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Using a path-integral formalism and decomposing the Hubbard interaction into charge and spin
order parameters, we develop a 1/ loop expansion of the two-dimensional Hubbard model. At the
saddle-point level, we present a detailed study of the energetics of twisted antiferromagnetic order.
Doping the antiferromagnetic state leads to a rich mean-field phase diagram at zero temperature,
which includes spiral phases, a column phase, and ferromagnetism. The on-site magnetization, the
density of states, the plasma frequency, and the quasiparticle weights are evaluated for the twisted
spin-density-wave (SDW) states as a function of doping and U/t. Doping-induced frustration re-
markably leads to a closure of the Mott-Hubbard band gap for any U/t. At one-loop order, we del-
ineate the collective spin and charge fluctuations of the mean-field SDW state. The action for the
two transverse spin modes at half-filling maps to a nonlinear ¢ model, which tends to disorder upon
doping. Twisted magnetic ground states exhibit a third Goldstone mode due to the complete break-
ing of rotational invariance. For the commensurate SDW, the charge fluctuations couple only to
longitudinal spin fluctuations, whereas, for the incommensurate metallic SDW states, the charge
modes are coupled nontrivially to the massless spin waves. This suggests a metallic state quite un-
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like traditional Fermi liquids.

I. INTRODUCTION

The electronic and magnetic properties of Mott insula-
tors! present a long-standing fundamental problem in
solid-state physics. These systems have received renewed
interest because of their relevance to the recently
discovered? high-temperature oxide superconductors.?
The fundamental issue is the precise description of a
low-dimensional strongly correlated electron system as in
the two-dimensional (2D) Hubbard model* where the ap-
plication of standard many-body methods is highly prob-
lematic. The two-dimensional character of the layered
perovskite superconductors suggests that expansions
about standard spin-density-wave (SDW) mean fields
would be inefficient due to strong fluctvation effects. This
has led many authors to use as their starting point exact
solutions of one- and two-dimensional model Hamiltoni-
ans where no long-range magnetic order is found at finite
temperature. In this approach, the observed antiferro-
magnetic order for the undoped Mott insulator would
later be accounted for by adding weak interlayer cou-
plings to an exact solution of a strictly two-dimensional
model. The advantage of this approach is that it can in-
corporate from the outset one of the salient features of
the perovskite superconductors, namely the non-Fermi-
liquid behavior observed in the normal metallic phase at
finite doping. The disadvantage of this approach is that
the two-dimensional model is itself poorly understood.
Even in the preliminary phase of the calculation, some
other mean-field approximation must be introduced and
its fluctuation corrections established. In this paper, we
adopt the view that weak interlayer couplings may, in
fact, stabilize SDW mean-field approximations to the 2D
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Hubbard model and that it is meaningful to consider fluc-
tuations about such a broken-symmetry state even at
finite temperature. These fluctuations take two forms.
The first are small-amplitude charge and spin-wave fluc-
tuations whereas the second class of corrections involve
large-amplitude distortions of the magnetic mean field
such as domain walls, solitons, and instantons. We find
that a possible source of non-Fermi-liquid behavior
emerges from even small-amplitude fluctuations when
there is a twist in the underlying mean-field magnetic or-
der. Whereas in the undoped antiferromagnet, the
charge fluctuation mode has a mass given by the Mott-
Hubbard (MH) interband gap; in the doped system, the
fluctuation spectrum exhibits massless intraband excita-
tions across the Fermi surface. In the presence of the
twist, however, the off-diagonal spin-charge response for
the metallic state no longer vanishes and is already mani-
fest at the mean-field level by the gradual variation of the
pitch with doping. This unique coupling of collective
charge fluctuations to massless spin waves realizes an in-
triguing variation of the usual conductivity dominated by
low-energy particle-hole excitations alone. In addition,
the intrinsic two-dimensional nature of the magnetic or-
dering in twisted SDW ground states leads to an addi-
tional massless spin-wave mode in contrast to only two
Goldstone modes for antiferromagnetism. Moreover, the
macroscopic shift of the ground-state wave function
parametrized by the pitch through doping implies that
the spiral metal is quite unlike traditional Fermi liquids.
Theoretical approaches based on SDW mean-field solu-
tions predict that, at least for small doping and
sufficiently large U/t, incommensurate magnetic states’
should exist while other works based on exact solutions
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of lower-dimensional models stress the importance of
resonating valence bond,® flux,” chiral,® or topological
ordered phases’ in the Hubbard model or its derivative,
the ¢-J model. uSR experiments indicate that the on-site
magnetization is reduced by up to 50% prior to the onset
of superconductivity and neutron scattering reveals
short-range magnetic order rather than a prominent
Bragg peak at finite doping & with a correlation length
&~8"1/2 and spin-wave velocities considerably lowered
upon doping. Short-range correlations are also evident
from NMR data. Dynamic short-ranged antiferromag-
netic correlations are evident in disordered ground states
of low-dimensional models, whereas incommensurate
SDW states exhibit static long-range order with a re-
duced on-site magnetization. However, these latter states
may also be disordered by fluctuation effects. The fact
that spiral states can twist either clockwise or counter-
clockwise in a given direction leads to new degeneracies
of the ground state. If parity remained a good symmetry,
then the domains that arise between these degenerate
solutions could also naturally account for the short-range
magnetism. On the electronic side, the anomalous prop-
erties of the charge carriers in the Raman data, dc con-
ductivity may provide a stronger test of theory. A full
explanation of these facts may lie not only in spin-charge
separation for the carriers that naturally appears in the
one-dimensional Hubbard model but also in the influence
of the upper Mott-Hubbard band.® The upper Hubbard
band describes the doubly occupied sites which, for posi-
tive U, are the antibound states. Their effect on the
normal-state electronic properties of the quasiparticles
depends strongly on their proximity to the Fermi surface.
Interestingly, even for large U/t, the variation of the
pitch of the spiral states and the depressed local magnetic
moment conspire to not only close the Mott-Hubbard
band gap but also bring these antibound states arbitrarily
close to the Fermi level for moderate doping. Although
neither the crossing nor the proximity have a significant
effect on the quasiparticle weights at the mean-field level,
their contribution as virtual states in standard response
functions will be nontrivial.

An additional difficulty in the many-body theory of the
strongly correlated Hubbard model is the absence of any
convergence parameter for fluctuation effects even at zero
temperature. Convergence of an expansion about a SDW
state can nevertheless be provided by extending the spin
degeneracy of electrons to N, flavors. For SDW mean
fields, we show that this trick facilitates a perturbation
expansion in 1/N; for the correlation functions at any
U /t for the Hubbard model, which, in turn, allows us to
make contact with many experimentally observed
features of the quasi-two-dimensional perovskite super-
conductors.

