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We study the dynamics of lasing from photonic paints excited by short, localized, optical pulses, using a
time-dependent diffusion model for light propagating in the medium containing active atoms. The full time-
dependent, nonadiabatic nonlinear response of the atomic system to the local optical field intensity is described
using the Einstein rate equations for absorption and emission of light. Solving the time-dependent diffusion
equation for the light intensity in the medium with nonlinear gain and loss, we derive detailed information on
the spectral, spatial, and temporal properties of the emitted laser light. Our model recaptures the effects of
scatterers to narrow the emission spectral linewidth and to narrow the emitted pulse duration, at a specific
threshold pump intensity. Our model also describes how this threshold pump intensity decreases with scatterer
density and excitation spot diameter, in excellent agreement with experimental results.
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I. INTRODUCTION

In conventional lasers, lasing is achieved by positive feed-
back. The radiation emitted and redirected into the active
medium stimulates further emission, which reinforces the
propagating field. The excitation threshold for coherent emis-
sion is reached when the gain in a round trip exceeds the
loss. This can lead to a coherent mode, which builds up
inside the cavity. Part of this light is coupled out of the cavity
to form a unidirectional monochromatic beam.

Weak scattering of light has traditionally been considered
detrimental to laser action, since such scattering removes
photons from the lasing mode of a conventional cavity. On
the other hand, if stronger, multiple scattering occurs, these
photons may return to the amplification region and the am-
plified mode itself may consist of a multiple-scattering path.
In random lasers, the conventional external cavity is absent,
but light can be temporarily “trapped” inside the system, due
to multiple scattering. Under suitable circumstances, the det-
rimental effects of diffuse scattering and other losses may be
offset by the long path length of the photons within the gain
region, giving rise to amplified laserlike emission.

The possibility of generation of amplified light by a ran-
domly scattering medium with gain, first suggested by
Letokhov [1], has received considerable attention recently
[2–9]. Isotropic laser action has been observed in random
colloidal suspensions[2,3] as well as optically[8] and elec-
trically [9] pumped semiconductor powders. A dramatic nar-
rowing of the spectrum and a shortening of the emission time
[6] has been observed above a well-defined threshold in
pump energy. Furthermore, recent experiments[10,11] have
demonstrated, for the first time, that the emission of light
from these random amplifying media is in fact coherent.

A great deal of experimental work[2–7] has been devoted
to the phenomenon of lasing in paints that contain
Rhodamine 640 dye molecules in methanol as gain media
and a titanium oxide colloidal suspension as optical scatter-
ers. Emission from these multiple-light-scattering dielectric
microstructures exhibits spectral and temporal properties

characteristic of a multi-mode laser oscillator, even though
the system contains no conventional cavity mode. These so-
called paint-on laser systems are of special interest for un-
derstanding emission in random media because the gain and
scattering can be varied independently.

A number of attempts have been undertaken to develop
theoretical models which are relevant to lasing in random
media. The experimental observations on the emission prop-
erties can be partially explained by heuristic ring laser mod-
els [12]. A more microscopic and fundamental understanding
of the spectrally resolved intensity input-output properties of
the random laser have been provided by a simple diffusion
model [13–15] for the average light intensity and a rate-
equation description of the atomic excitation density. In the
case of a purely one-dimensional light scattering model, this
rate-equation picture has been improved by recourse to a
more microscopic, time-dependent Maxwell-Bloch equation
description[16].

The properties of the emission in photonic paints can be
studied using a diffusion model[13] for optical scattering
and transport. A diffusion model is adequate to study the
random laser with nonresonant feedback[1] that occurs in
the moderate scattering regime. In this case, wave interfer-
ence does not play any role, and the optical feedback pro-
vided by the scatterers has the role to simply return the emit-
ted photons to the active gain region of the system(rather
than to an initial position), thereby stimulating further emis-
sion. In other words, it is intensity feedback. This is different
from the case of a random laser with coherent feedback[8]
operating in the strong scattering regime, where the recurrent
scattering events lead to the formation of closed loops, acting
as laser resonators. In the case of strong optical scattering, a
more general model involving the electric field rather than
the intensity of light is necessary to investigate the laser ac-
tion. In the diffusion approximation, the propagation of light
in the random amplifying medium is considered as an isotro-
pic random walk. This is valid for the transport of light over
distances large compared with the transport mean free path
l* , defined as the average distance the light travels in the
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sample before its propagation direction is randomized. The
diffusion approximation represents an approximation to the
radiative transfer theory[17], which, in turn, is an approxi-
mation to the more general coherence propagation theory for
the electric-field autocorrelation function[18]. The interac-
tion between photons and molecules is treated by the Ein-
stein rate equations for emission and absorption of light. The
radiation emitted into the random amplifying medium is de-
scribed by a set of diffusion equations, where the multiple-
scattering character of the transport is described by a diffu-
sion coefficient that replaces the cavity loss coefficient in a
conventional laser. The properties of the gain medium enter
the nonlinear diffusion equations through the gain coeffi-
cient. Previous results[13] show that a time-independent dif-
fusion model entirely recaptures the experimentally observed
average emission spectral properties for steady-state pump-
ing with a large beam cross section. However, the different
time scales of transport(which usually takes place on a pi-
cosecond time scale) and emission(taking place on a nano-
second time scale) processes in a random laser require a
complete time-dependent model for the system dynamics. In
this paper, we recapture both the emission spectrum and tem-
poral response by solving the time-dependent nonlinear dif-
fusion equations for emitted photons of different frequencies,
for a pulsed pump field and for a narrow cross-section pump
field. In addition, we retain the full time dependence of the
Einstein rate equations rather than adiabatically eliminating
the atomic degrees of freedom. For very short excitation
pulses, it is not possible for the atoms to respond instanta-
neously to changes in the electromagnetic field. Our model is
similar to the random walk model[15] used to study the
lasing in photonic paints. For the pulsed pump, we consider
both plane wave and Gaussian beam cross sections, and we
find that the time-dependent diffusion model qualitatively re-
captures the experimental results. In particular, our model
describes how the laser threshold intensity varies with the
transport mean free path and the pump beam cross section.

