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Acoustic modes of locally resonant phononic crystals:
Comparison with frequency-dependent mass models
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Locally resonant acoustic materials were proposed to control sound using structures with feature size orders of
magnitude smaller than the acoustic wavelength in air. We analytically derive the effective, frequency-dependent
mass densities of resonant oscillators consisting of a heavy mass within a light shell, embedded in foam, in
two dimensions, using a rigid core-shell approximation. The effective mass is expressible in closed form by
elementary functions, enabling a mapping of the low-frequency physics to a simple one-dimensional model
involving a point mass harmonically coupled within a box. The acoustic band structure of a two-dimensional
square lattice of these oscillators is evaluated in the effective, frequency-dependent mass density model and
compared with the exact solution. For the out-of-plane oscillation within this two-dimensional phononic crystal,
the nonlinear eigenvalue equation resulting from the frequency-dependent density is solved with the Cutting
Surface Method to yield the acoustic band structure. This agrees with the exact band structure obtained by
finite element method calculations within 2% numerical error. For the in-plane oscillations involving internal
translations or rotations within the core-shell resonators, the one-dimensional mass-in-a-box model recaptures
the exact acoustic modes at only certain high-symmetry points of the two-dimensional Brillouin zone. The
description of more complex resonances within acoustic metamaterials requires a fundamental generalization
of current effective mass models.
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I. INTRODUCTION

Considerable research has been focused on the behav-
ior of electromagnetic waves in photonic crystals designed
with photonic band gaps, within which light can be localized
[1,2]. These periodic dielectric structures exhibit a variety
of unprecedented physical properties. An excited atom in
the band gap of a photonic crystal is locked in the excited
state by inhibition of photon spontaneous emission to form
an atom-photon bound state [3]. Even in the absence of a
photonic band gap, “slow-light” modes enable novel light-
trapping effects, with applications such as high-efficiency
solar energy harvesting in thin films [4]. In the case of acous-
tic materials, localization of high-frequency phonons can be
realized in a disordered elastic medium [5,6]. Motivated by
the advances in photonic crystals, attention has turned to
acoustic crystals consisting of periodic arrays of elastic ma-
terials designed to exhibit phononic band gaps [7,8]. Early
theoretical work focused on the existence of acoustic band
gaps in specific two-dimensional arrays of elastic materials.
The pioneering work of Kushwaha consisted of a square
lattice of parallel circular nickel rods embedded in an alu-
minum background [7]. Experimentally, absolute ultrasonic
band gaps were confirmed in various millimeter-sized, two-
dimensional, periodic, binary composites, including a square
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lattice of mercury circular cylinders in an aluminum alloy
matrix [9] and a triangular lattice of steel circular cylinders
in an epoxy matrix [10]. Acoustic band gaps over the au-
dible frequency range were achieved with bulky meter-sized
composites [11]. Conventional composite of elastic materials
suffer from the requirement for very large feature sizes to
be effective in controlling sound over the audible frequency
range. The wavelength of the standard 440 Hz tuning pitch is
about 0.78 m in air and 14 m in solid steel [12]. Conventional
phononic crystals, sensitive to the audible frequency range,
typically consist of repeating unit cells of size comparable
to the sound wavelength. This “scaling problem” presents an
impractical situation for many real-world applications.

To overcome the scaling problem, Liu et al. proposed lo-
cally resonant sonic materials composed of dense, stiff lead
balls coated by light, elastic, silicone rubber. Using a lattice
constant of only 1.55 cm, they achieved an acoustic band gap
in the audible range from 400 Hz to 600 Hz [13]. An analyti-
cal explanation was provided based on the local resonance and
a resulting negative effective mass density [14]. Subsequent
work extended the concept of locally resonant oscillators to
potential applications, such as acoustic cloaking [15], negative
refraction, and subdiffraction-limit resolution [16]. While the
idea of local resonance is valuable, the derivation of an ef-
fective frequency-dependent mass density by Liu et al. offers
little physical intuition and involves implicit inversion of four-
by-four matrices [14].

In this paper, we calculate the acoustic modes of a two-
dimensional locally resonant phononic crystal with a lattice
constant of 1 cm, consisting of a dense steel cylindrical core,
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encapsulated by a coaxial rigid cellulose cylindrical shell
and surrounded by soft open-cell foam. Open-cell foam is
commonly used for the control of sound in household and
industrial applications. Cellulose nitrate and stainless steel are
chosen as the inertial components of the resonators for the
ease of availability and machinability. This choice of materials
allows important features, such as band gaps and flat bands,
to appear at audible frequencies in a phononic crystal with
small, centimeter-sized lattice constant. Such features may
be useful for reflecting or absorbing sound in relatively thin
sheets. Moreover, these materials are less toxic than mercury
[9] and lead [13] described in previous literature.

In our two-dimensional structure (with translational invari-
ance in the axial direction), the transverse out-of-plane modes
are decoupled from the in-plane modes. As shown below, the
sub-wavelength out-of-plane acoustic band structure consists
of two bands in the audible frequency range, with the lower
band and upper band corresponding to in-phase and antiphase
translational motions, respectively, between the steel core and
the cellulose shell.

We derive a closed form, frequency-dependent, effective
mass model for the out-of-plane motion using a rigid core-
shell approximation (RCSA). The out-of-plane acoustic band
structure, obtained by solving a nonlinear eigenvalue equa-
tion, agrees (within 2% error) with the bands of the true
structure, obtained by finite element method. On the other
hand, the in-plane motion consists of six resonant modes,
associated with the in-phase and antiphase relative transla-
tions (in two orthogonal directions) and relative rotations
of the core and shell. For the in-plane acoustic band struc-
ture, the three in-phase and the three antiphase bands in
the audible frequency range are separated by an acoustic
band gap. The intricate coupling between the rotational and
translational resonances leads to insufficiency of the simple
frequency-dependent effective mass density model. A nontriv-
ial generalization of this model is required to account for the
in-plane acoustic band structure at all wave vectors.

We summarize, below, certain unique aspects of this
work. Unlike previous literature, our paper provides an exact
analytical treatment and derivation of the effective frequency-
dependent mass of the resonator by elastostatic analysis. We
apply the frequency-dependent, effective mass to calculate
the acoustic band structure with a powerful Cutting Surface
Method (CSM) [17]. This technique provides exact band
structure in the presence of frequency-dependent mass den-
sities and elastic parameters. We establish the effectiveness of
CSM to solve nonlinear eigenvalue problems in the context of
acoustics. We also resolve, in Appendix A, a long-standing
convergence issue [8,18,19] of plane wave expansions for
acoustic band structure calculations [20–22]. Our paper goes
beyond the rudimentary concept of a single frequency-
dependent, effective mass and reveals the requirement for
an independent frequency-dependent moment of inertia to
recapture phononic bands involving rotational modes of the
resonators. Our calculations provide physical insight into the
frequency range over which the frequency-dependent mass
model applies. This is connected to the elastostatic treat-
ment of the interior of each resonator, which breaks down
at high frequencies where wavelike deformations of a sin-
gle resonator may occur. Our paper precisely delineates the

circumstances under which the simple frequency-dependent
effective mass model fails both conceptually and numerically.
This occurs in the case of unit cells with multiple resonances
where one type of resonance can excite another type of res-
onance in a nearby unit cell. This is an essential backdrop
for future research to go beyond the simple effective mass
model. It lays the groundwork for a more fundamental phys-
ical picture that can encompass multiple resonant modes of a
individual resonators and their couplings to nearby resonators.

Our effective mass treatment is distinct from the previous
homogenization approaches. In conventional homogenization,
the effective mass densities are often empirically determined,
posteriori, assuming knowledge of the transmission spectrum
[13] or the acoustic band structure [19,23]. In contrast, our
effective masses are determined analytically by linear elas-
ticity, a priori. The acoustic band structure follows from
the frequency-dependent, effective mass by solving an un-
derlying nonlinear eigenvalue equation. Our effective masses
are expressible in terms of closed-form rational functions in
frequency, providing physical insights into the origin of the
local resonance and its precise frequency dependence. Unlike
conventional homogenization, where the entire composite is
approximated as an effective medium [19,23–26], in our ef-
fective mass models, only the local resonantor is replaced by
a frequency-dependent density.

This article is organized as follows. In Sec. II we review the
concept of frequency-dependent, effective mass with a simple
one-dimensional mass-in-a-box model. We also introduce our
centimeter-sized resonant unit composed of steel cores sur-
rounded by cellulose shells embedded in open-cell foam. This
is complemented with a brief discussion of linear elasticity,
plane wave expansion and numerical convergence. In Sec. III
we derive the three different frequency-dependent, effective
mass densities for out-of-plane oscillation and in-plane trans-
lational and rotational oscillations using our proposed RCSA.
In Sec. IV we apply our analytically derived, out-of-plane,
frequency-dependent, effective mass density, and solve the
associated nonlinear eigenvalue problem with the Cutting Sur-
face Method (CSM) [17]. We then compare the results of
the effective mass model with the band structure of the true
material obtained by finite element method. In Sec. V we dis-
cuss limitations of the simple frequency-dependent effective
density models arising from the coupling between in-plane
translational and rotational resonances. In Appendix A, we
discuss the convergence of acoustic plane wave expansions
in the presence of material discontinuities. In Appendix B,
algebraic details of the RCSA calculations of in-plane transla-
tional modes are presented. Similarly, in Appendix C, details
of the RCSA calculations of in-plane rotational modes are
provided.