In Sec. II, we develop the path-integral formulation
and recast the Hubbard interaction into charge and spin
order parameters via the usual Hubbard-Stratonovich
transformations. By expanding about a SDW saddle
point and integrating over the fermions, we obtain an
effective Landau-Ginzburg functional for the order-
parameter fields perturbative in 1/S. In Sec. III, the
saddle-point  solutions are evaluated at filling
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0.01<8<0.6 .and 2<U/t<15. Having obtained the
magnetic phase diagram, we compute the spectral densi-
ty, the quasiparticle weights, the plasma frequency, and
the band-closure line. From the energetics of the mean-
field states, the phase separated regions are identified. In
Sec. IV, we consider the one-loop level to establish the
stability of the SDW saddle point and find the quadratic
Landau-Ginzburg action for the broken-symmetry
mean-field states. At half-filling, the nonlinear o model is
thus directly derived from the Hubbard model and we
compute the variation of the o-model coupling constant
with doping confirming that doping disorders the antifer-
romagnet. For the incommensurate SDW, we delineate
three massless spin-wave branches and their coupling to
the spin-amplitude and charge-fluctuation modes. Lastly,
in Sec. V, we provide a summary and connections of this
work to experimental signatures.

II. 1/S EXPANSION

The model appropriate to the strongly correlated prob-
lem for the layered perovskites will be taken to be the
one-band Hubbard Hamiltonian® with on-site repulsion U
an order of magnitude larger than the bandwidth param-
eter ¢:

H=—t3 clei,+ U3 nny . S}
ij i

Here, the sum is performed over all nearest neighbors
and the spin index @=1,2 for up and down spins, respec-
tively. The partition function

Tr[exp—B(H —poN)]

with p being the chemical potential, k3T =1/8, and
N =§‘,,~c,-‘:zc,-a can be expressed as an imaginary-time
coherent-state path integral:

Z=(const)fD[c,c*]exp( —S),

B (2)

s=f0 dr [zc,.:;(a,—uo)c,.a+ﬂ .
I

Here, the electron operators have been replaced by an-
ticommuting Grassmann variables satisfying
¢(B)=—¢c(0). Arranging the fermions into two types of
spinors at each site ¥=(cy,c,) and y=(cy,c5} ), the in-
teraction term can be decomposed into six possible order
parameters since

6nyn,=—(lov?=(x"ox?
corresponding to spin and charge fluctuations where o,
are the three Pauli matrices normalized to
o199=g%=1 for any a. From the definition of ¥, we
find that x*a‘){ is just the usual charge density zfz/;
whereas y'c*y and )(Ta"’)( are the real and imaginary
components of the usual BCS order parameter ¢,c,. For
positive U, the relevant degrees of freedom include the
spin fluctuations along with the charge density ;\{Tcr‘x,
whereas, for the negative-U model, all of the charge order
parameters and the total angular-momentum mode
yb*o .Y are important. Therefore, the methodology of this



paper at finite doping can be applied to the negative-U
Hubbard model in an external magnetic field since the
chemical potential becomes an external magnetic field
along the z direction for the y states. For the case of a
magnetic Mott insulator it is convenient to decompose
the Hubbard term using four Hubbard-Stratonovitch
fields ¢¢, a =x, y, z, and p; at each lattice site i corre-
sponding to the three spin components and the charge
density

B
exp— fo drU S n;ng,
i

L]

=(1/M [ D[4

f .Cd'r] ,

@3)

¢“plexp

L= 3 [pt+¢7¢f +apdlvi+réiplo gl -

Here, N is a normalization constant and the Gaussian
fields satisfy periodic boundary conditions in 7 given by
pi(B)=p;(0). Although an independent coupling con-
stant for each order parameter could be assigned, our
choice is symmetric in the x, y, z spin directions. The
remaining coupling constants are constrained to
3y2—a?=2U. Although the full path integral does not
depend on which of the infinitely many ch01ces for the
couplings we choose, only the choice a? 7/ ={ corre-
sponds to an arrangement of the loop expansion which, at
the saddle point, reproduces the correct Hartree-Fock
solution for the energy and the SDW insulator gap. For
convenience, we specifically choose a=y=Vv'U. More-
over, the above choice captures the massless spinwave
modes and the massive charge modes as we shall discover
in Sec. IV. Our choice of decomposition is thus dictated
by the requirement of generating a loop expansion about
a specific mean field. Other mean fields such as charge-
density waves or Fermi liquids, in general, require other
decomposition schemes in order to reproduce the correct
Hartree-Fock result.

We can rescale p;,¢?—VU p;,VU
matrix

M,-"‘B('r)=

#¢ and define the

)8+ ¢ )0 3P

For the effective action, we make the Fourier transforma-
tion

UT)=(1/VL) 3 explik-r;—
k,n

iwn’r)l[)k,n ’

where L is the number of sites and the Matsubara fre-
quency is w,=(2n +1)w/B. For the order-parameter
fields, we make a similar Fourier transform but require
w, =2nw/B. The partition function is now

Z =01/ [ D[4, $,p,4Jexp(—$)
with
S=(U/2)TeM M) +y' K +UD/VI W, @)

where the summations over frequencies, momenta, and
internal indices is implied. The inverse electron propaga-
tor is
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K5 =8%8,,8,,A,
where
Ay r=(—iw,+&, )
and
g, = —2t(cosp, +cosp, ) ,

the lattice constant being set to ao—l Likewise, the
order-parameter matrix is given by D pginm =M b Zgn—m
in momentum space.

Integrating out the fermions, we obtain the Landau-
Ginzburg action for the order-parameter fields,

Z=(1/N) [ D[p,plexp(—S.g)
with
S.s=—(BUL /2)/Te(M M)
+Trin(14+ UK "'D)+TrnkK . (5)

Here, we have rescaled M —V'L M. The decomposition
of the Hubbard interaction respects the original U(2)
symmetry of the Hubbard model realized via ¥— V' and
M— VMV with ¥ any element of U(2) and, hence, the
terms that appear in the effective Lagrangian to each or-
der in M are restricted. The contribution to the effective
action to order n is given by

Trin(1+ UK ~'D)=—(—U)"Te(K ~'D)"/n .

Therefore, around the symmetric vacuum, this defines a
perturbation series in U/t since K ~t. For n=1, the
trace becomes

UTrK ~'D)=2Upyo 3 Ay
pym

which can be eliminated by shifting p; appropriately. To
quadratic order, the effective action is given by

UBL 3, [1+ A (k,n))($%5 8% n TPknPrn) »
kyn

where the one-loop contribution is

Ak,n)=(U/LB) 3 Dp By tintm -
pm
The physical spin susceptibility!! of the paramagnetic
state is related to the one-loop action by the equation

A(k,n)==Ux(k,n) .

Since the static piece of A (k,n =0) gives the one-loop
mass of the fluctuations, we find that they are all degen-
erate and given by

mq=1+(U/L)§ [fe,4q)—fg,)] /gy 108, .