II. DIFFUSION MODEL

In amplifying random media, light is both multiply scat-
tered and amplified. In laser paints, optical pumping brings
the dye molecules to excited states. Through spontaneous
emission, some excited molecules randomly emit photons.
These photons travel in the medium, being scattered by tita-
nia particles and amplified by dye molecules, through stimu-
lated emission. The emergent photon energy per unit time,
unit solid angle, and unit interface area around the direction

k̂ f in the frequency range fromv to v+dv and timet is then
expressed in terms of the source intensity due to the sponta-
neous emission within the sample,Svsr 8 ,t8 ; q̂ddv (energy
per unit volume, per unit time, and per unit solid angle
around directionq̂, in the frequency range fromv to v
+dv). The output intensity also depends on the propagator

Gvsr −r 8 ,t− t8 ; q̂ , k̂ fd, which represents the number of pho-
tons per unit “volume” found at a positionr at time t and

traveling in a directionk̂ f, given a unit source intensity at
position r 8 and timet8, t, emitting light in an initial direc-

tion q̂. This accounts for stimulated emission processes

Ioutputsv,k̂ f,tddv =
c

4pl*
3E drE dr 8E dt8E dq̂

3fSvsr 8,t8,q̂ddvg

3Gvsr − r 8,t − t8;q̂,k̂ fd

3expS−
z

uk̂ f · ẑul*
D . s2.1d

The “volume” referred to above is assumed large compared
to a cubic wavelength, so that both the “location” and wave
vector of the photon can be approximately specified. The
source intensitySvsr 8 ,t8 ; q̂d is proportional to the density of
excited molecules at positionr 8 and time t8 and their
spontaneous-radiative-emission cross section at frequencyv

and directionq̂. The Green’s functionGvsr −r 8 ,t− t8 ; q̂ , k̂ fd
describes the average propagation of photons through the
gain medium from positionr 8 at time t8 with wave vector

sv /cdq̂ to position r at time t and wave vectorsv /cdk̂ f,
involving the process of diffusion, absorption by unexcited
dye molecules, and stimulated emission from excited dye
molecules. Here,c is the speed of light,l* is the transport
mean free path of the emitted photons, and the factor

sc/4pl*3dexps−z/ k̂ f ·ẑu l*ddr represents the fraction of the en-
ergy atr and timet that contributes to the emergent flux. The

factor exps−z/ k̂ f ·ẑu l*d represents the part of this energy
which emerges from the output surface of the sample without
being further scattered, amplified, or absorbed[19].

For random media in which scattering mean free path is
very large compared to the wavelength, the propagation of
light can usually be described as a diffusion process. Assum-
ing an isotropic random walk process for both the emitted
light and the pump light, the light propagation in the system
is described by diffusion equations with appropriate absorp-
tion and gain terms, which depend on the local excitation of
the dye molecules. In this case, it is convenient to introduce
the propagator for the total intensity of light at frequencyv:

Gvsr ,td ; E dq̂E dk̂ fGvsr ,t;q̂,k̂ fd. s2.2d

The diffusion equation for the emitted photons at frequency
v can be written as

]tGvsr − r 8,t − t8d = D¹r
2Gvsr − r 8,t − t8d +

c

lgsv,r ,td

3Gvsr − r 8,t − t8d + dsr − r 8ddst − t8d.

s2.3d

Here,D=1/3cl* is the classical diffusion constant, which is
assumed not altered by the presence of the dye, and the gain
coefficient of the dye solution,lg

−1sv ,r ,td, which is related to
the absorption and stimulated emission processes in the sys-
tem.
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For a sample consisting of a slab of random gain medium
with planar boundaries with air on either side, the boundary
condition for Eq.(2.3) requires that the propagator vanish at
“trapping planes” located at the distanced=0.71 l* , the “ex-
trapolation length,” outside the sample. This imposes the
physical boundary condition that photons that come within a
mean free path of the sample boundary leave the sample and
are “absorbed” by the external environment, with no oppor-
tunity to reenter the random gain medium. This factor arises
because the photon density cannot vanish at the sample sur-
face. Photons diffuse out of the medium and must pass
through the surface. The value of the “extrapolation length”
may be obtained from the method of linear extrapolation
[20].

It is useful to introduce the total intensity of light at fre-
quencyv in terms of emitted local intensities:

Isv,r ,td ; cE dr 8E dt8E dq̂fSvsr 8,t8,q̂dgGvsr − r 8,t − t8d.

s2.4d

This obeys the diffusion equation

]tIsv,r ,td = D¹r
2Isv,r ,td +

c

lgsv,r ,td
Isv,r ,td

+ cE dq̂Svsr ,t,q̂d. s2.5ad

Equation(2.5a) was obtained from the definition ofIsv ,r ,td
and the diffusion equation(2.3).