II. MODEL OF A LOCALLY RESONANT
PHONONIC CRYSTAL

The concept of frequency-dependent, effective mass is out-
lined with a one-dimensional harmonic oscillator model of
a point mass within a rigid box [27]. The physical resonant
oscillator consists of a centimeter-sized unit composed of a
dense steel core, surrounded by soft open-cell foam encapsu-
lated by a stiff cellulose shell. In the effective mass picture,
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FIG. 1. A rigid box of mass, m1, subject to a harmonic force,
F (ω), is coupled to an interior point mass, m2, by a dissipative elastic
spring of spring constant k and damping parameter c.

this entire resonant unit is replaced by a unit with spatially
uniform, frequency-dependent mass density chosen to recap-
ture the oscillation modes of the true phononic crystal. The
plane wave expansion method for calculating acoustic band
structure is briefly reviewed for our system involving products
of Fourier series with complementary jump discontinuities.

A. One-dimensional mass-in-a-box model

The concept of dynamic effective mass density in a
spring-mass model to represent an elastic medium with local
resonances was introduced previously [27]. This concept was
applied to explain the almost complete reflection of sound at
frequencies where the effective dynamical mass is negative,
in membrane-type acoustic metamaterials [28]. We briefly
review the frequency-dependent mass model for a rigid box
of mass m1 with displacement x1, containing a point mass
m2 with displacement x2 held by a spring with stiffness con-
stant k and dissipation parameter c, responding to an external
harmonic force F (ω). The model is schematically shown in
Fig. 1. This response is governed by the equations of motion:

m1ẍ1 = F (ω) + k(x2 − x1) + c(ẋ2 − ẋ1), (1)

m2ẍ2 = k(x1 − x2) + c(ẋ1 − ẋ2). (2)

We show below that under the RCSA, the low-frequency dy-
namical response of the steel core and the cellulose shell in the
true resonant acoustic structure can be analytically mapped
to certain one-dimensional mass-in-a-box models. We then
delineate the range of acoustic modes where the simplified
frequency-dependent, effective mass models provide a faithful
representation of the true modes of the original phononic
crystal.

We introduce the natural frequency ω0 = √
k/m2 and

dimensionless damping ratio ξ = c/(2
√

km2). Under the ex-
ternal harmonic force, F (ω), both masses oscillate at the same
frequency ω. Using the equation of motion (2), the displace-
ment of the mass in the core is proportional to that of the box:

x2 =
[

ω2
0 − 2iξω0ω(

ω2
0 − ω2

) − 2iξω0ω

]
x1. (3)

For small damping (ξ � 1), at a frequency slightly above
the natural frequency (ω � ω0), the internal mass exhibits
large-amplitude, out-of-phase motion relative to the box in

FIG. 2. Nondissipative effective frequency-dependent mass in
Eq. (6) is schematically plotted. Note that the effective mass diverges
at ω = ω0, and is negative over the range ω0 < ω < ω∗.

which it is contained. The system of coupled differential equa-
tions could be simplified into a single variable equation by
substituting the proportionality equation (3) into the equation
of motion of the box (1):[

m1 + m2ω
2
0 − 2iξm2ω0ω(

ω2
0 − ω2

) − 2iξωω0

]
ẍ1 = F (ω). (4)

The coefficient of the second-time derivative of the displace-
ment could be interpreted as an effective, frequency-dependent
mass, m(e)

1 (ω):

m(e)
1 (ω) = m1 + m2ω

2
0 − 2iξm2ω0ω(

ω2
0 − ω2

) − 2iξωω0
, (5)

so that the equation of motion assumes the form of Newton’s
second law: m(e)

1 (ω)ẍ1 = F (ω). For small damping (ξ � 1),
at a frequency slightly above the natural frequency (ω � ω0),
the acceleration of the box may be opposite to the force. This
may be interpreted as a negative effective mass of the resonant
unit. For the time being, we consider nondissipative systems
(ξ = 0), and the effective mass simplifies to

m(e)
1 (ω) = m1 + m2ω

2
0

ω2
0 − ω2

. (6)

This is plotted as a function of frequency in Fig. 2 with salient
features outlined below.

(1) In the low-frequency limit, the two masses oscillate
in phase with the same amplitude, so that the effective mass
becomes the total mass of the resonant unit:

x2(ω → 0) = lim
ω→0

(
ω2

0

ω2
0 − ω2

)
x1 = x1, (7)

m(e)
1 (ω → 0) = lim

ω→0
m1 + m2ω

2
0

ω2
0 − ω2

= m1 + m2. (8)

(2) The effective mass has a simple pole at the natural
frequency ω = ω0 of the internal mass. The effective mass
is positive over the range 0 < ω < ω0, and increases from the
total mass in the zero-frequency limit to infinity at the internal
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resonance frequency:

m(e)
1 (ω) = m1 +

(
m2ω

2
0

ω0 + ω

)
1

ω0 − ω
. (9)

(3) Setting m(e)
1 (ω∗) = 0, we obtain the frequency, ω∗, at

which the effective mass vanishes:

ω∗ =
√

k

m1
+ k

m2
=

√
k

mr
, (10)

where mr = (1/m1 + 1/m2)−1 is the reduced mass.
(4) The effective mass is negative over the range ω0 <

ω < ω∗, and is positive beyond the zero-density frequency
ω∗ < ω. When expressed in terms of the zero-density fre-
quency, the sign of the effective density is more readily
observed:

m(e)
1 (ω) = m1

(
1 + ω2

∗ − ω2
0

ω2
0 − ω2

)
. (11)

When the effective mass is negative, the box oscillates in
antiphase with the core mass, and the inertial response is
dominated by the core oscillating at a π -phase difference.
Wave propagation is inhibited over this frequency range. We
show below that this is associated with a phononic band gap.

(5) In the high-frequency limit, the effect of the core
mass m2 is negligible, and the effective mass asymptotically
approaches the mass of the shell. Physically, when the box
oscillates rapidly, the core mass remains almost stationary by
inertia:

m(e)
1 (ω → ∞) = lim

ω→∞ m1 + m2ω
2
0

ω2
0 − ω2

= m1. (12)

B. Linear elasticity

For each infinitesimal parcel of an elastic material at po-
sition r = (x1, x2, x3), the distortion is characterized by the
symmetric strain tensor εi j [29]:

εi j = 1

2

(
∂ui

∂x j
+ ∂u j

∂xi
+ ∂uk

∂xi

∂uk

∂x j

)
, (13)

where the displacement field is denoted by u = (u1, u2, u3).
Einstein summation convention, where repeated indices are
summed over, is assumed throughout this article. For small
displacement, the strain tensor is approximated by the lin-
earized form:

εi j = 1

2

(
∂ui

∂x j
+ ∂u j

∂xi

)
. (14)

Elastic restoring stress arises from the strain, and the gen-
eral linear relation between the stress tensor σi j and the strain
tensor εi j is given by

σi j = Ci jklεkl , (15)

where C is a fourth-order stiffness tensor with at most 21
independent material constants due to symmetries of the strain
and stress tensors. In isotropic linear elastic materials, there
are only two free material constants, namely, the Lamé coef-
ficient of bulk deformation λ associated with volume change,
and the Lamé coefficient of shear deformation μ associated

with lateral distortion. In this case, the constitutive relation
simplifies to [29]

σi j = (λδi jδkl + 2μδikδ jl )εkl = λεkkδi j + 2μεi j, (16)

where δi j is the Kronecker delta function.
The equation of motion of the elastic material of density ρ

is given by Newton’s second law:

ρ
∂2ui

∂t2
= ∂σi j

∂x j
. (17)

For the force per unit volume to be finite everywhere in the
material, the stress tensor σ must be continuous everywhere.
In the simple case of an isotropic linear elastic solid, using
Eqs. (16) and (17) the dynamical equation simplifies to

ρ
∂2ui

∂t2
= ∇ · (μ∇ui ) + ∇ ·

(
μ

∂u
∂xi

)
+ ∂

∂xi
(λ∇ · u). (18)

Here the elastic Lamé coefficients appear in the differential
operators, and these locally defined parameters could vary
with position, as in our case of elastic composites. Equation
(18) reveals that, while the elastic parameters and the strain
may be discontinuous across material boundaries, the product
stress tensor is continuous and differentiable everywhere for
a finite force to act on each infinitesimal parcel. In the case
of a homogeneous isotropic linear elastic solid, where the
material parameters do not depend on the position, the Lamé
coefficients could be factored out of the spatial derivatives to
yield the conventional elastic equation [8,29].

C. Resonant oscillator unit cell

We consider a phononic crystal consisting of circular steel
rods, arranged periodically in a square lattice of lattice con-
stant a = 1 cm. Each circular steel rod is coupled to a stiff
circular cellulose shell via open-cell foam. The background
is the same type of open-cell foam. The steel core, cellu-
lose shell, and interstitial foam fill φc = 20%, φs = 20%,
and φf = 30% by volume, respectively, so that the radius of
the circular steel rod R1 = a

√
φc/π ≈ 0.2523 cm, the inner

radius of the circular cellulose shell R2 = a
√

(φc + φf )/π ≈
0.3989 cm and the outer radius R3 = a

√
(φc + φf + φs)/π ≈

0.4720 cm. The material parameters of steel, cellulose, and
foam are listed in Table I. The unit cell is depicted in Fig. 3.

