sA5bd

T4
s4d = g0

Îg−
Îg+s4c4kR3s0dR−stdR+s0dlse

−2iVt, sA5cd

T7
s4d = − g0g+s2c6kR3s0dR+stdR−s0dls e+2iVt. sA5dd

The temporal evolution of the four-operator product in
Eqs. (A5) is then found using the quantum regression theo-
rem, and(after calculating the steady-state averages,k ls), we
obtain

T1
s4d = g0

2s4c4, sA6ad

T2
s4d = g0g+s2c6 p1, sA6bd

T4
s4d = g0

Îg−
Îg+s4c4 p1 e−Gcoht e−2iVt, sA6cd

T7
s4d = − g0g+s2c6 p1 e−Gcohte+2iVt. sA6dd

Here,p1, p2 are the steady-state dressed-atomic populations
for the ground and excited states, respectively. The rest of 14

terms in Eq.(A3) are evaluated in a similar fashion, and we
obtain

Gs2dstd ~ sg0
2 + g−g+ds4c4 + 2g0s

2c2sg+c4p2+ g−s4p1d

− 2g0s
2c2sÎg−

Îg+s2c2+ g+c4p2

+ g−s4p1de−Gcohtcoss2Vtd,

lim
t→`

Gs2dstd ~ sg0
2 + g−g+ds4c4 + 2g0s

2c2sg+c4p2+ g−s4p1d,

sA7d

such that the degree of second-order coherence function be-
comes

gs2dstd = 1 − 2g0 e−Gcohtcoss2Vtd

3
Îg−

Îg+c2s2 + g+c4p2 + g−s4p1

sg0
2 + g−g+dc2s2 + 2g0sg+c4p2 + g−s4p1d

.

sA8d
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