The propagation of the pump intensity in the medium is
described by

]tIpsr ,td = Dp¹r
2Ipsr ,td −

c

lasr ,td
Ipsr ,td +

c

lp
* I incidentsr ,td,

s2.5bd

whereDp=1/3clp
* is the diffusion coefficient for the pump

intensity(lp
* is the transport mean free path of the pump). For

simplicity, we assume that the transport mean free path of the
pump and emitted photons are the samesDp=Dd. The ab-
sorption coefficientlasr ,td depends on the density of dye
molecules at positionr and timet in the ground state and
their absorption cross section at pump frequency.I incident rep-
resents the coherent incident pump intensity. Both the coher-
ent sI incidentd and diffusesIpd parts of the pump intensity are
assumed monochromatic and we suppress the frequency de-
pendence of these fields in our discussion.

In the case of illumination by a plane wave propagating in
the z direction, the system is homogeneous in the transverse
directions, and we only consider thez dependence of the
emitted and pump intensities. However, for a finite Gaussian
pump beam cross section we make use of the cylindrical
symmetry and write the gradients in the diffusion equations
accordingly. In the first case, the boundary conditions for
Eqs.(2.5a) and (2.5b) for a slab of thicknessL are

Isv,r ,tdur ·ẑ=−0.71l* = Ipsr ,tdur ·ẑ=−0.71l*

= Isv,r ,tdur ·ẑ=L+0.71l*

= Ipsr ,tdur ·ẑ=L+0.71l*

= 0. s2.6d

In the case of finite beam cross section, the sample itself is
taken to have the shape of a cylindrical pill box of radiusR
and thicknessL (see Fig. 1). In this case, an additional trap-
ping surface is introduced to capture photons leaving the
sample in the transverse direction:

Isv,r ,tdur ·r̂=R+0.71l* = Ipsr ,tdur ·r̂=R+0.71l* = 0. s2.7d

Here,z and r are the cylindrical coordinates and the beam
radius is considered less than the sample radius,R.

The proposed excitation scheme for laser dyes[13] is pre-
sented in Fig. 2. It consists of electronic levels with total spin
zero(singlet statesS0, S1) and total spin one(triplet statesT1,
T2), and an adjustable intersystem crossing rate between
these states. Here, we neglect the intersystem crossing and
consider that the emission dynamics corresponds only to the
singlet state transitions, modeled as a standard four-level sys-
tem. The lasing transition occurs between the third level(the
lowest level in theS1 manifold) and the second level(excited
vibrational energy levels in theS0 manifold). We further de-
fine the first level as the ground state in theS0 manifold and
the fourth level as an excited vibrational level of theS1 mani-
fold. The vibrational substructure included in our model pro-
vides an effective broadening of the essential states and is
important for a quantitative comparison between our results
and the experimentally observed line shape. The peak of the
emission spectrum(obtained from the transition from the
third level to the second level) is well separated from the
absorption spectrum(obtained from the transitions from the
first level to levels three and four). Accordingly, processes of
stimulated emission from level 3 to level 1 and absorption
from level 1 are ignored in comparison to the processes tak-
ing place between the lasing transition levels 3 and 2. Typical

FIG. 1. Schematic view of the three-dimensional sample. A
monochromatic pump beam of Gaussian cross section is incident
from the left and is collimated in the direction perpendicular toz
=0 plane(the shaded spot). The light intensity emitted from the
front plane is measured by a detector on the left.
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emitted photons do not have enough energy to excite the
transitions from level one to the third and fourth levels. Fur-
thermore, the populations in the fourth and second levels can
be neglected due to the rapid nonradiative decays(on a time
scale of 10−13 s) to the third and first levels, respectively.
Therefore, one can neglect the reabsorption of the emitted
radiation from level 2 to levels 3 and 4 and the transitions
from level 4. As a result, the emission dynamics can be de-
scribed by a single rate equation. The rate equation that de-
scribes the dye population per unit volume in the excited
state(ground state of theS1 manifold), N2, reads

dN2sr ,td
dt

= Psr ,tdN0sr ,td − G2N2sr ,td

− o
v

sesvdFsv,r ,tdN2sr ,td. s2.8d

Here, N0=N−N2 is the population per unit volume in the
ground state(N is the total density of dye molecules), P is
the pumping rate, andG2=ov G21svd is the total decay rate
of the lowest level of theS1 manifold due to spontaneous
emission into individual levels ofS0 with individual rates
G21svd. Heresesvd is the stimulated emission cross section,
corresponding to transitions between the bottom of theS1
manifold and vibrational levels inS0. Explicit forms of these
functions are discussed in Sec. III. The photon fluxFsv ,r ,td
(number of photons per unit area, per unit time) is related to
the emitted light intensity throughFsv ,r ,td= Isv ,r ,td /"v.