D. Plane wave expansion and convergence of products

In the original work by Kushwaha [7,8] and in subsequent
literature [18], the dynamical equation of an isotropic linear
elastic solid is commonly expressed in terms of the density ρ

and the longitudinal cl and transverse ct speeds of sound:

ρ
∂2ui

∂t2
= ∇ · (ρc2

t ∇ui
) + ∇ ·

(
ρc2

t

∂u
∂xi

)

+ ∂

∂xi

[(
ρc2

l − 2ρc2
t

)∇ · u
]
. (19)

The longitudinal and transverse speeds of sound are related to
the Lamé parameters through λ = ρc2

l − 2ρc2
t and μ = ρc2

t .
In photonics, the dielectric constant and the normal com-

ponent of the electric field contain a pair of complementary
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TABLE I. Tabulated are the density ρ, Lamé parameters of com-
pression λ, and shear deformation μ of the relevant elastic solids.
Mechanical data of steel are taken from sample number 11 from
the experimental collection of 20 samples of steel which show small
variations of 0.5%, 1.8%, and 0.9% in ρ, λ, and μ respectively [12].
Cellulose corresponds to cellulose nitrate thermoplastics commonly
used for ping-pong balls with excellent machinability [30]. Open-
cell foam refers to Type A foam containing 0.4 mm pores with 60
pores per inch manufactured by Foamex International Inc. [31] The
mechanical moduli show modest anisotropy ratio of 1.0:1.1:1.4. This
anisotropy is ignored as the foam is approximated by an isotropic
solid.

Material ρ (kg m−3) λ (Pa) μ (Pa)

Steel [12] 7940 1.075 × 1011 7.815 × 1010

Cellulose [30] 1350 1.21 × 109 5.19 × 108

Open-cell foam [31] 30 2.31 × 104 1.538 × 104

jump discontinuities, while the product electric displacement
is continuous across material boundaries. Direct application of
Fourier series in terms of electric field and dielectric constant
results in poor numerical convergence, whereas numerical
convergence is enhanced substantially by exploiting the con-
tinuity of the electric displacement [20,21,32]. In the case of
elasticity, from the constitutive relation (15), the strain tensor
ε and the stiffness tensor C contain a pair of complementary
jump discontinuities. The product stress tensor σ is continuous
across material boundary. Rapid numerical is achieved, when
the plane wave expansion scheme takes advantage of the con-
tinuity of the stress tensor. Instead of the dynamical equation
(19) in terms of the speeds of sound, we start from the dynam-

FIG. 3. A unit cell of a dense steel rod of radius R1 ≈ 0.2523 cm
surrounded by a concentric circular cellulose shell of inner radius
R2 ≈ 0.3989 cm and outer radius R3 ≈ 0.4720 cm with the intersti-
tial spaces filled with open-cell foam in a square lattice of lattice
constant a = 1 cm. The relevant material parameters are listed in
Table I.

ical equation (18) involving the Lamé parameters. The Lamé
parameters allow us to directly relate the strain and the stress
tensors and the continuity of the stress tensor enables rapid
numerical convergence. Algebraic details of the convergent
procedures, relevant to our specific two-dimensional structure,
are provided in Appendix A. In the remainder of this section,
the acoustic Bloch waves and the decoupling of the out-of-
plane mode from the in-plane modes are discussed.

By discrete translational symmetry, the displacement vec-
tor field u satisfies the Bloch theorem, which states that the
eigenfunction assumes the form of a plane wave modulated
by a periodic function:

u(r, t ) = exp(iK · r − iωKt )
∑

G

uK(G) exp(iG · r). (20)

Here K denotes the Bloch wave vector, G denotes a recip-
rocal lattice vector, uK(G) denotes the Fourier coefficient of
the underlying periodic function, and ωK denotes the angular
frequency. We refer to a combination of eigenvalue and eigen-
vector (ωK, uK(G)) as an eigensolution.

We decompose the displacement field: u = uxx̂ + uyŷ +
uzẑ. The z-axis is aligned with the axis of rotational symmetry
of the cylindrical steel core. The structure is translationally
invariant in the z-direction, so that spatial derivatives with
respect to z are null (∂/∂z = 0). The z-component of the
displacement field describes transverse out-of-plane oscilla-
tion, while the x- and y-components describe in-plane motion.
From Eq. (18), the dynamical equation of the out-of-plane
displacement uz reads

∂

∂x

(
μ

∂uz

∂x

)
+ ∂

∂y

(
μ

∂uz

∂y

)
+ ρω2uz = 0. (21)

When the Lamé parameter and the z-component of the
displacement field are decomposed into Fourier series, an
algebraic eigenvalue equation (A8) is obtained. The out-of-
plane eigenvalues ωK are called the out-of-plane bands when
plotted as a function of the Bloch wave vector K.

While the in-plane displacement is decoupled from the out-
of-plane displacement in Eq. (18), the x-component ux and the
y-component uy are intricately coupled:

∂

∂x

[
(λ + 2μ)

∂ux

∂x
+ λ

∂uy

∂y

]
+ ∂

∂y

[
μ

∂ux

∂y
+ μ

∂uy

∂x

]
+ ρω2ux

= 0, (22)

∂

∂x

[
μ

∂ux

∂y
+ μ

∂uy

∂x

]
+ ∂

∂y

[
λ

∂ux

∂x
+ (λ + 2μ)

∂uy

∂y

]
+ ρω2uy

= 0. (23)

When the Lamé parameters and the displacement field are
decomposed into Fourier series, an algebraic eigenvalue equa-
tion (A9) is obtained. These eigenvalue ωK describe the
in-plane bands.

III. ANALYTICAL RIGID CORE-SHELL APPROXIMATION

Our resonant unit is composed of a dense cylindrical steel
core, encapsulated by a stiff concentric cellulose shell, em-
bedded in soft open-cell foam. The stiff steel core and the
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FIG. 4. A resonant unit is composed of a dense steel rod of
radius R1 ≈ 0.2523 cm surrounded by a concentric stiff circular
cellulose shell of inner radius R2 ≈ 0.3989 cm and outer radius
R3 ≈ 0.4720 cm. The interstitial space is filled by elastic open-cell
foam. The rigid cellulose shell and the steel core are disturbed
from equilibrium with out-of-plane displacements Zs and Zc, in-plane
translations Xs and Xc, and in-plane rotations �s and �c, respectively.
The relevant material parameters are listed in Table I.

cellulose shell are approximated as rigid bodies. The in-
terstitial foam is approximated as isotropic elastic material,
governed by linear elastostatics. These approximations are
collectively referred to as the rigid core-shell approxima-
tion (RCSA). The resonant modes are categorized into three
types: (1) out-of-plane modes involving the relative transla-
tional motion of the rigid bodies in the axial direction, (2)
in-plane translational modes involving their in-plane relative
translations, and (3) in-plane rotational modes involving their
in-plane relative rotations. These three modes are schemati-
cally depicted in Fig. 4.

By RCSA, we analytically derive closed-form, algebraic
expressions for the frequency-dependent, effective mass den-
sities for the out-of-plane and the in-plane motions. Analogies
with the one-dimensional mass-in-a-box model are presented.
Uniqueness of the solutions to the elastostatic boundary value
problems, described in the subsequent subsections, are guar-
anteed by the finiteness of the total strain energy in the
bounded region [33]. It suffices, therefore, to find one elas-
tostatic equilibrium solution.

A. Out-of-plane resonance

In a two-dimensional phononic crystal with translation
invariance in the axial direction, the out-of-plane oscillation
is decoupled from the in-plane motion. The out-of-plane
motion in each unit cell exhibits a local resonance. The cel-
lulose shell and the steel core are elastically stiffer than the
open-cell foam. The stiff shell and core are effectively ap-
proximated as rigid bodies, while the interstitial foam acts
like an elastic spring. When the size of the resonant units is
much smaller than the elastic wavelength, wave phenomena
within each resonant unit can be neglected using an elas-
tostatic approximation. Under this RCSA, we demonstrate
how the out-of-plane motion is analytically mapped to the
one-dimensional mass-in-a-box model.

We denote the out-of-plane displacement of the rigid cel-
lulose shell by Zs, and that of the rigid steel core by Zc.
Physically, when the steel core is displaced relative to the
cellulose shell, elastic deformation of the open-cell foam pro-
vides a restoring force. We calculate this restoring force using
two-dimensional, linear elasticity.

In the absence of external body force, the out-of-plane
static displacement of the foam satisfies the Laplace equation.
By rotational symmetry, the general solution to the out-of-
plane displacement in cylindrical coordinates is

uz(r) =A0 + B0 ln s +
∞∑

n=1

(
Ansn + Bn

sn

)
[Cn cos(nφ)

+ Dn sin(nφ)], (24)

where s and φ are radial and angular coordinates within the
foam, and the constants An, Bn, Cn, and Dn are determined by
the boundary conditions:

uz(s = R1) = Zc, (25a)

uz(s = R2) = Zs. (25b)

Straightforward substitution and orthogonality of the angular
functions imply that only the n = 0 term survives:

A0 = Zc ln R2 − Zs ln R1

ln R2/R1
, (26a)

B0 = Zs − Zc

ln R2/R1
, (26b)

and An = Bn = 0 for all n � 1.
Essentially, RCSA allows us to drop the n �= 0 terms that

involve elastic deformation within the core and the shell.
While the out-of-plane displacement field satisfies the Laplace
equation, we show below in Sec. III B that the in-plane dis-
placement field is governed by a set of coupled second-order
differential equations. In this case, a solution different from
Eq. (24) is required. For the out-of-plane displacement, we
use the RCSA to write

u(r) = a(s)ẑ, (27)

where a(s) is twice differentiable function of radial distance
s, satisfying the following boundary conditions:

a(s = R1) = Zc, (28a)

a(s = R2) = Zs. (28b)

The only nonvanishing components of the symmetric strain
tensor ε are εzs and εsz:

εzs = εsz = 1

2

(
∂uz

∂s
+ ∂us

∂z

)
= 1

2

da

ds
. (29)

Using the generalized Hooke’s law for linear isotropic solids,
expressed in Eq. (16), we conclude that the only nonvanishing
components of the symmetric stress tensor σ are σzs and σsz:

σzs = σsz = 2μεsz = μ
da

ds
. (30)
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TABLE II. The equations of motion of the cellulose shell and the steel core (36) and (37) assume the same form as those in the mass-in-a-
box model in (1) and (2). The correspondence of each physical parameter is tabulated below.