Due to the Van Hove singularity for the square lattice,
we find m, <0 for any U/t when ¢ =Q,=(m,), thus
spelling an instability towards a new ground state in the
Landau-Ginzburg theory. The mass condition is con-
sistent with the usual random-phase-approximation

(RPA) susceptibility criterion Uy(Q,)=1 for a com-
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mensurate spin-density wave. However, since the masses
of the charge and spin fluctuations are degenerate, there
is also an instability into a commensurate charge-density
wave which is entirely a product of our particular decom-
position of the Hubbard interaction.'> Each instability
corresponds to a saddle-point minimum about which an
expansion can be made. Since the copper-oxide super-
conductor is an antiferromagnet at zero doping, we dis-
card the charge-density-wave (CDW) solution which
would, in fact, be relevant for very small U. The correct
energetics of the CDW phase requires an alternate
Hubbard-Stratonovitch decomposition. For large U, we
will establish that the SDW solution itself is stable locally
as we must. Through the use of trace formulas, it is easy
to obtain the contribution to the Landau-Ginzburg func-
tion for any Fourier components of the order parameters
to any order n, however, the convergence of such an ex-
pansion is poor for U >¢.

The instability in the Landau- szburg functional im-
plies that the SO(3) subgroup of the full symmetry must
be dynamically broken at half-filling due to correlation
effects. When a weak interlayer coupling is incorporated,
this symmetry breaking has a finite critical temperature
which is mimicked by a mean-field theory of the 2D mod-
el. Thus, we are instructed to start again with Eq. (4) but
instead to shift the fields M =M + M into mean-field and
fluctuation parts. At finite filling, a general magnetic
mean-field configuration can be parametrized by g;=p,
corresponding to a uniform charge density and

Fi—ifl=S expl@r;)

corresponding to any single-wave-vector magnetic state
lying on a plane. For Q=Q, and p; =1, this corresponds
exactly to a classical spin-S antiferromagnet oriented
along the x direction in spin space. Similarly, column
states are described by Q=(0,7), ferromagnetism by
Q=(0,0), zone states by Q=(Q,,w), and finally spiral
states by Q=(0Q,,Q,=Q,). The zone states being anti-
ferromagnetically ordered in the y direction and spiral-
ling in the other can be thought of as half-spirals. Due to
the reflection symmetries of the square lattice, the parti-
tion function is symmetric under any reflection of Q with
respect to the x axis, the y axis, or the x ==y axes.
Along with the lattice periodicity, this implies a twofold
degeneracy for the column states (0,7) or (7,0), a fourfold
degeneracy for the spiral and zone states, and an eight-
fold degeneracy for any other state. Since these discrete
spatial symmetries are unrelated to the SO(3) symmetries
of the order parameters, they represent extra degenera-
cies orthogonal to the Goldstone modes that result from
symmetry breaking.

The saddle-point approximation for the order-
parameter fields is equivalent to canonical Hartree-Fock
(HF) theory. In the latter method, the on-site interac-
tion, now understood to be a 4-fm operator, is expanded
around a self-consistent HF ground state

npng = g+ ng g ) = (S )87 —SH(S7)
+<S+><S;_>_<ni1><nu>, (6)
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where S*=cfc, and S™=(s . Further defining the
operators 2Q,=yly, and 2S8°=ylo%y,, we have
SE=S87+iS?. For the Hartree-Fock-Bogoliubov approxi-
mation, an additional Wick contraction {cqc; ) and its
conjugate would be included. Defining c-number fields
p;={Q;) an ¢?=(S?), the expectation value for the
double-occupancy operator can be expressed as

(ngn;y ) =pi—i4f .
The mean-field Hamiltonian is now given by

e =t S U+ U S o, — g0, ™)

ij i ¢
where the quadratic terms in the c-number fields have
been omitted since they are irrelevant to the calculation
of any Green’s functions. Since the sign of the linear
term in .L [Eq. (3)] can be equally chosen a=—y=V'U,
the two electronic Hamiltonians are equivalent. For any
planar magnetic state where at least ¢; vanishes, the spec-
trum of Hyp is symmetric around zero energy since Hyp
is manifestly odd under the particle-hole transformation
Y, —Yf—, Likewise, for x —z planar states where at
least ¢?=0, H is odd under the particle-hole transforma-
tion t;,—¥%. Within our representation of the SO(3)
algebra, only in these two broad cases will the quasiparti-
cle bands have a particle-hole symmetry. The experimen-
tal implication of this is that the physics of planar mag-
netic states is symmetric with respect to electron and hole
doping. However, for topological backgrounds like soli-
tons or merons where all three spin components are
nonzero, particle-hole symmetry is explicitly broken.

The inverse of the electron propagator in the broken
vacuum is K=K +UD. Integrating out the fermions
again, the loop expansion obtained is (—U YK "Dy /n.
For U >t, K~(UD), and D is just the on-site magnetiza-
tion S, so

(—U)"Te(E~ D)y ~1/8".

Since this is not satisfactory for the spin-half case nor for
U~t, we extend the formalism to fermions of arbitrary
spin s, where s is some half-integer. This can be accom-
plished by replacing the doublet 1 by a 2s+ 1 column ma-
trix with components ¢, 9, _,...,¢¥_,;1, ¥, and ex-
changing the Pauli matrices for a (2s+ 1)-dimensional ir-
reducible representation of the SO(3) algebra

[o.a,a ] 2lsabc ¢

At half-filling or one fermion site, the ground state will be
a spin-s anteferromagnet giving S ~s and, hence, the ex-
pansion converges in powers of 1/s. While some proper-
ties can be computed surprisingly well' in this limit even
for spin one-half, we expect that the true ground state for
all but very small doping will require an estimate of the
fluctuation effects. Rewriting the Hubbard interaction in
the SO(3) symmetric fashion as we have done also allows
for a 1/N expansmn where N represents the number of
spin doublets. * We 1ntroduce N, flavors of spin doublets
P, —Y5 with a = »N¢ and a=1,2 which will re-
quire extending the Pauli matrices to reducible 2N -
dimensional matrices having the same commutation alge-
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bra but with normalization {0 0% =2N,8%. Since
half-filling now corresponds to N electrons per site, the
total spin becomes s =N, /2 in the antiferromagnetic
state. The saddle-point consistency will naturally require
that S ~s, again making the loop expansion convergent
in powers of 1/Ny. The expansion is thus convergent for
any U/t as long as US >>t. Although the powers of S
that appear in the loop expansion are easy to obtain with
either expansion, it can be shown that any Green’s func-
tion or response function can also be organized as an ex-
pansion in 1/S once the desired calculation is done in the
broken state. We will develop the expansion in 1/N,
since it requires a simpler representation of the o® ma-
trices.