Recently[9] random laser action in rare-earth-doped na-
nopowders has also been reported. In such systems, the laser

gain media generally consist of ionic species grown or doped
within a host material. This is analogous to the organic dye
laser, in which dye molecules are suspended in solvent. The
solid-state dielectric lasers can be modeled as four-level sys-
tems, reducible, due to the rapid nonradiative decays, to two-
level systems, entirely similar to the case of the dye mol-
ecules [21]. Therefore, the lasing in the rare-earth-doped
nanopowders, with the powders playing the role of scatter-
ers, is similar to the lasing in photonic paints. The formalism
presented here can be straightforwardly applied to describe
the emission properties of these alternative random amplify-
ing media.

The pumping rate in Eq.(2.8) is given by

Psr ,td = sasv0ds"v0d−1Ipsr ,td. s2.9d

Here,sasv0d is the cross section of the singlet absorption at
the pump frequency,v0.

The gain coefficient, the source intensity due to the spon-
taneous emission, and the absorption coefficient entering the
diffusion equations are expressed in terms of dye population
densities as

lg
−1sv,r ,td ; sesvdN2sr ,td, s2.10ad

E dq̂Svsr ,t,q̂d ; "vG21svdN2sr ,td, s2.10bd

la
−1sr ,td ; N0sr ,tdsasv0d. s2.10cd

It is convenient to rewrite the equations above in terms of
dimensionless quantities. We define the dimensionless time
t̃; t / ta and the dimensionless lengthr̃ ; r / lz, where ta
; la

0/c and lz;sl* lad1/2 is the diffusion controlled extinction
length; la

0;fNssv0dg−1 is a parameter in our model, related
to the dye concentration. Here, we neglect saturation effects
and approximatela by la

0 in the expression of the extinction
length, but use the expression(2.10c) elsewhere. We also
define the dimensionless intensities

Ĩsv,r ,td ;
csmax

"vG2
Isv,r ,td s2.11ad

and

Ĩ psr ,td ; Ipsr ,td/Ic, s2.11bd

with smax;maxfsesvdg and the characteristic intensity pa-
rameterIc;"v0p2G2/smax.

The set of nonlinear differential equations describing the
system dynamics becomes

]t̃Ĩsv, r̃ , t̃d = ¹r̃
2Ĩsv, r̃ , t̃d +

sesvd
sasv0d

n2sr̃ , t̃dĨsv, r̃ , t̃d

+
smax

sasv0dFG21svd
G2

n2sr̃ , t̃dG , s2.12ad

]t̃Ĩ psr̃ , t̃d = ¹r̃
2Ĩ psr̃ , t̃d − n0sr̃ , t̃dIpsr̃ , t̃d +

la
0

l*
Ĩ incidentsr̃ , t̃d,

s2.12bd

FIG. 2. Energy levels for a dye in solution.S0→S1 represents
the pumping and absorption process,S1→S0 andT2→T1 represent
the emission process, andT1→T2 represents the absorption process.
The dotted lines represent the nonradiative decay processes, and the
dashed lines represent the intersystem crossing process.
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dn2sr̃ , t̃d
dt̃

=
G2la

0

c
hP̃sr̃ , t̃dn0sr̃ , t̃d − fR̃esr̃ , t̃d + 1gn2sr̃ , t̃dj.

s2.12cd

In Eqs. (2.12), ni ;Ni /N si =0,2d are the normalized dye
populations, related to each other in our model throughn0
=1−n2,

P̃sr̃ , t̃d ; Psr ,td/G2 = p2sasv0d
smax

Ĩpsr̃ , t̃d s2.13d

is the dimensionless pump rate, and

R̃esr̃ , t̃d ; So
v

sesvdFsv, r̃ , t̃dD/G2 =E dv
sesvd
smax

Ĩsv, r̃ d

s2.14d

is the dimensionless stimulated-emission rate within the sin-
glet manifold.

The boundary conditions for the diffusion equations are

Ĩsv, r̃ , t̃duz̃=−0.71l* /lz
= Ĩ psr̃ , t̃duz̃=−0.71l* /lz

= Ĩsv, r̃ , t̃duz̃=sL+0.71l* d/lz

= Ĩ psr̃ , t̃duz̃=sL+0.71l* d/lz

= 0, s2.15d

together with

Ĩsv, r̃ , t̃dur̃=sR+0.71l* d/lz
= Ĩ psr̃ , t̃dur̃=sR+0.71l* d/lz

= 0, s2.16d

for the case of a finite cross-section pump beam.
Unlike previous studies[13], we treat the full time-

dependent rate equation(2.12c) rather than carrying out an
adiabatic elimination of the atomic degrees of freedom in
favor of optical intensities. This more general treatment is
useful in describing ultrashort-pulse excitations of the ran-
dom medium.

For a slab in thexy plane illuminated by plane waves in
the z direction, we can omit thex and y dependence and
retain only partial derivatives with respect toz in the gradi-
ents in diffusion equations(2.12a) and(2.12b). In the case of
a three-dimensional system, illuminated by Gaussian beam
in the z direction, we assume a cylindrical symmetry of the
system and use cylindrical coordinates. Neglecting the angu-
lar dependence, we make the substitution¹r̃

2→]r̃
2+s1/r̃d]r̃

+]z̃
2.
We introduce the homogeneously broadened output inten-

sity

Ioutsv,td ; E dk̂ fE dv8Ioutputsv8,t; k̂ fdgsv8 − vd,

s2.17d

wheregsv8−vd is the homogeneously(collision) broadened
Lorentzian line-shape function[22], and Ioutput is defined in
Eq. (2.1). We point out that in the more general case when
the gain medium is both homogeneously and inhomoge-
neously broadened, the line-shape functiongsv8−vd is the

composite Voigt line-shape function[22]. Finally, the total
emergent photon energy from the medium(per unit area, per
unit time, in the frequency range fromv to v+dv) is ex-
pressed asIoutsv ,tddv, where

Ioutsv,td =
"lz

dG2

4pl*
d
smax

E dk̂ fE dv8E dr̂

3expS−
z̃lz

uk̂ f · ẑul*
D Ĩsv, r̃ , t̃dv8gsv8 − vd.

s2.18d

Here, we used=1 andedr̂ →e0
L/lzdz̃ for a one-dimensional

model, andd=3 andedr̂ →4pe0
R/lzr̃dr̃e0

L/lzdz̃, for the three-
dimensional model with finite pump beam cross section.