Mass-in-a-box model Symbol Resonant unit Symbol

Mass of rigid box m1 Mass per unit length of cellulose shell ms

Mass of inner mass m2 Mass per unit length of steel core mc

Displacement of box x1 Out-of-plane displacement of cellulose shell Zs

Displacement of inner mass x2 Out-of-plane displacement of steel core Zc

Elastic spring constant k Elastic restoration of open-cell foam kz

Spring dissipation c Inelastic dissipation of open-cell foam 0

In the absence of an external body force, the stress tensor is
divergence-free, ∂σi j/∂xi = 0, so that

1

s

∂

∂s
(sσsz ) = 1

s

d

ds

(
sμ

da

ds

)
= 0. (31)

We identify the preceding Eq. (31) as the Laplace equation,
in cylindrical coordinates, within the foam region, for the
rotationally symmetric function a(s). Solving the Laplace
equation and imposing the boundary conditions (28a) and
(28b), we obtain

a(s) = A0 + B0 ln s, (32)

σzs = σsz = μB0

s
. (33)

Next, the force per unit length acting on the steel core, fc,z,
and that on the cellulose shell, fs,z, are determined from the
stress tensor:

fc,z =
∮

{s=R1}
σ · n̂ dl = 2πμB0ẑ, (34)

fs,z =
∮

{s=R2}
σ · n̂ dl = −2πμB0ẑ, (35)

where n̂ is the inward normal unit vector on the boundary of
the foam. Note that internal forces cancel fc,z + fs,z = 0, in
agreement with Newton’s third law.

The rigid body equations of motion of the cellulose shell
and the iron core are expressed in Newton’s second law:

msZ̈s = fz(ω) + kz(Zc − Zs), (36)

mcZ̈c = kz(Zs − Zc), (37)

where ms = πρc(R2
3 − R2

2) is the mass of the cellulose shell
per unit length, mc = πρsR2

1 is the mass of the steel core per
unit length, kz = 2πμ/(ln R2/R1) denotes the spring constant
per unit length, and fz(ω) is the z-component of a harmonic
force, acting on the cellulose shell, by the background foam,
due to the relative motion between adjacent resonant units in
the periodic structure.

In the one-dimensional mass-in-a-box model analogy, the
cellulose shell is identified with the rigid box subject to an
external force provided by the background open-cell foam.
The steel core acts as the inner mass. The interstitial open-cell
foam acts as the elastic spring. The equations of motion of
the cellulose shell in (36) and the steel core in (37) assume
the same form as those of the box in (1) and the inner mass
in (2). The correspondence of each physical parameter is
summarized in Table II.

Analogous to Eq. (11), the out-of-plane motion of the
resonant oscillator can be described by an effective frequency-
dependent density of the form

ρ(e)
z ( f ) = ρs

(
1 + f 2

∗,z − f 2
0,z

f 2
0,z − f 2

)
. (38)

Here ρs is the mass of the cellulose shell divided by the
volume occupied by the resonant unit:

ρs = πρc
(
R2

3 − R2
2

)
(φc + φf + φs)a2

≈ 385.7 kg m−3, (39)

f0,z (analogous to ω0 = √
k/m2) is the resonant frequency of

the oscillator at which the effective mass diverges:

f0,z = 1

2π

√
kz

mc
≈ 183.4 Hz, (40)

and f∗,z [analogous to ω∗ = √
k/mr in Eq. (10)] is the fre-

quency at which the effective mass density vanishes [ρ(e)
z ( f =

f∗,z ) = 0]:

f∗,z = 1

2π

[
kz

(
1

mc
+ 1

ms

)]1/2

≈ 481.2 Hz. (41)

Using this effective mass model, we anticipate a phononic
band gap for the out-of-plane modes over the frequency range
183.4 Hz < f < 481.2 Hz, because wave propagation is pro-
hibited in the negative effective density region where f0,z <

f < f∗,z.

B. In-plane translational resonance

We now consider the in-plane relative translation between
the rigid cellulose shell and the rigid steel core. Suppose the
cellulose shell and the steel core displace in the positive x-
direction by Xs and Xc, respectively. Elastic deformation of the
open-cell foam provides restoring forces, which we describe
using basic two-dimensional linear elasticity.

In the RCSA, the displacement profile of the open-cell
foam (R1 < s < R2) can be expressed as

u(r) = cs(s) cos φ ŝ + cφ (s) sin φ φ̂, (42)

where cr (s) and cφ (s) are twice differentiable functions of
radial distance, s. From u(s = R1/2) = Xc/sx̂ = Xc/s cos φ ŝ −
Xc/s sin φ φ̂, it follows that the functions cs(s) and cφ (s) satisfy

094304-7



KENNY L. S. YIP AND SAJEEV JOHN PHYSICAL REVIEW B 103, 094304 (2021)

TABLE III. The equations of motion of the cellulose shell and the steel core (44) and (45) assume the same form as those in the mass-in-
a-box model in Eqs. (1) and (2). The correspondence of each physical parameter is tabulated below.

Mass-in-a-box model Symbol Resonant unit Symbol

Mass of rigid box m1 Mass per unit length of cellulose shell ms

Mass of inner mass m2 Mass per unit length of steel core mc

Displacement of box x1 In-plane displacement of cellulose shell Xs

Displacement of inner mass x2 In-plane displacement of steel core Xc

Elastic spring constant k Elastic restoration of open-cell foam kx

Spring dissipation c Inelastic dissipation of open-cell foam 0

the following boundary conditions:

cs(s = R1) = Xc, (43a)

cs(s = R2) = Xs, (43b)

cφ (s = R1) = −Xc, (43c)

cφ (s = R2) = −Xs. (43d)

The elasticity analysis of in-plane translational modes in the
annular region of interstitial foam parallels that of the out-of-
plane modes in Sec. III A. We summarize the key physical
concepts here with the algebraic details provided in Appendix
B. The nonvanishing components of the strain tensor are de-
termined from the displacement profile in (42). Hooke’s law in
linear elasticity relates the strain tensor and the divergenceless
stress tensor in the absence of an external body force. The re-
sultant boundary value problem in {cs, cφ} is solved in closed
form, and the forces acting on the cellulose shell and the steel
core are determined by integration around the boundaries of
the annular foam region.

Using the derivations provided in Appendix B, the equa-
tions of motion of the cellulose shell and the iron core are
given by

msẌs = fx(ω) + kx(Xc − Xs ), (44)

mcẌc = −kx(Xc − Xs ). (45)

Here kx is the elastic spring constant per unit length given by
Eqs. (B8) and (B9) in Appendix B:

kx = 4πμ(λ + 2μ)(λ + 3μ)
(
R2

1 + R2
2

)[
(λ + 3μ)2

× (
R2

1 + R2
2

)
ln R2/R1 − (λ + μ)2

(
R2

2 − R2
1

)]−1
. (46)

ms and mc denote the mass per unit length of the cellulose shell
and the steel core, respectively. fx(ω) is the x-component of a
harmonic force acting on the cellulose shell by the background
foam due to the relative motion between neighboring resonant
units in the phononic crystal.

To complete the analogy with the one-dimensional mass-
in-a-box model, we identify the cellulose shell with a rigid
box harmonically coupled to the background open-cell foam,
the steel core with the inner mass, and the interstitial open-
cell foam with the elastic spring. The correspondence of each
physical parameter is summarized in Table III.

Consequently, the in-plane translational resonance can be
described by a frequency-dependent effective mass density:

ρ
(e)
t ( f ) = ρs

(
1 + f 2

∗,t − f 2
0,t

f 2
0,t − f 2

)
. (47)

Here ρs ≈ 385.8 kg m−3 is mass of the cellulose shell divided
by the volume occupied by the resonant unit in Eq. (39). f0,t

(analogous to ω0 = √
k/m2) is the resonant frequency of the

oscillator at which the effective mass diverges:

f0,t = 1

2π

√
kx

mc
≈ 271.3 Hz. (48)

f∗,t (analogous to ω∗ = √
k/mr) is the frequency at which the

effective in-plane mass vanishes:

f∗,t = 1

2π

[
kx

(
1

mc
+ 1

ms

)]1/2

≈ 711.7 Hz. (49)

Over the frequency range f0,t < f < f∗,t of negative effective
mass, wave propagation involving the in-plane translation of
the resonant unit is suppressed.

C. In-plane rotational resonance

We now derive another frequency-dependent effective den-
sity describing the relative rotation between the steel core and
the cellulose shell, and the elastic deformation of the open-cell
foam providing restoring torques. We determine such restor-
ing torques using two-dimensional, linear elasticity.

Suppose the rigid cellulose shell rotates by an angle s

counterclockwise, and the rigid steel core rotates by c. By
RCSA, the displacement depends only on the radial distance
s:

u(r) = b(s)φ̂, (50)

where b(s) is twice differentiable function of radial distance,
s, satisfying the boundary conditions:

b(s = R1) = R1c, (51a)

b(s = R2) = R2s. (51b)

The elasticity analysis of in-plane rotational modes in the
annular region of interstitial foam is provided in Appendix
C. Under rotational symmetry, the strain and stress tensors
simplify. The nonvanishing components are determined from
the displacement profile (50). The solution b(s) is expressible
in closed form, and the torques acting on the cellulose shell
and the steel core are determined by integration around the
boundaries of the annular foam region.