III. PHASE DIAGRAM

Even with an expansion parameter for the Hubbard
model, our choice of the background magnetic state is re-
stricted by the invertibility of K or equivalently the di-
agonizability of Hyp. For a system of finite size, the in-
verse of K can be numerically evaluated'® for any choice
of M; however, for infinite systems, the choices for M be-
come restricted to the planar magnetic states considered
above. In the SO(3) broken phase, we have

Z=(1/N) [ Dp,¢lexp(—Sg)
with S ¢ given by

Sor =LA (B + I BT +51)]

—N;TrInK+N; 3 (=U)"Te(K ~'D)/n . (®)

] N
Defining a new Nambu spinor ¥, , (ch+Q n:Cipn )y the
propagator matrix K~ ! for any flavor in the SDW back-
ground becomes

) A;, —US
Kq’, el =Omi0gr Gy —US Allgm 9)
Here, G [Aq mBg +Q » —(US)?17! and the chemical

potentlal /.LO is replaced by p=p,+Up. At the saddle
point, terms linear in the fluctuations M must cancel,
from which we obtain

p=(UN;/2LB) 3, G n(Bica+hiion) >
k,n

1=_(UNf/LB)2Gk,n .
k,n

Gy, , can be factored into
[(z, —E¢ +p)z, +Eg +w)] 7",
where z,,

2EE=¢, e ot(er—r o P HAHUS?2 . (1)

=iw, and the quasiparticle poles located at

From the particle number constraint (N )=LN/(1—3)
for doping & and the canonical expression

(N)=—(N;/B) szr[K],
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we identify —2p=N,(1—5). The sums over the Matsu-
bara frequencies are converted into a sum over the quasi-
particle residues giving the usual Hartree-Fock equations
for 1 and S:

47 (1=8)= [d*k(fF+f0) s
4n-2=Ufod2k(fk_-fk VEF —E[) .

(12a)
(12b)

Here, fif={exp[B(Ejf —u)]+1} ! is the Fermi function
and the integrals are to be performed over the range
(—m,m) for k. The total energy of the system can be
brought to the form'®

—(N;/B) S, (iw, +e, +10)Ac 1 0, Gion -
k,n

Performing the frequency sum, we find

AE /LN;=4US*+U(1—5)
+a [ PRESFEHEC ST, (13)

which is just the canonical Hartree-Fock energy for a
general SDW state. At half-filling and US > ¢, it is easy
to verify that the gap equation reads S ~N/2. The term
in the loop expansion of order n in the fluctuations is
therefore of order N7 " ™' since there is an overall N,
from the loop over fermions just as in the gap equation.

For large enough N, flavors, the saddle point is an ex-
cellent approximation, and we assume that the physics
does not alter dramatically when we set N,=1. We have
numerically evaluated these equations at zero tempera-
ture for 2 < U <15 and doping 0 <8 <0.6 with a mesh of
500X 500 points in the Brillouin zone making use of all
the symmetries. The quasiparticle states describe two
bands each with L states. They are just the elgenstates of
Hyp [Eq. (7)] in the SDW background with energies Ei.
Hyr can be diagonalized by the unitary transformation
that preserves the anticommutation relations via
¥, =V (k)y, where V(k)=exp(i6,0”) and

tan(26k)=2US/(8k—sk +Q) .

In terms of the Bogoliubov states $=(ak,3k ), a general
SDW ground state |¢1)Q can be written in operator form
as

[¥)o=TI (—sjp@kc,I+QT+cos9kc,fl)|0) , (14

k<kf

where kg is the Fermi momentum. Therefore, the new
band states are admixtures of spin-up and spin-down elec-
trons. The top of the lower band occurs at

(m—Q,/2,m—Q, /2), whereas the bottom of the upper
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band occurs at (—@Q, /2, —Q, /2) since, by particle-hole
symmetry, we have E;f =—FE,, 0, The gap between the

two bands, or the Mott-Hubbard gap, is

A=2US —4t cos(Q, /2)—4t cos(Q, /2) .

The Fermi surfaces for the spiral, column, and zone
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states are shown in Fig. 1. Sprial and zone states have an
asymmetric Fermi surface lying entirely in the right-hand
quadrant for doping less than a critical doping that de-
pends on U/t whereas column states have a symmetric
Fermi surface. The bandwidths for the various states
vary between a maximum of 8¢ for the ferromagnetic
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FIG. 1. The energy contours of E for (a) the spiral state with Q, =Q,=3m/4, (b) the zone state with Q, =3m/4, and (c) the
column state. Shaded regions show pockets of holes at finite doping and the absolute minima are designated by a cross. The large flat
regions give rise to two peaks in the spectral density.
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for the Néel state which approaches 4J for US >>t, where
J=412/U.

There is considerable evidence now that the zero-
temperature ground state of the half-filled 2D Hubbard
model has long-range magnetic order'” with an on-site
magnetization S ~0.37# a value within the range found in
uSR measurements. '® For the range of intermediate of U
we studied, the antiferromagnetic state Q=Q, minimizes
the energy with the on-site magnetization given by

2S=1—-2J/U+0(1/U%.

In contrast, the ferromagnetic state has the highest ener-
gy with the self-consistent magnetization S=1 for
U/t Z 4. The values of the energy per site E /L and S de-
rived in the path-integral formulation (Fig. 2) agree ex-
actly with canonical Hartree-Fock methods.*!® Finite-
temperature effects at the mean-field level are only sizable
when the charge gap A~k T, as seen from Fig. 2, where
S precipitously falls to zero near U/t ~2 when =6/t
Quantum Monte Carlo (QMC) simulations'’ at the same
temperature for a 12X12 system at half-filling give
E/L~—1.15t,—0.85¢t for U/t=2,4, respectively, slight-
ly lower than the saddle point which has energies
E/L=-—1.12t,—0.797t. Therefore, for small U/t
spin-wave fluctuations are less important. For very large
U /t, the energy can be obtained by the effective superex-
change Hamiltonian or the t —J model which gives

E/L =—4.63(t*/U)+34.6(t*/U%)+0(1/U%) .

This result in the limit of infinite U/t converges to
E /L ~—1.15J whereas the saddle-point result converges
to

E/L~—2t2/US=—J ,

the energy of the Neél state for the ¢ —J model at half-
filling. In both extremes of U/t, the mean-field energies
are within 13% of the true ground-state energy. From
the Hartree-Fock approximation, we obtain vanishing
double occupancy at infinite U/t or

(nyym;) ) =(1—8)2/4—S?,
which, at half-filling, goes to
(nyyn; Y =J/U~(J/UP+0(1/U%) .

Infrared reflectivity experiments®®?! find a gap
A=2US~2 eV. The magnetization M inferred from
4SR is related to S via M =gu,S, where the g factor for
the electron is 2.2. In our saddle-point approximation,
the values of A and S from experiment suggest U/t ~3.3
and ¢t ~1 eV. However, spin-wave contributions’® appre-
ciably depress the value of the self-consistent magnetiza-
tion S and the quasiparticle gap 2US, therefore requiring
a larger choice of U/t. These corrections will emerge in
our treatment when we consider the one-loop action. In-
stead of fixing these parameters at the mean-field level,
which are affected by interlayer couplings as well, we will
examine the phase diagram at finite doping over a wide
range of U/t.