In order to calculate the output intensity, we solve the
system of diffusion and rate equations(2.12). This provides
us with all the information on the spectral, spatial, and tem-
poral properties of the emitted intensity, as well as the gain
coefficient inside the sample. By approximating the integral
in Eq. (2.14) by a sum over a set of discrete frequenciesvi,
i =1,2, . . . ,N, this system transforms to a set ofN+3
coupled nonlinear partial differential equations, which can be
solved numerically using the method of lines[23]. This
method is based on replacing the spatial(boundary value)
derivatives with an algebraic approximation over a spatial
grid. The resulting system of initial-value ordinary(time-
dependent) differential equations(ODE’s) is then integrated
numerically, using an established ODE code.

III. NUMERICAL RESULTS FOR EMISSION INTENSITY
AND LASING THRESHOLD

We solve the set of diffusion and rate equations(2.12) for
different values of scatterer density, dye concentration, and
pump intensity, both for plane-wave pump beams,

I incidentsr ,td = I0Î a

p
exps− z/lzdexpF− a

st − t0 − z/cd2

tp
2 G ,

s3.1d

and for pump beams with Gaussian cross sections,

I incidentsr ,td = I0Î a

p
exps− z/lzd

3expF− a
st − t0 − z/cd2

tp
2 Gexpf− asr/rpd2g.

s3.2d

Here I0 is the pump intensity,a=4 ln 2, t0 is the time at
which the maximum of the pump is incident on the sample
surface, andtp is the pulse temporal profile, full width at half
maximum.rp is the pulse radial profile, full width at half
maximum.

The stimulated emission cross section used is given by the
expression[21]
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se =
2p2

3e0c"
E dnDsndumu2gsv − ndn. s3.3d

Here,«0 is the vacuum permittivity,Dsnd is the rovibrational
density of state of the relevant energy band of the dye, andm
is the transition matrix element of the electric dipole mo-
ment. We assume that

Dsndumu2 ~ e−uas1−n/v0duf1 + bs1 − n/v0d2g. s3.4d

Here, f1+bs1−n /v0d2g describes the degeneracy of the ex-
cited vibrational states, ande−uas1−n/v0du is the Frank-Condon
overlap factor[21] for the dipole matrix element connecting
the ground states and the excited electronic state in different
vibrational states.a, b, andv0 are three parameters, adjusted
in order to fit experimental data on the peak position and the
linewidth of the fluorescence spectrum(emission cross sec-
tion) of the dye molecules. The valuesa=35, b=264, and
2pc/v0=615 nm have been used in the calculations[13].
The spontaneous emission rateG21svd is related tosesvd
through the relation between the EinsteinA and EinsteinB
coefficients[21]. In the following calculations, we choose
sasv0d /smax=2, the spontaneous emission decay rate is set
to G2=1 ns, the sample thickness and radius areL=1 cm and
R=1 cm, respectively, and the parameterla

0 is calculated us-
ing the fact that the pump penetration depth of a 2.5
310−3M dye solution is about 50mm [2]. The homoge-
neously broadened line-shape function is expressed as

gsv − v8d =
1

p

Dv

sv − v8d2 + sDvd2 , s3.5d

with Dv=s2pc/l0ds6 nm/2l0d, wherel0=620 nm. The 6-
nm linewidth is chosen since it is the minimum width to
which the emission narrows under strong laserlike amplifi-
cation. This value of the homogeneous linewidth of the gain
medium is close to that experimentally observed for similar
systems[24,25].

We begin by presenting the results obtained for plane-
wave excitations(3.1), with pulse durationtp=10 ps, as re-
ported in some of the experiments[6]. This requires solving
the one-dimensional diffusion equations, coupled to the
atomic rate equation.

Figure 3 shows the emission spectrum at different pump
intensities, for fixed dye concentration and scatterer density.
The spectral and temporal response of the system to the
pump pulse is presented in Fig. 4, which shows the emitted
pulse linewidth and duration as function of pump intensity.
The shapes of these curves are consistent with the experi-
mental observations. We see from Fig. 4 that there exists a
well-defined value of the pump intensity above which the
emission characteristics from the disordered medium change
dramatically: the linewidth is narrowed and the emission
shortens dramatically and reaches its peak value at earlier
times. As in experiments, the threshold intensity appears to
be the same for both spectral and temporal emission proper-
ties. Also, as experimentally observed, it is obtained that,
above the threshold, the emission at the peak wavelength
increases more rapidly with the pump intensity than it does

below the threshold. This is shown in the inset in Fig. 3,
where we plot the emission intensity at the peak wavelength
s620 nmd as a function of pump intensity.