The moment of inertia per unit length of the cellu-
lose shell, Is, and that of the steel core, Ic, are given
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TABLE IV. The equations of motion of the cellulose shell and the steel core (55) and (56) assume the same form as those in the mass-in-
a-box model in (1) and (2). The correspondence of each physical parameter is tabulated below.

Mass-in-a-box model Symbol Resonant unit Symbol

Mass of rigid box m1 Rotational inertia of cellulose shell Is

Mass of inner mass m2 Rotational inertia of steel core Ic

Displacement of box x1 Angle of rotation of cellulose shell s

Displacement of inner mass x2 Angle of rotation of steel core c

Elastic spring constant k Elastic restoration of open-cell foam kφ

Spring dissipation c Inelastic dissipation of open-cell foam 0

by

Is =
∫ R3

R2

ρss
22πs ds = π

2
ρs

(
R4

3 − R4
2

)
, (52)

Ic =
∫ R1

0
ρcs22πs ds = π

2
ρsR

4
1. (53)

The elasticity analysis in Appendix C yields an elastic restor-
ing torque per angular displacement [see Eqs. (C7) and (C8)]:

kφ = 4πμR2
1R2

2

R2
2 − R2

1

. (54)

The equations of rotational motion of the cellulose shell and
the iron core take the form

Is̈s = τ (ω) + kφ (c − s), (55)

Ic̈c = +kφ (s − c). (56)

Here τ (ω) is the harmonic torque acting on the cellulose shell
by the background foam due to the relative motion between
adjacent resonant units in the periodic structure.

In the one-dimensional mass-in-a-box analogy, the cellu-
lose shell is identified with the rigid box subject to harmonic
force by coupling with the background open-cell foam. The
steel core is the inner mass. The interstitial open-cell foam
acts as the elastic spring. The correspondence of each physical
parameter is summarized in Table IV. The rotational motion
of the resonant oscillator can be recaptured by a frequency-
dependent effective density of the form

ρ(e)
r ( f ) = ρr

(
1 + f 2

∗,r − f 2
0,r

f 2
0,r − f 2

)
. (57)

Here ρr is the density of an effective uniform cylinder of
radius R3 that yields the same moment of inertia as the actual
cellulose shell:

ρr = ρs
(
R4

3 − R4
2

)
R4

3

= 661.2 kg m−3. (58)

f0,r (analogous to ω0 = √
k/m2) is the resonant frequency

of the oscillator at which the effective moment of inertia
diverges:

f0,r = 1

2π

√
kφ

Ic
≈ 320.6 Hz, (59)

and f∗,r (analogous to ω∗ = √
k/mr) is the frequency at which

the effective rotational inertia vanishes:

f∗,r = 1

2π

[
kφ

(
1

Ic
+ 1

Is

)]1/2

≈ 451.1 Hz. (60)

In the frequency range of negative effective density ( f0,r <

f < f∗,r), wave propagation involving rotational motion of the
resonant unit is inhibited.

IV. NUMERICAL COMPARISON OF EFFECTIVE MASS
MODEL WITH EXACT BAND STRUCTURE

We now calculate and compare the acoustic band struc-
tures for the original, locally resonant, phononic crystals and
the frequency-dependent, effective mass, phononic crystal.
The former is calculated using a Finite Element Method
(FEM). The latter is calculated using a plane wave expan-
sion combined with the Cutting Surface Method (CSM) [17]
to treat the frequency-dependent mass. We verify that the
out-of-plane band structure exhibits a band gap at negative
effective density over the frequency range f0,z < f < f∗,z,
which agrees with the exact FEM results within 2% accuracy
at all the wave vectors considered. For in-plane band struc-
ture, the agreement between the true resonant medium and
the frequency-dependent, effective mass medium is limited to
points specific in the phononic Brillouin zone.

A. Cutting Surface Method

The Cutting Surface Method (CSM) was introduced ear-
lier [17] to determine the optical band structure of photonic
crystals with frequency-dependent dielectric constant ε(ω).
In this method, a generalized electromagnetic dispersion re-
lation ω(K, εp) is first evaluated parametrically as a function
of a hypothetical dielectric constant εp, wherever the actual
dielectric constant is frequency-dependent, and the resultant
dispersion surfaces are cut by the requirement of εp = ε(ω) to
yield the true band structure along the cutting surface [17]. For
our locally resonant phononic crystal, an effective, frequency-
dependent density ρ (e)

z ( f ) is used to represent the resonant
unit. A generalized acoustic dispersion relation, f (K, ρp), is
calculated parametrically as a function of a hypothetical den-
sity ρp. Then, the required dispersion relation is determined
by cutting the generalized dispersion relation by imposing the
condition ρp = ρ (e)

z ( f ). The effective medium representation
is depicted in Fig. 5.

The CSM relies heavily on the continuities of the gener-
alized dispersion relation and the frequency dependence of
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FIG. 5. The left panel shows a unit cell of the resonant compos-
ite structure consisting of a cylindrical circular steel rod of radius
R1 ≈ 0.2523 cm, encapsulated by a coaxial circular cellulose shell of
inner radius R2 ≈ 0.3989 cm and outer radius R3 ≈ 0.4720 cm with
the interstitial region filled by open cell foam in a square lattice of
lattice constant a = 1 cm. In the CSM, the resonant unit is replaced
by an effective material with frequency-dependent density ρ (e)

z ( f ) in
Eq. (38), while the open-cell foam background remains unchanged.
The effective material assumes the frequency-independent Lamé pa-
rameters of cellulose. The relevant material parameters are listed in
Table I.

physical parameters in the neighborhood of the intersection
points. In regions where the physical parameters depend sen-
sitively on frequency, more sampling points in the parameter
space are required to ensure accuracy and reliability of the
numerical results.

Our effective medium consists of a phononic crystal of
parallel, right, circular cylinders with uniform, frequency-
dependent density occupying φc + φf + φs = 70% by volume
and open-cell foam filling the background. The harmonic in-
teractions between resonant units are treated exactly, while
the response within each resonant unit is captured by the
frequency-dependent, effective density. A collection of band
structures is determined by plane wave expansion, as the
hypothetical uniform density of the cylinders is varied para-
metrically from ρp = 0.5 kg m−3 to ρp = 20 000 kg m−3. The
Lamé parameters of the replacement material are chosen to be
those of cellulose. The relevant material parameters are listed
in Table I. A total of 298 band structures were calculated using
21 plane waves per direction. Details of plane wave conver-
gence using an “inverse rule” for Fourier series multiplication
of functions with complementary discontinuities are presented
in Appendix A.

With the generalized acoustic dispersion, f (K, ρp), we
impose the frequency-dependent density in Eq. (38) by inter-
section with the cutting surface ρp = ρ (e)

z ( f ). For illustration,
the generalized dispersion relation at K = π/(2a)x̂ and the
frequency-dependent density, ρ(e)

z ( f ), are plotted in Fig. 6. At
this K-point, the frequency-dependent density intersects the
generalized dispersion relation at f ≈ 129.6 Hz and again at
f ≈ 647.4 Hz. To enhance numerical accuracy, linear interpo-
lation of the generalized acoustic dispersion, f (K, ρp), is used
to determine the intersecting frequencies. The same numerical
routine is repeated at all K-points in the reciprocal space to
obtain the acoustic band structure of the effective medium
phononic crystal. At all K-points, two intersections occur, one
in the frequency range 0 � f < f0,z ≈ 183.4 Hz and another
in the range f∗,z ≈ 481.2 Hz < f . This means that the first

FIG. 6. At (Kx, Ky ) = (0.5π/a, 0), the generalized dispersion re-
lation, f (Kx = 0.5π/a, Ky = 0, ρp), represented by black crosses,
and the frequency-dependent density, ρ(e)

z ( f ) in Eq. (38), repre-
sented by blue circles, intersect at f ≈ 129.6 Hz and f ≈ 647.4 Hz.
Similarly, at other K points in the reciprocal space, there are two
intersections, one below the resonant frequency f < f0,z ≈ 183.4 Hz
and one above the zero-effective density frequency f > f∗,z ≈
481.2 Hz.

acoustic surface of the generalized dispersion relation splits
into two disconnected bands, corresponding to the in-phase
and out-of-phase oscillations of the core and the shell of the
resonant unit. The resulting band structure of the effective
medium phononic crystal is plotted in Fig. 7.

B. Finite Element Method

Commercial Finite Element Method (FEM) packages,
COMSOL Multiphysics together with the Acoustic Module,
provide an accurate and independent numerical calculation of

FIG. 7. First two out-of-plane acoustic bands of the steel-
cellulose-foam phononic crystal are plotted in the first Brillouin zone
along the path M → � → X → M. The Cutting Surface Method
(red crosses), together with plane wave expansion is used to calculate
bands of a frequency-dependent, effective, mass phononic crystal.
The finite element method (solid black line) is used to calculate bands
of the actual phononic crystal. The maximum percentage error of the
effective medium representation in the lower band is 1.2%, while that
of the upper band is 1.9%.
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the true resonant acoustic band structure. Each solid compo-
nent of the phononic crystal is modeled by a lossless isotropic
elastic material. Floquet periodic boundary conditions are
imposed across the sides of a unit cell in the square lattice.
The square unit cell is set to be 1 cm × 1 cm. The calcula-
tions are set to include time-harmonic out-of-plane modes in
the two-dimensional model of solid mechanics. For numeri-
cal accuracy and stability, the maximum separation between
neighboring mesh points is set to be at most one-tenth of the
wavelength at the cutoff frequency of 2100 Hz. The edges of
the unit cell are set to have identical mesh geometry. A fine
mesh with 434 domain elements and 124 boundary elements is
obtained, and the resultant eigenvalue problem is solved iter-
atively using MUltifrontal Massively Parallel sparse direction
Solver (MUMPS) [34]. The first two out-of-plane bands of the
true phononic crystal, obtained by FEM, are plotted in Fig. 7,
together with the CSM results for the frequency-dependent,
effective mass, phononic crystal.