The Van Hove singularity in the density of states
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FIG. 2. (a) Energy per site E/L in t eV compared with spin-
wave theory (Ref. 17) (dotted line). (b) Self-consistent magneti-
zation S for the antiferromagnetic state at half-filling, the solid
line is for B= o and the dashed line is for 8=6/t. Double oc-
cupancy is given by ——S 2 -

(DOS) for Q=Q, occurs at +US, the upper and lower
band edges which, in momentum space, lie along
tk,tk,=m. At very small doping, §<<1 and U>>t,
the energy of the antiferromagnetic (AF) state is

Ep~—(1/4U) [ d?kel £

In contrast, the two bands for the ferromagnetic state
have energy €, US and therefore, exactly at half-filling,
the total energy [Eq. (13)] is zero. Slightly away from
half-filling, however, the energy of the ferromagnetic
state becomes Ep < —4t8. Therefore, in the U— « lim-
it, we find Ep <E 4p, similar to the Nagaoka result. At
finite U/t and doping, this need not be the case and, in a
continuum classical model considered by Shraiman and
Siggia,? a planar twist near the hole is favored as op-
posed to the Nagaoka state or a depression in the local
magnetization as in the spin bag. At finite doping, the
mean-field description of these local twists corresponds to
a twisted SDW with Q+Q,,.

There are two parameters of interest as doping is
varied, the pitch g=Q,—Q and the on-site magnetization
S. As the pitch is increased from zero, the bandwidth
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-widens and the peak in the DOS moves below the band

edge leading to a pocket of holes above the energy — US.
If we neglect the q dependence of S by setting S =1, dop-
ing should then induce a transition to q7=0. In this ap-
proximation, one finds that the pitch varies linearly with
doping for small doping and for higher doping unwinds
the antiferromagnet to a ferromagnet? as shown in Fig. 3
whereas allowing S to depress to its self-consistent value
dampens the unwinding. Varying g, and g, independent-
ly, we find that, for a range of doping and any U /¢, the
spiral states g,=q, have the lowest energy (Fig. 4)
reflecting the importance of the specific size and shape of
the pocket of holes that develop for each q. In addition
to the minimum along the diagonal, a saddle point ap-
pears along the zone edge with a relative energy
difference of less than 0.5% when U/t=35, §=0.05. As
the doplng is increased, this difference is narrowed until
the zone state becomes the absolute minimum and the
spiral state a local minimum, for example, at a critical
doping 8,,=0.16 for U /t=5.

The energetics of the twisted magnetic states depends
critically on the electronic DOS as the S=1 case
showed. In Fig. 5, we plot the DOS of the spiral and
zone SDW states near the spiral-zone transition. The two
flat regions (four saddle points) in each of the contour
plots in Fig. 1 give rise to prominent peaks in the DOS
analogous to the Van Hove logarithimic singularity for

‘the paramagnetic state. For the zone states, two peaks of

roughly equal size occur for every g,, which become ex-
actly symmetric located at opposite band edges for the
column states when g, =w. In contrast, for the spiral
states, the peaks are highly asymmetric with the smaller
peak which is located deeper in the band, vanishing for

>w/2. The first peak near the Fermi surface is the
remnant of the peak at the band edge of the Mott-
Hubbard band and is deeper in the band for the spiral
state than the zone state. Considering these spectral dis-
tributions, the transition from spiral states to zone states
should occur when the holes can fill the peak near the
band edge of the zone state which occurs at 8,;. Since

3.2 — R,
,
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FIG. 3. Doping-induced spiral pitch ¢ =|Q,— Q] for $=
(top curve) and for S determined self-consistently (bottom
curve).
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FIG. 4. Contour of the energy per site as a function of the incommensurate wave vector Q for U/t=5 and =0.05. The minimum

is in the center and note the saddle point along the zone edge.

this transition will involve a discontinuous change in the
order parameter q, we will consider it to be a first-order
magnetic phase transition. For doping beyond the
spiral-zone first-order transition, the pitch continues to
increase until it reaches 7 and, hence, this results in a
second-order transition line between zone and column
states. As U/t is increased, the pitch increases more rap-
idly with doping and, for U/t > 10, there is a second-
order transition to a ferromagnetic state before the
spiral-zone state transition. Therefore, doping the fer-
romagnetic state at this range of U/t results in a first-
order transition into a column phase at §,,. The intersec-
tion of the phase boundaries occurs at a tricritical point
between the column phase, the ferromagnetic phase, and
a spiral phase at U/t~ 10, 8~%, and another tricritical
point between the column phase, a zone phase, and a
spiral phase at U/t ~9, §~0.31 as shown in Fig. 6.

At finite doping, the twisted magnetic states are in
competition with the paramagnetic metal with no sym-
metry breaking. For the unbroken phase, S =Q=0,
making Ef=g¢,. The particle number constraint be-
comes

1-8=(1/27 [ d%f;

and the energy per site is
E/L=U(1—82/4+(1/21) [ d%ke, f{ .

For large enough doping, namely at 8.3, the twisted zone

states are unstable towards a paramagnetic phase where
hopping costs no spin-exchange energy. The instability

0.9
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DOS/t (eV)

0.6
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FIG. 5. The density of states in eV ™! per site for (a) the spiral
state and (b) the zone state precisely at the spiral-zone first-
order transition which occurs at §=0.16 when U/t=35. The
pocket of holes (shaded region) is to the right of the largest
singularity in the lower MH band in (a) and to the left in (b).
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FIG. 6. Phase boundaries with a tricritical point between a
ferromagnet (F), a spiral (S), and a column (C) phase at
U/t~10and 6~1/3. The zone (Z) states are unstable towards
the normal paramagnetic (P) states. The dotted lines are the
Mott-Hubbard band crossing lines.

of the paramagnetic metal to a SDW ordering at a wave
vector along the Brillouin zone boundary as the doping is
reduced has also been obtained using the Stoner criterion
in the weak-coupling limit.?* In this latter method, it
was shown that the instabity appears in the linearly po-
larized incommensurate SDW channel at 8,;~0.143
when U =2¢. Considering twisted SDW’s alone, howev-
er, we find 8,;=0.077. The discrepancy is, in part, due to
the difference in the type of SDW considered but is also
due to the omission of perturbative corrections to the en-
ergy. Since Ejf is U independent and S is zero for the
paramagnetic state, the fluctuations are perturbative in U
and cannot be controlled in our 1/8 expansion unlike the
magnetic mean-field states. These perturbations will
move the zone-paramagnetic phase boundary consider-
ably and this may further restrict the doping region for
the incommensurate magnetic phases. While earlier
Hartree-Fock treatments of the 2D Hubbard model away
from half-filling give an entirely different phase diagram
consisting only of ferromagnetic, antiferromagnetic, and
paramagnetic regions,? twisted SDW states provide a
compelling electronic structure with singularities in the
DOS, pockets of holes, and asymmetric Fermi-surface to-
pologies.