The lasing in the random medium is enhanced rather than
hindered by multiple-light-scattering processes in the system.
The lasing threshold in fact decreases with the scatterer den-
sity. We see from Fig. 5 that the threshold intensity, here
defined as the pump intensity for which the duration of the
emitted pulse is 100 ps(which from Figs. 3 and 4 is also the
pump intensity for which the emission spectral linewidth col-
lapses and the slope of the input-output curve changes), de-

FIG. 3. The emission spectrum at different values of peak pump
intensity, varying from 0.53107 J cm−2 s−1 (the innermost curve)
to 103107 J cm−2 s−1 (the outmost curve), for a 10-ps plane-wave
pulse. The transport mean free path is set to 6.2310−4 cm, and the
dye concentration is 2.5310−4M. Here the entire cross section of
the sample is illuminated uniformly. The inset shows the variation
of the peak intensity with the pump intensity, for the same set of
sample parameters.

FIG. 4. Spectral linewidth as a function of peak pump intensity.
The pulse characteristics, transport mean free path, and dye concen-
tration are the same as in Fig. 3. The inset shows the dependence of
the pulse duration and the time delay of the peak emission with
respect to the peak pump excitation on the peak pump intensity, for
the same set of sample parameters.
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creases when the transport mean free path decreases(or,
equivalently, as the scatterer density is increased).

In Fig. 6, we plot the temporal profile of the emitted pulse
and its spectral linewidth, for a pump intensity above the
threshold value, and Fig. 7 shows the excited-state popula-
tion at the same value of the pump intensity.

Experimental studies[7] have also demonstrated the
strong dependence of the threshold pump intensity on the
spot size of the incident pump pulse. In the case of illumi-
nating the sample with a beam of finite cross section, the
lasing threshold has been found to increase by 70 times as
the excitation spot diameter was gradually decreased from 20
to below 5 transport mean free paths[7]. We demonstrate
that this is the result of multiple light scattering. For a large
excitation area, the pumped volume is large and the emitted
photons will spend more time in this amplifying region. For
a small excitation volume, the emitted light, which propa-
gates diffusively through the sample, will leave the amplify-
ing region after a short time. In the latter situation, a higher
pumping level is necessary to achieve positive gain in the

system. We study this effect in the framework of a more
complete, three-dimensional diffusion model. Although the
main ideas behind this approach remain the same as in the
one-dimensional case, the extension of the diffusion model
to three dimensions involves significantly more effort in
terms of numerical analysis and programming. For simplic-
ity, the atomic rate equations are solved under “quasi-steady-
state” conditions, by puttingdn2/dt=0 in the rate equation
(2.12c). This quasi-steady-state atomic response is then sub-
stituted into the time-dependent diffusion equation. In doing
so, we assume that both the emitted intensity and the pump
intensity vary much more slowly in time than the atomic
variables. The solutions for the atomic populations obtained
this way are not truly constant, but are determined by the
instantaneous values of these slowly varying field variables.
As discussed in Sec. IV, this approach does not provide an
accurate description of the dynamics of the system, and we
will use it only to calculate the emission spectrum. This is
enough to investigate the effect of the transverse diffusion on
the lasing threshold.

We consider a Gaussian beam cross section of the form
(3.2), with a duration oftp=10 ns, and investigate the de-
pendence of the threshold intensity on the radial full width at
half maximum,rp. The result is obtained for a set a sample
parameters as those used in the experiments[7]. Here the
threshold intensity is obtained from a plot of the spectral
linewidth as a function of pump intensity, as shown in Fig. 8,
and represents the intensity at which the linewidth collapses.
We see from Fig. 9 that the lasing threshold intensity dra-
matically decreases when the excitation spot diameter in-
creases above a few transport mean free paths, corresponding
to a larger gain volume. This result is in quantitatively very
good agreement with the experimental findings.

IV. PHYSICAL INTERPRETATION OF TEMPORAL
BEHAVIOR

We now discuss qualitatively the necessity of a nonadia-
batic time-dependent model in order to fully recapture the

FIG. 5. Variation of the threshold intensity with the transport
mean free path. The dye concentration is set equal to 2.5310−4M,
and the sample parameters are the same as in Fig. 3.

FIG. 6. Temporal emission profile for the same sample param-
eters as in Fig. 5 and incident peak pump intensity of 3
3107 J cm−2 s−1. The dots show the time ependence of the spectral
linewidth of this pulse, at the same value of the peak pump inten-
sity. The timet=0 corresponds to the time when the peak of the
pump excitation enters the sample.

FIG. 7. Normalized excited-state population for the same
sample and pump intensity as in Fig. 6.
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dynamics of the system. The temporal profiles of the emitted
pulse and excited-state population, as well as the threshold
behavior of the emitted pulse duration, are important features
of any laser. However, the characteristic time scales of these
features depend on the specific system. In what follows, we
employ a simplified rate equation model for both atoms and
photons, to interpret our results on the temporal response of
the random laser.