C. Out-of-plane acoustic band structures

Figure 7 shows that the out-of-plane acoustic band
structure obtained by CSM using the analytically derived
frequency-dependent effective density agrees closely with the
FEM results for the original phononic crystal. The maximum
percentage deviation in frequency of the lower band is 1.2%,
while that of the upper band is 1.9%.

There is an acoustic band gap from 163.7 Hz to 472.1 Hz.
This is consistent with the rough prediction that wave prop-
agation is prohibited at negative effective density over the
frequency range, f0,z ≈ 183.4 Hz < f < f∗,z ≈ 481.2 Hz. It
is expected that the lower edge of the band gap lies slightly
below the resonant frequency, because the first intersection
occurs before the effective density diverges to infinity on
resonance. On the other hand, the 1.9% error of the upper edge
of the band gap may be attributed to the elastostatic approxi-
mation. In deriving the frequency-dependent effective density,
we assumed that the wavelength of sound is long compared to
the relevant dimensions of the resonant unit. In other words,
wave phenomena in the interstitial open-cell foam is omitted.
In reality, it takes time for a deformation to propagate from
the outer cellulose shell to the inner steel core, leading to
a phase lag between the motion of the two rigid bodies. At
the upper edge of the band gap, 472.1 Hz, the wavelength
in open-cell foam is λf ≈ 4.80 cm, while the thickness of the
foam layer within the rigid bodies is R2 − R1 ≈ 0.147 cm. In
this case, a relative error of about (R2 − R1)/λf ≈ 3.1% can
be anticipated.

Figures 8 and 9 show the normalized out-of-plane displace-
ment in a unit cell at (Kx, Ky) = (0.5π/a, 0) for the in-phase
mode and the antiphase mode respectively. The accompanying
density plots show that the displacement profiles are radially
symmetric within the resonator s < R3. In both cases, the
out-of-plane displacement is constant over the ranges s < R1

and R2 < s < R3, which underscore the validity of the RCSA.
In the lower frequency mode at f = 129.6 Hz < f0,z, the
RCSA predicts [see Eq. (3)] that the core and the shell os-
cillate in-phase with relative amplitude Zc/Zs = f 2

0,z/( f 2
0,z −

f 2) ≈ 2.00. On the other hand, in the higher frequency
mode at f = 647.4 Hz > f0,z, the RCSA predicts that the

FIG. 8. At (Kx, Ky ) = (0.5π/a, 0), the normalized out-of-plane
displacement of the in-phase mode at f = 129.6 Hz is plotted from
(x, y) = (0.0) to (x, y) = (a/2, 0), for the finite element method
(black line). A density plot of the displacement profile is shown at
upper right corner. The constancy of the displacement in the regions
s < R1 and R2 < s < R3 correspond to the rigidity of the steel core
and the cellulose shell respectively. The RCSA in Eq. (32) (red
crosses) is plotted over the region of the interstitial foam R1 < s <

R2, with the maximum error of (0.0022)Zs.

core and the shell oscillate antiphase with relative amplitude
Zc/Zs = f 2

0,z/( f 2
0,z − f 2) ≈ −0.087. The relative amplitudes

agree with the constant displacement values of the steel
core s < R1 in the normalized displacement graphs. The dis-
placement variations in the interstitial foam R1 < s < R2 are
accurately recaptured by the RCSA in Eq. (32) (red crosses)
within the errors of (0.0022)Zs for the in-phase mode, and
(0.0044)Zs for the antiphase mode.

For comparison purposes, we also consider a frequency-
independent, mean density representation of the resonant unit.

FIG. 9. At (Kx, Ky ) = (0.5π/a, 0), the normalized out-of-plane
displacement of the antiphase mode at f = 647.4 Hz is plotted from
(x, y) = (0.0) to (x, y) = (a/2, 0), for the finite element method
(black line). A density plot of the displacement profile is shown at
upper left corner. The constancy of the displacement in the regions
s < R1 and R2 < s < R3 correspond to the rigidity of the steel core
and the cellulose shell, respectively. The RCSA in Eq. (32) (red
crosses) is plotted over the region of the interstitial foam R1 < s <

R2, with the maximum error of (0.0044)Zs.
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FIG. 10. Lowest out-of-plane acoustic band of the frequency-
independent, mean-density representation of the locally resonant
phononic crystal is plotted in the first Brillouin zone along the
path M → � → X → M. This consists of right circular cylinders
of radius, R3, of equivalent mean density ρ̄ = φcρc + φfρf + φsρs ≈
1999 kg m−3, embedded in open-cell foam. There is only one
out-of-plane acoustic band over the plotted frequency range. The
over-simplified mean-density model fails to capture the resonant
response of the true phononic crystal.

The simplest representation of the resonant unit is a uni-
form density material of equivalent mean density ρ̄ = φsρs +
φcρc + φ f ρ f = 1999 kg m−3. We choose the Lamé parame-
ters of the replacement material to match those of cellulose.
Plotted in Fig. 10 is the associated acoustic band structure
of a square lattice of rigid right cylinders of density ρ̄ =
1999 kg m−3, occupying 70% by volume, embedded in open-
cell foam. There is only one acoustic band over the plotted
frequency range, while the frequency of the next out-of-plane
band occurs around 3294 Hz. Clearly, the mean-density model
fails to capture even the low-frequency resonance response of
the actual phononic crystal.

In the frequency-dependent model, the lower band is
pushed lower, but the upper band is pushed higher. This is
consistent with the values of the frequency-dependent, ef-
fective density, which increases from 2653 kg m−3 at f =
0 Hz to infinity at f = f0,z ≈ 183.4 Hz. Since the frequency-
dependent, effective density is consistently higher than the
mean density ρ̄ = 1999 kg m−3, the lower band is red-shifted.
On the other hand, over the range f > f∗,z ≈ 481.2 Hz, the
frequency-dependent, effective density increases from 0 at
f = f∗,z to ρc ≈ 385.7 kg m−3 as f approaches infinity, which
is consistently lower than the mean density, ρ̄ = 1999 kg m−3.
Consequently, the upper band is blue-shifted.

D. In-plane acoustic band structure

We now describe the challenges of extending the ef-
fective mass representation of the phononic crystal to the
in-plane acoustic band structure of the steel-cellulose-foam
resonant composite. The coupling between in-plane trans-
lation and rotation complicates the use of any simple,
frequency-dependent, effective mass formula. A more elab-
orate representation is required to recapture all features of the
true band structure.

FIG. 11. First six in-plane acoustic bands of the periodic steel-
cellulose-foam composite are plotted in the first Brillouin zone along
the path M → � → X → M, for the Cutting Surface Method (red
crosses) using the frequency-dependent, effective density for in-
plane translations in Eq. (47). The finite element method (solid black
line) is used to calculate the bands of the actual phononic crystal.

For any single type of local resonance, the generalized
in-plane acoustic band structure f (K, ρp) is determined para-
metrically as a function of the density ρp of a hypothetical
uniform medium. The numerical setup for generating a para-
metric collection of band structures parallels that of the
out-of-plane CSM calculations in the preceding section. As
a first attempt to represent the in-plane internal translational
and rotational resonances, the generalized in-plane acoustic
band structure is separately cut by the frequency-dependent
effective densities for in-plane translation ρ

(e)
t ( f ) in Eq. (47)

and that for in-plane rotation ρ(e)
r ( f ) in Eq. (57). The separate,

resultant band structures are plotted in Figs. 11 and 12, and
compared with FEM results for the original phononic crystal.

The in-plane acoustic band structures of the steel-cellulose-
foam composite consists of six bands below 1500 Hz. The
first three bands are separated from the next three bands by

FIG. 12. First six in-plane acoustic bands of the periodic steel-
cellulose-foam composite are plotted in the first Brillouin zone along
the path M → � → X → M, for the Cutting Surface Method (red
crosses) using the frequency-dependent, effective density for in-
plane rotations in Eq. (57). The finite element method (solid black
line) is used to calculate the bands of the actual phononic crystal.
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a gap over the frequency range 303.3 Hz < f < 669.8 Hz.
The first three bands are associated with in-phase relative
rotation and translation between the rigid steel core and the
cellulose shell in two orthogonal directions, while the next
three bands arise from the corresponding antiphase relative
motion.

Neither the effective density for in-plane translation nor
that for in-plane rotation accounts for the true acoustic
band structure at all K-points. However, some qualitative
features of the actual in-plane bands are recaptured. First,
there are six bands in all cases. The simple pole of the
frequency-dependent effective density on resonance gives
rise to two intersections with each of the three bands in
the nonresonant generalized in-plane acoustic band struc-
ture, with one below the resonant frequency f < f0,t/r and
the other above the zero-density frequency f > f0,t/r. More-
over, the elasticity analysis for in-plane rotation predicts
that in-plane rotational modes are inhibited over the fre-
quency range f0,r ≈ 320.6 Hz < f < f∗,r ≈ 451.1 Hz. This
lies completely within the actual in-plane acoustic band gap
303.3 Hz < f < 669.8 Hz. On the other hand, the effective
medium representation for in-plane translation suggests the
inhibition of in-plane translational modes over the frequency
range f0,t ≈ 271.3 Hz < f < f∗,t ≈ 711.7 Hz. Modes that are
poorly represented by the effective density for in-plane trans-
lation are better described by in-plane rotation, and vice versa.
At high symmetry points in the Brillouin zone, where the
translational and rotational motion are decoupled, the res-
onant frequency is well represented by a single effective
density.