Doping induces frustration of two sorts by reducing
the on-site magnetization and increasing the pitch as
shown in Fig. 7 for U/t=17.5. uSR measurements?® and
neutron diffraction'® show a rapid supression of the on-
site magnetization whereas, at mean field, S is reduced by
up to ¥ of its original value at half-filling. Like the case
of half-filling, spin-wave renormalizations and interlayer
couplings must be balanced to obtain the correct reduc-
tion in S. The discontinuity in S and the pitch in Fig. 7 is
due to the first-order spiral-zone transition. Since Q,
jumps to 7 at the transition, the net MH gap is higher for
the zone states. Frustration through doping leads to a

FIG. 7. The charge gap A=2US —4t cos(Q,)—4t cos(Q,)
for U/t=17.5 is normalized to the gap at half-filling 6.6¢ (dia-
monds). Doping reduces the normalized magnetization 25 (dot-
ted line) and increases the normalized pitch (7—Q, )/ (dashed
line); the discontinuity at 8 ~0.25 reflects the spiral-zone transi-
tion.

dramatic closure of the MH gap whenever
S =2t [cos(Q, /2)+cos(Q, /2)]/U ,

which occurs at §=0.07-0.36 for U/r=2-7.5 within
the zone states (Fig. 6). At higher U/t =7.5-11, the
MH gap vanishes at §=0.24-0.29 within the spiral
states. This is followed by a discontinuous reappearance
of the gap at the spiral zone which then finally vanishes
at 6=0.36-0.57 within the zone-column states. The MH
band crossing for U/t > 11 occurs exactly at 5=1—8:/U
within the ferromagnetic state and another crossing for
U/t <16 within the column states but at a doping
8>0.57. In contrast, if we fix § =1, the charge gap van-
ishes only if U/t <4 and U/t <8 for zone and spiral
states, respectively. The doping-induced depression of S
is therefore crucial for the MH band crossing at inter-
mediate and large U /z.

Although the momentum-integrated spectral density
has no gaps after the band crossing, the gap between the
two bands at the same point k in the Brillouin zone
satisfies E;f —E; >2US with the minimum separation at
k,=k,tm and k,=—k,—Q for spiral states. When the
MH bands cross, the states at the lower and upper band
edges pile up, as displayed in Fig. 8, giving rise to a wide
central peak in the density of states which could be relat-
ed to the broad doping-induced absorption band at 0.5 eV
seen in infrared reflectivity data®” and angle-resolved-
photoemission spectra.?® The position of the central
peak relative to the Fermi surface increases with higher
doping and U/t and for U/r=5 and §=0.30 is located
roughly 1 eV above the Fermi surface. For doping
beyond the MH band crossing, the MH gap becomes neg-
ative and causes the upper MH band to come arbitrarily
close to the chemical potential located in the lower MH
band as shown in Fig. 9. The proximity of upper MH
band enhances low-energy interband transitions and this
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FIG. 8. A new peak appears in the DOS 1 eV above the Fer-
mi surface with a width ~0.5 eV due to the overlap of the
upper and lower Mott-Hubbard bands for U/t=5 and §=0.30.

may be connected to the anomalous deviation of the Hall
coefficient from the single-band approximation Ry ~1/0
and the precipitous fall*® in the doping region relevant to
superconductivity. Although these data are qualitatively
consistent with the modified band structures for the
spiral SDW state, the precise influence of the interband
transitions on the transport properties and the optical
conductivity will be discussed in a later paper. As we will
show, fluctuations about the SDW mean-field theory lead
to a substantial modification of any simple effective one-
electron-band picture. The resulting coupling of the spin
and charge fluctuations must be incorporated for a pre-
cise comparison with experiment.

The ground-state energy for the twist states is deter-
mined through a competition between the kinetic energy
of the holes and the spin-exchange energy of the magnet-
ic background. For U/t <5, the energy per site E/L
(Fig. 10) decreases almost linearly up to some doping
beyond the spiral-zone transition but below the zone-
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FIG. 9. The bottom of the upper Mott-Hubbard band (upper
curve) approaches the Fermi surface (lower curve) as doping is
increased. The discontinuity at §=0.16 for U/t=35 reflects the

spiral-zone transition.

13375
- ~0.8
>\\
\\
~0.8 b~ Se .
el = . \\
] Keo See S~o
0n Sl '-.\'-' S -
N Tl el S~
&6 Seel e,
£ a, ~.o vt
g i T 1
— S SRR
M1z}t R TR ot
_1‘4 L | ] I
0 0.1 0.2 0.3 0.4 0.5

FIG. 10. Energy per site for U/t=2, 2.5, 3.25, 4, 5 from bot-
tom to top respectively. Spiral-zone state transitions are indi-
cated by the squares and the zone-parameagnet transitions by
triangles. Energy gained per hole at low doping is < —.

paramagnet transition. As a result, the energy gain per
hole

E,=[E(5,Q)—E(6=0,Qy)]/Lb

is of order —¢ for the twist states as in domain-wall
states®® and in the string picture of Brinkman and Rice.
In QMC simulations, E /L is minimized at 8~0.27, 0.38
with values —1.27t, —1.15¢ for B=6/t. At the same
temperature, our mean field gives minimum energies at
§=0.30, 0.43 of E/L=~1.27t, —1.07¢t, respectively.
Although this comparison will be affected by finite-size
effects in QMC, it nevertheless shows that quantitative
agreement between mean-field methods and other exact
approaches can be obtained through a proper choice of
the saddle point.>! As U/t is increased, the linear depen-
dence of E/L crosses over to a quadratic dependence
(Fig. 11) near half-filling making E, vanish in the §—0
limit. E /L saturates (E, reaches a minimum) at a higher
doping & and then increases to zero at §=1 for any U /t.
In the absence of any loss of Coulomb screening, a
Maxwell construction can be used to demonstrate that
phase separation will occur for 8§ <§. Phase separation
can take place even for §>8 if an additional local
minimum in E, occurs at a doping above § which may
occur in the presence of a first-order transition. Evaluat-
ing the position of these minima then gives the phase dia-
gram in Fig. 12 which includes an antiferromagnetic-
ferromagnetic mixture at large U/t a
antiferromagnetic-spiral and antiferromagnetic-zone mix-
ture at intermediate U/t and an antiferromagnetic-
paramagnetic mixture at U/t<2.2. An additional
minimum in E, appears when 2.2 < U/t <3, giving rise
to a zone-paramagnetic mixture and a spiral-zone mix-
ture in the range 7.6<U/t <9 in the doping region
where these first-order transitions occur. Pure spiral
phases appear in the region 0.2 <8 <0.3 whereas pure
zone phases appear for a much wider range of doping.
At large U/t, the antiferromagnetic-ferromagnet mix-

tures are consistent with dynamical® and mean-field”
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FIG. 11. Energy per site for U/t=6, 7.5, 8.5, 10, 11, 15 from
bottom to top, respectively. The increasing convexity with U/t
favors phase separation at the mean-field level.

calculations for the t-J model. The phase-separated re-
gions not only differ magnetically but also electronically
due to the variation of the charge gap with doping. How-
ever, the precise connection of these phase mixtures to
the inhomogeneities observed in superconducting sam-
ples®* will require an understanding of the Coulomb ener-
gies of the phase-separated regions, interfacial effects, and
the induced reordering of mobile oxygen atoms.