In a random laser, the majority of the emitted intensity
arises from a region 0øzø lz within the diffusion-controlled
extinction length, where significant population inversion is
achieved. The pump pulse only reaches this region, where it
is absorbed by the dye molecules and scattered by titania

particles. Based on this fact, in our analysis, the real slab is
replaced by an “effective slab” of thicknesslz. The general
solution for the emitted intensity for the one-dimensional
slab geometry[Eq. (2.5a)] can then be expressed as an ex-
pansion in the “eigenfunctions” of the diffusion equation for
this effective domain,

]z
2ckszd = Ekckszd, s4.1d

as

Isv,z,td =Î lz
2o

kù1
nksv,tdckszd. s4.2d

Here,Îs2/lzdckszd=sinskpz/ lzd. We point here that this rep-
resents only a heuristic approach, necessary to identify the
time scale corresponding to diffuse photon propagation in the
amplifying medium. Strictly speaking, the diffusion approxi-
mation becomes inapplicable as the physical length scale of
the system becomes comparable to the transport mean free
path, and surface corrections have to be considered. To ob-
tain a qualitative picture, we keep only the first term in the
expansion(4.2). Using this expression for the emitted inten-
sity, the diffusion equation(2.5a) becomes

]tIsv,z,td = − gcIsv,z,td + csesvdN2sz,tdIsv,z,td

+ c"vG21svdN2sz,td. s4.3d

Here, gc;p2D / lz
2 is the “cavity” decay rate, and we have

used expressions(2.10a) and(2.10b) for the gain coefficient
lgsv ,z,td and the source intensity due to spontaneous emis-
sion, Svsz,t ,q̂d, respectively. For a random laser character-
ized by values of the transport mean free path and absorption
length as those used in the calculations in Sec. III, the cavity
decay constantgc corresponds to a decay time of picosec-
onds. The slow response of the atomic system compared to
the light transport is a characteristic of the random lasers and
leads to relaxation oscillations(laser spiking) in the dynamic
response of the system at the threshold crossing. A detailed
study of this regime is presented in[14,26,27].

We further divide Eq.(4.3) by c"v and sum over frequen-
cies to arrive at the equation

ṅ = − gcn + knN+ GN. s4.4d

Here,nsz,td;c−1ov Fsv ,z,td is the total number of photons
per unit volume in the system,N;N2sz,td is excited-state
population density, andG;G2. For simplicity, we omit the
dependence on the spatial coordinatez hereafter. In deriving
Eq. (4.4), we have used that the laser emission spectrum is
usually much narrower than the spontaneous emission spec-
trum and made the approximation

o
v

sesvdFsv,z,td < se
maxo

v

Fsv,z,td, s4.5d

such thatk;cse
max.

Similarly, the rate equation(2.8) for the excited-state
population can be rewritten as

FIG. 8. Emission linewidth vs pump intensity for pump diam-
eters of 2 mm(circles) and 100mm (squares). The up-arrow indi-
cates the position of the threshold. The sample thickness and radius
are each set to 1 cm, and the dye concentration and transport mean
free path are set to 10−3 mol/ l and 10−2 cm, respectively, in the
calculation. For an absorption cross sectionsa=1.6310−16 cm2,
10−3 mol/ l dye concentration corresponds to an absorption length
of 10−2 cm.

FIG. 9. Variation of the threshold intensity with the pump-beam
diameter in units of transport mean free path,l* =0.01 cm. The
other sample parameters are the same as for Fig. 8.
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Ṅ = P − knN− GN, s4.6d

whereP; Psz,tdN0sz,td. For simplicity, in the analysis pre-
sented here, we neglect pump diffusion. We note that Eqs.
(4.4) and(4.6) are similar to the rate equations of a conven-
tional laser.

First, consider the case in which the laser is operating
below or near threshold. In this case, the number of photons
in the system is very small, and the stimulated emission
terms in Eqs.(4.4) and (4.6) can be neglected. During the
course of a picosecond pump pulse exciting the system, the
atomic population builds up rapidly towards a maximum
value, and spontaneous emission(which takes place on a
nanosecond time scale) does not yet contribute to the system
dynamics. Atomic population decay by spontaneous emis-
sion occurs only after the passage or extinction of the pump.
As a consequence, the temporal profile of the excited-state
population for the dye molecules exhibits a rapid buildup and
slow decay, with an overall width on the scale of nanosec-
onds. The emitted pulse temporal profile has similar charac-
teristics. When the excited population is below a threshold
value, Nth<gc/k, the number of photons in the system re-
mains very small. As soon as the number of excited mol-
ecules passes through the threshold value, the laser gain ex-
ceeds the loss, and the number of photons begins to increase
exponentially. The exponential buildup rate isgc8
;gc(Nstd /Nthr−1)<gc. The buildup time of the number of
photons is of the order of the cavity decay time, which has
the value on the scale of picoseconds for a typical random
laser. The increase of the photon number continues as long as
the population inversion is above the threshold value. During
this time, the population inversion increases to the maximum
value (on a time scale of picoseconds, as discussed above)
and then slowly decreases(on a nanosecond time scale) to
the threshold value. The point in time at which the popula-
tion inversion returns to its threshold value coincides with
the time stpeakd where the photon number reaches its peak
value snpeakd. Therefore, the buildup time for the emitted
radiation is on the order of hundreds of picoseconds to nano-
seconds. The subsequent decrease in photon number takes
place on a nanosecond time scale. As a consequence, the
emission pulse duration is of the order of nanoseconds. The
decay rate of the emission can be obtained using the solution
of Eq. (4.4), integrated from the moment the photon number
reaches maximum value, and where we neglect the stimu-
lated emission term:

nstd = snpeak− Ade−gst−tpeakd + Ae−Gst−tpeakd, s4.7d

where

A =
G

gc − G
Nthre

−Gtpeak<
G

gc
Nthre

−Gtpeak. s4.8d

Here, we have used that for the time interval considered
Nstd=Nthrexps−Gtd. From Eq.(4.7) we also notice that the
exponential decay of the emission exhibits a fast component,
corresponding to the cavity decay, and a slow component,
corresponding to the spontaneous emission.