These observations suggest that the translational and ro-
tational motion are intricately coupled except at the high
symmetry points. In band structure of the true phononic crys-
tal, the path from �(K = 0) to M (K = π/ax̂ + π/aŷ) leads
from pure rotational mode at � to the pure translational mode
at M. The in-plane coupling of the translational/rotational
resonance in one unit cell to the rotational/translational reso-
nance in a neighboring unit cell is not captured by the simplest
effective medium representation of the phononic crystal. This
is unlike the out-of-plane resonance in one unit cell that cou-
ples only to the same type of resonance in another unit cell. A
more elaborate effective medium representation is needed to
treat a resonant medium where cross-coupling occurs between
different resonances at separate locations.

V. DISCUSSION AND CONCLUSIONS

In this paper, we have demonstrated by analytical and
numerical means, the efficacy of the frequency-dependent,
effective, mass density representation of a locally resonant
acoustic material with a single type of resonance. For a pe-
riodic array of such local resonances, we obtained the exact
modes of the phononic crystal by applying a Cutting Surface
Method to calculate acoustic band structure. Our analysis
also reveals the need for a fundamental generalization of the
simple one-dimensional mass-in-a-box model of local reso-
nances when the resonant unit contains multiple resonances
that couple nontrivially to those in the neighboring resonant
units.

Future directions include the extension of the analysis to
three-dimensional resonant units, nonperiodic systems and
dissipative materials. The elasticity analysis in this article
applies to each individual resonant unit and does not rely on
periodicity. While acoustic band structure derives from spatial
periodicity, our elasticity calculation for each resonant unit
applies to a medium with randomly placed resonant units.
An important generalization of our analytical treatment is
to spherical local resonators in a three-dimensional elastic
medium. This involves a generalization of our methodology
in Sec. III from cylindrical to spherical coordinates. It also
requires generalizing our plane-wave expansion in Appendix
A. However, this is likely to introduce a larger number of low-
frequency resonances and their couplings between different
unit cells. It is prudent to first solve the issues of multiple
resonances and their nontrivial couplings in the simpler two-
dimensional system.

By introducing the Rigid Core-Shell Approximation, we
obtained a simple, analytical derivation of the frequency-
dependent, effective densities for out-of-plane translational,
in-plane translational, and in-plane rotational resonances.
Our resonator, composed of a steel core, surrounded by
foam, and encapsulated by a cellulose shell, also reveals
that very low-frequency resonant modes can be realized with
centimeter-sized resonant units. Moreover, an array of such
units provides low-frequency flat bands in the acoustic band
structure. This corresponds to high density of slow-sound
modes and may be very effective in absorbing audible sound
waves using a relatively thin sheet of resonant material with
dissipation. Enhanced absorption effects of this type have
been shown in photonic crystal thin films [35]. Recapturing
these effects in acoustic materials, using realistic, frequency-
dependent, effective mass models, is highly desirable. Given
the real-world, locally resonant, acoustic materials may con-
tain multiple nearby resonances, a generalization of the simple
one-dimensional mass-in-a-box model is needed to properly
capture all the relevant physics.
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APPENDIX A: CONVERGENCE OF ACOUSTIC PLANE
WAVE EXPANSION

We describe the out-of-plane and in-plane eigenvalue
equations of acoustic band structure, specific to our two-
dimensional structures. Discrete translational symmetry al-
lows expansion of material parameters into Fourier series:

ρ(r) =
∑

G

ρ(G) exp(iG · r), (A1)

(1/Cpqrs)(r) =
∑

G

(1/Cpqrs)(G) exp(iG · r). (A2)

Here G denotes reciprocal lattice vectors determined by the
periodicity of the underlying lattice, Cpqrs denotes a nonzero
element of the stiffness tensor C, and 1/Cpqrs is the reciprocal
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of that element. The Fourier coefficients are given by

M(G) = 1

Ac

∫
c

d2rM(r) exp(−iG · r). (A3)

Here the integration is performed over the unit cell, and Ac

is its area. M denotes a generic mechanical parameter, in-
cluding the mass density, ρ, and the reciprocal of nonzero
stiffness tensor components 1/λ, 1/μ and 1/(λ + 2μ). It is
conventional to truncate the summation over the reciprocal
lattice vectors: −2πN/a � Gx/y � 2πN/a, so that there are
(2N + 1) plane waves per direction. Unless otherwise spec-
ified, the value of N = 10 is assumed in the plane wave
expansion.

In the effective medium representation of the phononic
crystal, each resonant unit (within the radius R3) is replaced
by a material of uniform, frequency-dependent density. The
Lamé parameters of the replacement material are chosen to
be those of cellulose in Table I. The filling fraction, ν =
πR2

3/a2 = 0.7, is the fractional volume occupied by the cir-
cular resonant unit in the square unit cell. In the effective
medium in which all mechanical parameters are uniform when
s < R3, the Fourier components of each parameter take the
form [8,18]

M(G) =
{
Maν + Mb(1 − ν), for G = 0,

(Ma − Mb)2νJ1(GR3)/GR3, for G �= 0.

(A4)

Here Ma is the value of the parameter when s < R3, and Mb

is its value in the background foam. J1 is the Bessel function
of the first kind of order 1. When the parameter Ma represents
the mass density, it exhibits the prescribed frequency depen-
dence, leading to a nonlinear eigenvalue problem, which is
solved by CSM.

In the constitutive relation (15), the strain tensor ε and
the stiffness tensor C contain a pair of complementary jump
discontinuities, so that the product stress tensor σ is contin-
uous across any material boundaries. To ensure numerical
convergence, Fourier series with complementary jump discon-
tinuities are multiplied with the inverse rule [20,21,32]:

∑
G

{∑
G′

[
1

Cpqrs

]−1

N

(G, G′)εrs(G′)

}
exp(iG · r) → σpq(x),

(A5)

where the matrix denoted as [1/Cpqrs] has matrix elements
given by [1/Cpqrs](G, G′) = (1/Cpqrs)(G − G′). The sub-

script N denote the relevant plane wave expansion truncation.
The superscript −1 represents matrix inversion, assuming the
matrix is nonsingular:

∑
G′

[
1

Cpqrs

]−1

N

(G, G′)
[

1

Cpqrs

]
N

(G′, G′′) = δG,G′′ , (A6)

where δi j is the Kronecker delta symbol.
In our two-dimensional elastic composite consisting of lin-

ear isotropic materials, the relevant nonvanishing components
are C1122 = C2211 = λ, C1212 = C2121 = C3131 = C3232 = 2μ,
C1111 = C2222 = λ + 2μ. For notational convenience, the ma-
trices �inv, Minv, and Ninv are introduced, with their elements,
respectively, defined by

�inv
G,G′ =

[
1

C1122

]−1

N

(G, G′), (A7a)

M inv
G,G′ = 1

2

[
1

C1212

]−1

N

(G, G′), (A7b)

N inv
G,G′ =

[
1

C1111

]−1

N

(G, G′). (A7c)

Substituting the Bloch wave expansion (20) into the dynam-
ical equation of the out-of-plane displacement field (21), and
manipulating the product of the stiffness tensor and the strain
tensor elements by the preceding inverse rule (A5), we obtain
an eigenvalue equation governing the out-of-plane motion:

∑
G′

[
(K + G) · (K + G′)M inv

G,G′ − ω2
Kρ(G − G′)

]
uz,K(G′)

= 0, (A8)

where the eigenvectors uz,K(G) correspond to the out-of-plane
acoustic bands ωK. Under the plane wave truncation N = 10,
there are 2N + 1 = 21 plane waves per direction, and a total
of (2N + 1)2 = 441 are incorporated in the two-dimensional
reciprocal space. The underlying matrix is 441 × 441 in size.

Similarly, the Bloch wave expansion (20) is substituted into
the dynamical equations of the in-plane displacement fields
(22) and (23). Using the inverse rule (A5) for the Fourier series
product of the stiffness tensor and strain tensor components,
we obtain

∑
G′

[(
D11(G, G′) D12(G, G′)
D21(G, G′) D22(G, G′)

)
− ω2

K

(
ρ(G − G′) 0

0 ρ(G − G′)

)](
ux,K(G′)
uy,K(G′)

)
= 0, (A9)

where the elements of the dynamical matrix D(G, G′) are

D11(G, G′) = N inv
G,G′ (Kx + Gx )(Kx + G′

x ) + M inv
G,G′ (Ky + Gy)(Ky + G′

y), (A10a)

D12(G, G′) = �inv
G,G′ (Kx + Gx )(Ky + G′

y) + M inv
G,G′ (Ky + Gy)(Kx + G′

x ), (A10b)

D21(G, G′) = �inv
G,G′ (Ky + Gy)(Kx + G′

x ) + M inv
G,G′ (Kx + Gx )(Ky + G′

y), (A10c)

D22(G, G′) = N inv
G,G′ (Ky + Gy)(Ky + G′

y) + M inv
G,G′ (Kx + Gx )(Kx + G′

x ). (A10d)
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Eigenvectors of the form of (ux,K(G), uy,K(G)) correspond to the in-plane acoustic bands ωK. Under the plane wave truncation
N = 10, (2N + 1)2 = 441 plane waves are incorporated. For each pair of reciprocal lattice vectors {G, G′}, the interaction is
given by a 2 × 2 block dynamical matrix, D(G, G′), so that the full matrix is 882 × 882 in size.