In Sec.ll, we provided a Landau-Ginzburg expansion
for the SO(3) symmetric vacuum perturbative in U/t. At
weak coupling U <, this expansion can be truncated at
quartic order and the energetics of any mean-field solu-
tion compared. Perturbative expansions of this type?*
favor a linearly polarized incommensurate SDW rather
than a twisted state. A linearly polarized incommensu-
rate SDW can be written as a super-position of two twist

states, one at Q and the other at —Q giving
16 \
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FIG. 12. Phase separation occurs for 3%E /38% <0 evaluated
using Fig. 11 and 12. The phases are spiral (S), zone (Z),
column (C), and ferro-, antiferro-, and paramagnetism
(F,AF,P).
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'$?=S cos(Q-r;) for some component a and all other

components vanishing. Just as the commensurate SDW
at half-filling gaps the Fermi surface everywhere along
+k,tk,=m, the incommensurate linear SDW also gaps
the Fermi surface more evenly than the single twist
states.’® Therefore, at least for small repulsion U, the
linearly polarized SDW should be the ground state away
from half-filling. However, for U 2 ¢, the energetics is no
longer dominated by the electronic DOS near the Fermi
level alone. This is evident in Fig. 5 where it is shown
that the DOS well within the band is dramatically

- affected by the magnetic configuration. Even in the pres-

ence of more than one wave vector Q, a mean-field esti-
mate of the energy per site of linearly polarized SDW
states®® gives an energy per site

E(3)—E(8=0)~—0.014¢

at §~0.185. The twisted SDW, meanwhile with just one
wave vector, has considerably lower energy

E(8)—E(8=0)~—0.16¢ .

Moreover, the holes in linearly polarized SDW states
preferentially move where the magnetization ¢“~0, that
is, along lines perpendicular to Q as various lattice calcu-
lations show. ™ For large U /t, this can be understood
from the requirement that double occupancy vanish,
which implies p?~S2cos¥(Q-r;). Including long-range
Coulomb repulsion, the stability of such a nonuniform
charge distribution is even less likely. In contrast, for
twist states, the magnetization, the pitch, and the hole
density are uniform.

The finite density of states at the Fermi surface in the
lower Hubbard band makes the twist states metallic away
from half-filling (e.g., Figs. 5 and 8). However, due to the
significant rearrangement of these states, the DOS at the
Fermi surface p(e) is considerably lower than the metal
with no symmetry breaking. Naturally, for the insulating
commensurate SDW, p(e f)=0, which increases very rap-
idly upon doping and soon reaches a maximum within
the spiral states (Fig. 13). Further doping only reduces
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FIG. 13. Density of states at the Fermi level in eV ™! per site
is higher for a paramagnetic metal (solid line) with U=0 than
the twisted magnetic metal; U/t=2.5, 5, 10 is shown as dotted,
dashed, and dot-dashed.



p(ep) at the expense of a growing number of states deeper
in the band. At the spiral-zone transition, p(£y) increases
abruptly due to a translation the first peak towards the
bandedges. The increase in p(ey) is smaller for increas-
ing U/t. When the system becomes paramagnetic, p(€y)
again abruptly increases. Except for a small region of
doping at U/t=2.5, p(ep) for the twist states is always
lower than the system with no symmetry breaking.

At the saddle-point level, the physical picture is that of
a collection of essentially noninteracting quasiparticles in
an effective single-particle density of states corresponding
to a twisted SDW. Fluctuation corrections will give rise
to significant corrections to this picture. The most
significant of these, as we will show, is the coupling of
charge fluctuations to the twist degrees of freedom of the
background SDW. This will affect experimental response
functions such as the magnetic susceptibility y,,. In ad-
dition to the spin-wave contributions, an electron Pauli
contribution will arise from charge-spin coupling. A
meaningful evaluation of y,, must therefore be performed
at the one-loop level beyond the saddle point. In con-
trast, the effective one-electron picture allows a reason-
able approximation to the plasma frequency #iw, which
may be written®’

(fi0p, )=(2¢2/md) [ d*k (V) B 8(E ~Ey) .

Here, d =13.7 A, the interlayer spacing for the lantha-
num perovskites. For the zone states, the group veloci-
ties are asymmetric, #w,, ##iw,,, so we define the rms
plasma frequency wf,=cu,7;x+wpy. The plasmon energy
for U/t=2.5, 5, 10 is displayed in Fig. 14. Increasing the
interaction strength U lowers the plasmon energy for all
dopings consistent with the redistribution of spectral
weight from the Fermi surface into interband transitions
to the upper MH band and other bands omitted in the
Hubbard model. At the sprial-zone transition, the in-
crease in p(ey) is reflected by a jump in the plasmon ener-
gy therefore enhancing the Drude conductivity. Despite
the discontinuity, the plasmon energies saturate to values
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FIG. 14. Plasmon energy fiw, in eV for U/t=2.5, 5, 10 plot-
ted with squares, diamonds, and triangles, respectively. The

discontinuity is due to the spiral-zone transition.
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of #iw,~0.8-1.0 eV, in reasonable agreement with in-
frared reflectivity data.’® This is in contrast to nonmag-
netic one-electron-band models which predict much
larger values for the plasma frequencies.®’ Since the ex-
perimentally derived values are subject to ambiguities in
extracting the Drude portion of the conductivity, we con-
clude that the doping dependence of #iw,, rather than its
absolute value, places a stronger constraint on theory.*
Our mean-field twist states have the correct saturation at
higher doping, but the rapid increase below the spiral-
zone transition, which can be parametrized as ﬁcop ~V'8,
is more difficult to experimentally verify. Although
phase separation could smear out the spiral-zone transi-
tion, the dramatic difference in #iw, for the spiral and
zone states for U/t <10 at low and high dopings, respec-
tively, is a new prediction. The plasmon energy is insens-
itive to the interaction effects that determine the scatter-
ing time 7, and the resulting dc conductivity. The band
Fermi-liquid picture inherent in these mean-field calcula-
tions, while including correlation effects through S and
Q, entirely neglect the coupling of massless spin waves to
charge-density fluctuations. These effects are crucial in
determining 7., and may, in fact, be more important than
the resistivity due to electron-phonon scattering.

The interaction effects that are included at mean field
give a finite quasiparticle weight Z; to particle-hole pairs
near the Fermi surface. Z, is exactly related to the
discontinuity in the momentum distribution function*

n=- <ck*a(7')cka(0)>7-_,0+

at the noninteracting Fermi surface. Taking into account
the momentum translation between the ¢, fields and the
propagator matrix for the ¥, fields [Eq. (9)], the up-spin
contribution is

ne= 3, Ak—iQ',,Gk,,,exp(iwnr) .
wn

At zero temperature, the upper band contribution van-
ishes, giving .

ny =[(Ex —erro) /(B —ENNf 15)

for the SDW background. For Q=Q,, this reduces to
n1=(1—¢g, /E&)/2. Although the Fermi surfaces for
spiral SDW states are asymmetric (Fig. 1), the crystal
momentum

J,~ % (f 4 qa(TIVEL 10 /2Cka(0)),_ o+

vanishes. This occurs in light of the fact that the change
in the Fermi surfaces of the up- and down-spin electrons
occurs in opposite regions of the Brillouin zone expressed
by the identity n,,=n_, . This implies that

- J,~8(q) % Ver(ngy+n,,)=0.