Consider now the case when the laser is operating well
above threshold. Under the action of the pump, the number
of molecules in the excited state increases on a time scale of
picoseconds(the pulse duration). However, due to the pres-
ence of a large number of photons in the system, the stimu-
lated emission becomes dominant and leads to a much faster
decay of the population inversion after reaching the maxi-
mum value. This decay rate is larger than the spontaneous
emission rate by a factor equal to the number of photons in
the system(the stimulated emission rate). Since the emission
buildup time is equal to the time the population inversion
reaches the maximum value, we obtain the picosecond scale
delay for the emission above threshold. The fast decay of the
population inversion leads, in turn, to a fast decay of photon
number. This can be seen using the formal solution of the
photon rate equation(4.4) for the case of laser operating
above threshold, obtained by replacinggc by gc8, and
exps−Gtd with exps−nGtd [using Nstd=Nthrexps−nGtd]. As a
result, the emission pulse duration is in the range of picosec-
onds. Moreover, the fact that the pulse duration is inversely
proportional togc8 andnG (which, in turn, are proportional to
the pump rate) explains its threshold behavior. Namely, the
emitted pulse duration decreases with increasing pump rate,
until (for large values of the pump) it reaches a saturation
value equal to cavity decay rate. Similarly, the emission time
delay has a component that is inversely proportionalnG,
which also exhibits a threshold behavior mirroring the
threshold behavior of the number of emitted photons. Also,
the transient gain narrowing, presented in Fig. 6, is related to
the increase of the emitted intensity with time, since, accord-
ing to Schawlow-Townes formula[21], the spectral linewidth
is inversely proportional to the number of emitted photons.

We note that the emission pulse exhibits a fast decay fol-
lowed by a slow decay for the random laser operating above
threshold. When the emitted laser pulse leaves the sample
and stimulated emission becomes negligible, the temporal
decay of the residual atomic population inversion occurs by
spontaneous emission. This slow decay of the population in-
version leads to a tail in the emission, similar to the case of
the laser operating below threshold. However, this low inten-
sity tail does not substantially alter the emitted pulse dura-
tion, since it is acquired only after the number of photons
decreases dramatically.

A consequence of the interpretation provided above is the
importance of the nonadiabatic atomic response. While a
model in which the atomic variables are adiabatically elimi-
nated[13] is adequate to describe steady-state spectral emis-
sion properties, it cannot recapture important features of the
emitted pulse. By adiabatically eliminating the atomic vari-
ables, one forces the atomic population to instantaneously
follow the pump. Consequently, the temporal profile of the
emitted light will be dictated by the excitation, regardless of
whether the laser operates below or above threshold. In this
case, the threshold behavior of the emitted pulse duration
and delay(presented in Fig. 4) will be lost. This can easily be
seen if we solve Eq.(4.6) under steady-state condition and
substitute the resulting population inversion into Eq.(4.4):

ṅ = − gcn + Pstd. s4.9d

Clearly, the number of emitted photons will simply increase
in time with the pump intensity and then decrease at a rate
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equal to the cavity decay rate, irrespective of the lasing
threshold.

V. CONCLUSIONS

In summary, we have demonstrated the ability of the dif-
fusion model with nonlinear, nonadiabatic atomic coupling
to recapture the experimentally observed spectral and tempo-
ral properties of the emission in photonic paints. Most of the
important lasing features, such as the narrowing of the spec-
trum, shortening of the emitted pulse, and the linear input-
output for pump intensities above a threshold value, can be
accurately recaptured using a one-dimensional time-
dependent diffusion model. A three-dimensional diffusion
model is required to describe effects where the excitation
spot size and the gain volume is limited, and significant dif-
fusion of photons out of the gain region occurs prior to the
buildup of the emitted pulse.

The analysis presented here assumes a white-noise model
for the disorder and considers only isotropic scattering with a
uniform distribution of active molecules. It would be of con-
siderable interest to extend this study to the case of more
general types of anisotropic scattering and nonuniform dye
concentration. It is possible that the statistical and spatial

distribution of the gain material will influence the diffusion
coefficient[28] and thereby affect the lasing properties. It is
also of considerable interest to study the influence of more
detailed properties of the scattering microstructures on lasing
properties. For example, with finite-size scatterers which
have some form of spatial correlation, the scattering is an-
isotropic. In this case, there is a distinction between the scat-
tering mean free path for photons,l, and the transport mean
free pathl* . Such a situation will require the generalization
of the multiple-light-scattering theory for a passive random
medium [18] in the case of a nonlinear active random me-
dium, characterized by a complex, intensity-dependent di-
electric function. A more fundamental multiple-light-
scattering model with nonlinear gain may also be crucial to
describing the very strong scattering regime of incipient pho-
ton localizationsl* øld [29]. In this regime, our simple dif-
fusion model suggests the likelihood for dramatic enhance-
ments in the laserlike response of the random medium.
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