APPENDIX B: RCSA OF IN-PLANE TRANSLATION

In this Appendix, we express the forces acting on the cellulose shell and the steel core in terms of their displacements and the
mechanical parameters of the interstitial foam. We start by evaluating the nonvanishing elements of the symmetric elastic strain
tensor from the in-plane displacement profile in (42):

εss = ∂us

∂s
= dcs

ds
cos φ, (B1a)

εφφ = 1

s

(
∂uφ

∂φ
+ us

)
=

(
cs + cφ

s

)
cos φ, (B1b)

εφs = εsφ = 1

2

(
1

s

∂us

∂φ
+ ∂uφ

∂s
− uφ

s

)
= 1

2

(
dcφ

ds
− cs + cφ

s

)
sin φ. (B1c)

Using the generalized Hooke’s law (16) for linear isotropic solids, we determine the relevant components of the symmetric stress
tensor:

σss =
[
λ

(
dcs

ds
+ cs + cφ

s

)
+ 2μ

dcs

ds

]
cos φ, (B2a)

σφφ = λ

(
dcs

ds
+ cs + cφ

s

)
cos φ + 2μ

(
cs + cφ

s

)
cos φ, (B2b)

σφs = σsφ = 2μεsφ = μ

(
dcφ

ds
− cs + cφ

s

)
sin φ. (B2c)

In the absence of an external body force at elastostatic equilibrium, the stress tensor is divergence-free, ∇ · σ = 0:

∂σss

∂s
+ 1

s

∂σsφ

∂φ
+ 1

s
(σss − σφφ ) = 0, (B3a)

∂σsφ

∂s
+ 1

s

∂σφφ

∂φ
+ 2σsφ

s
= 0. (B3b)

Substituting Eqs. (B2a) to (B2c) into Eqs. (B3a) and (B3b) yields a set of coupled dynamical equations for elastic response:

(λ + 2μ)
d2cs

ds2
+

(
λ + 2μ

s

)
dcs

ds
+

(
λ + μ

s

)
dcφ

ds
− λ + 3μ

s2
(cs + cφ ) = 0, (B4a)

μ
d2cφ

ds2
+ μ

s

dcφ

ds
−

(
λ + μ

s

)
dcs

ds
− λ + 3μ

s2
(cs + cφ ) = 0. (B4b)

Four linearly independent solutions of this homogeneous system of two coupled second-order differential equations can be
verified by direct substitution:

(cs(s), cφ (s)) = (1,−1), (B5a)

(cs(s), cφ (s)) = ln s (1,−1) − λ + μ

2(λ + 3μ)
(1, 1), (B5b)

(cs(s), cφ (s)) = 1

s2
(1, 1), (B5c)

(cs(s), cφ (s)) = s2(λ − μ,−3λ − 5μ). (B5d)

The desired solution satisfying the boundary conditions (43a) to (43d) are formed by proper linear combination of the four basis
solutions:

cs(s) = 1

�

[F1

s2
+ F2(λ − μ)s2 + F3 + F4(ln s − η)

]
, (B6a)

cφ (s) = 1

�

[F1

s2
− F2(3λ + 5μ)s2 − F3 − F4(ln s + η)

]
, (B6b)
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where �, η, and Fi are algebraic expressions of the material parameters of the foam, the core displacement Xc, and the shell
displacement Xs of the resonant unit:

� ≡ (λ + 3μ)2
(
R2

1 + R2
2

)
ln R2/R1 − (λ + μ)2

(
R2

2 − R2
1

)
, (B7a)

η ≡ λ + μ

2(λ + 3μ)
, (B7b)

F1 ≡ 1

2
(λ + μ)(λ + 3μ)R2

1R2
2(Xs − Xc), (B7c)

F2 ≡ −1

2
(λ + μ)(Xs − Xc), (B7d)

F3 ≡ (λ + μ)2
(
R2

1Xs − R2
2Xc

) − (λ + 3μ)2
(
R2

1 + R2
2

)
(Xs ln R1 − Xc ln R2), (B7e)

F4 ≡ (λ + 3μ)2(R2
1 + R2

2

)
(Xs − Xc). (B7f)

The force per unit length acting on the steel core, fc,x, and that on the cellulose shell, fs,x, are determined from the stress tensor:

fc,x =
∮

{s=R1}
σ · n̂ dl =

∫ 2π

0
(σss ŝ + σφs φ̂) R1dφ

=
∫ 2π

0
[(σss cos φ − σφs sin φ) x̂ + (σss sin φ − σφs cos φ) ŷ] R1dφ

= 4πμF4

�

(
λ + 2μ

λ + 3μ

)
x̂, (B8)

fs,x =
∮

{s=R2}
σ · n̂ dl = −fc,x. (B9)

The required stress tensor components are calculated by substituting Eqs. (B6a) and (B6b) into (B2a) and (B2c):

σss(s, φ) = −2μ cos φ

�

[
2F1

s3
+ 2F2(λ + μ)s −

(
2λ + 3μ

λ + 3μ

)
F4

s

]
, (B10a)

σsφ (s, φ) = −2μ sin φ

�

[
2F1

s3
+ 2F2(λ + μ)s +

(
μ

λ + 3μ

)
F4

s

]
. (B10b)

We remark that our RCSA results are low-frequency analytic
solutions of a model proposed by Lui et al. [14] without
requiring a full-wave treatment. Wave propagation in the solid
foam medium can be decomposed into compression and shear
waves. The longitudinal compression wave propagates at the
speed cl = √

(λ + 2μ)/ρ, while the transverse shear wave
propagates at the speed ct = √

μ/ρ. When only the relative
translation between the rigid cellulose shell and the rigid steel
core is considered, only the n = 1 terms are nonvanishing in
a partial wave expansion of the displacement field. The dis-
placement can be expressed in terms of the potential functions
�c and �s:

u = ∇�c + ∇ × (�sẑ). (B11)

The potential functions of the compression wave and the shear
wave are solutions of the scalar wave equation in cylindrical
coordinates:

�c(s, φ, t ) =
[

p1J1

(ωs

cl

)
+ p2K1

(ωs

cl

)]
cos φ e−iωt ,

(B12)

�s(s, φ, t ) =
[

p3J1

(ωs

ct

)
+ p4K1

(ωs

ct

)]
sin φ e−iωt . (B13)

Here J1 and K1 are Bessel functions of the first kind and
the second kind, and the constants p1, p2, p3 and p4 are
determined by the boundary conditions. When the wavelength
of sound is much longer than the relevant dimensions of the
resonant unit (low-frequency limit), the Bessel functions can
be expanded for small values of their arguments:

J1(z) ≈ z

2
− z3

16
+ O[z5], (B14)

K1(z) ≈ 1

z
+ z

4

(
2γ − 1 + 2 ln

z

2

)
+ O[z3], (B15)

where γ ≈ 0.5772 is the Euler-Mascheroni constant. Using
Eq. (B11), we recover terms involving spatial dependence of
the form of 1/s2, 1, ln s, and s2 in agreement with our basis so-
lutions in Eq. (B5a) to (B5d). Unlike the partial wave analysis
of Lui et al. [14], our RCSA provides closed form algebraic
expressions of the effective densities. For the low-frequency
bands of our phononic crystal, it is reasonable to neglect the
wave propagation in the interstitial foam within the resonant
unit. A full-wave treatment is needed at higher frequencies,
when the wavelength of sound is comparable to the size of the
resonant unit.
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APPENDIX C: RCSA OF IN-PLANE ROTATION

When the steel core rotates relative to the cellulose shell,
the annular layer of elastic interstitial foam provides a restor-
ing torque. In this Appendix, we express the torques acting
on the core and the shell in terms of the angles of in-plane
rotation of the approximate rigid bodies and the material
parameters of the foam in the long wavelength regime. This
analysis utilizes the constitutive relation between strain and
stress for the divergence-free stress tensor field under elasto-
static equilibrium.

For the rotationally symmetric displacement profile (50),
the only nonvanishing components of the symmetric strain
tensor ε are εφs and εsφ :

εφs = εsφ = 1

2

(
1

s

∂us

∂φ
+ ∂uφ

∂s
− uφ

s

)
= 1

2

(
db

ds
− b

s

)
.

(C1)
The generalized Hooke’s law (16) for linear isotropic solids
reveals that the only nonvanishing components of the sym-
metric stress tensor σ are σφs and σsφ :

σφs = σsφ = 2μεsφ = μ

(
db

ds
− b

s

)
. (C2)

In the absence of an external body force, the stress tensor is
divergence-free, ∇ · σ = 0:

∂σsφ

∂s
+ 1

s

∂σφφ

∂φ
+ 2σsφ

s
= 0. (C3)

Substituting Eq. (C2) into Eq. (C3), we obtain

μ

(
d2b

ds2
+ 1

s

db

ds
− b

s2

)
= 0. (C4)

Solving Eq. (C4) by a standard power-law ansatz, and impos-
ing the boundary conditions (51a) and (51b), we obtain

b(s) = E (c − s)

s
+ R2

2s − R2
1c

R2
2 − R2

1

s, (C5)

σφs = σsφ = μ

(
db

ds
− b

s

)
= 2μE

s − c

s2
, (C6)

where E = R2
1R2

2/(R2
2 − R2

1). The torque per unit length acting
on the steel core, τc, and that on the cellulose shell, τc, are
determined from the stress tensor:

τc =
∮

{s=R1}
r × (σ · n̂) dl = 4πμE (s − c)ẑ, (C7)

τs =
∮

{s=R2}
r × (σ · n̂) dl = 4πμE (c − s)ẑ, (C8)

where n̂ denotes a unit inward normal vector on the boundary.
τc + τs = 0, as required by Newton’s third law.
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