Making use of this identity, we find ny=n;+n_g;,
which has a maximum value of 2 due to the spin degrees
of freedom. At U/t=10, n, is plotted along the diagonal

k,=k,=k in Fig. 15. At zero doping, the quasiparticle
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FIG. 15. Momentum distribution n, for k=k,=k, at
U/t=10. Z; vanishes for §=0 (solid line), is finite for the
spirals 8=0.2, 0.3 (dotted and dashed), and increases slightly for
the zone state §=0.4 (dot-dashed).

weight Z, vanishes as it must for an antiferromagnetic
insulator. Away from zero doping, Z, always has a finite
value, increasing at first and then decreasing until the
spiral-zone transition as displayed in Fig. 16. Increasing
U/t lowers Z; similar to the lowering in p(eyp) and #w,,.
For the ferromagnet at mean field, Z, =1 just as in the
noninteracting Fermi-liquid case. Column states have
the highest values of Z, > 1. The distribution n; includes
only the mean-field correlations and it is important to
determine if the fluctuation effects reduce Z, to the
values necessary to reconcile the peak widths seen in pho-
toemission. *!

IV. FLUCTUATIONS

Terms beyond the saddle point in the loop expansion
concisely describe the fluctuations around the mean-field

1.2
;
- 'I.
S
1.0 -7/
R - - s
-1 - 7
S 4 7 I/ < ’
- K Ve ,
S -
// ',-"— Tl
F, e K
!/,
0.6 -
04 . 1 ) [ i . 1 .
(1] 0.1 0.2 0.3 0.4 0.5

Doping

FIG. 16. Quasiparticle weight Z; at the mean-field level de-
creases for increasing U/t with a discontinuity at the spiral-
zone transition. U/t=2.5, 5, 10 is plotted as dotted, dashed,
and dot-dashed, respectively. Zone states have the highest
weight at the mean-field level.

-press I'=1 —II, where I'2”
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- twisted states. The partition function up to quadratic

terms in the fluctuations M can be expressed as

Z =(1/MNexp(—BQyg) [ D(p,¢°lexp(—S,s) ,
BOQMp=BUL(p*+S*)—Trin(K) , " (16)
S.=(BLU /2)[ TS S +(U /LB TR DR ~'D)] .

The second term is the n=2 term in the loop expansion,
therefore of order 1/S% At zero doping, the 36 possible
electron polarization bubbles in S, are evaluated at Q.
Expressed in terms of a new order-parameter field

4= (Pgns b0y +,n7 90y +g,n: D0y +an) >

we can write Ss=BUL _é,‘;I““’é',, with the symmetric ma-
trix I" given by

020, =1+HU/BL) S, [Dpm Byt gm +n

pm

+(US)2]Gp'mGp+q,m+" s (17a)
T2, =1+U/BL) 3 (8, 0o mAy tgm+n
o,m
+(USP1Gy 1 Gpsgmen »  (17D)
T30 =—(Q2U/BL) 3, USA, 1 GpmGptgmtn » (17¢)
pm
[, =1+(U/BL) S (A, oo m st gm +n
psm
_(US)2]Gp’mGp+q,M+" N (17d)

where T'#?=T1% and I'’?=0. In matrix form, we can ex-
press. . b =L g n—m and I is the
identity matrix 6""5[,725,,,,,. Integrating over the fluctua-
tions gives det(I')” /%, which shifts the thermodynamic
potential

Q=0pe+(1/28)TrIn(I —11) .

Expanding this trace as before results in 3, Tr(I1™)/m,
which is the Gell-Mann—Bruekner RPA correction to the

“ thermodynamic potential.*> For large S, since [T~1/52,

the ring approximation to the Hartree-Fock thermo-
dynamic potential converges like 1/5%". The quadratic
term also allows us to examine the stability of the saddle-
point result.

In the Landau-Ginzburg action for the fluctuations of
the undoped antiferromagnet, the transverse ¢”,¢* modes
are entirely decoupled while the spin amplitude and
charge modes are coupled nontrivially. Stability of the
saddle point imposes the constraint det(I'}} —)=0 on
the mass-matrix for the fluctuations. At ¢=0, we find

IP=1+UBL)"'S G,,=0
pm
by virtue of the saddle-point condition [Eq. (10)] identify-
ing the ¢{20,¢’QO modes as the Goldstone modes. Expand-
ing I'’?, around ¢ =n =0 and using Ek+0, = "Ek» WE
find a linear dispersion w2=c?q-q consistent with the
dispersion for transverse spin waves of the nonlinear ¢
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model. The spin-wave velocity in_the long-wavelength
limit can be expressed as #ic /a,=V B/ A with

A=(U/2) [ d¥(f7 —fOVEF ~EC P, (18a)
B=(U/2) [ d*k(f{ —fOV/EFEL)
X[2g, —e2—12g, 2 /(E;F —E7 ], (18b)

where g =sin2kx+sin2ky and the integrals to be evalu-
ated over the entire Brillouin zone. Here, the derivatives
of the Fermi functions have been omitted since the DOS
at the Fermi level for exact half-filling vanishes. In physi-
cal units, we obtain the bare (scale-dependent) spin-
velocity fic /a,=2 eV at U/t=S35, which is roughly eight
times larger than the experimental value®® reflecting the
significant renormalization corrections in the continuum
model.** While these modes effectively capture the
dispersion of the true spin waves in the long-wavelength
limit, the complete dispersion of the physical collective
modes at any q requires an evaluation of the transverse
susceptibility!>* using just the polarization bubbles II.
The action for the transverse fluctuations

'Y, =(Aw?+Bq-q)/2

maps to the nonlinear ¢ model if we add the constraint
$%(x)¢%(x)=S2 The coupling constant* of the resulting
nonlinear ¢ model is g =1/B from which we obtain the
spin stifiness p=UB=J./2w. For large U/s,
B~t?/U% making the spin-exchange constant
Jog~1t2/U exactly as in the map to the t —J model.
Doping-induced frustration should lead to a disordering
of the o model by increasing the effective renormalized
coupling constant g. To explore this, we solve the gap
equation at the fixed point Q=Q, away from half-filling.
The renormalized g is the bare microscopic g evaluated
from the coefficient B but with a doping-independent
multiplicative renormalization factor Z such that*
g—Zg gives a reasonable fit to the experimentally ob-
served spin-wave velocities at 8=0. This requires that
the renormalized g=0.675 at half-filling. In Fig. 17, we
plot an approximate renormalized g as a function of dop-
ing for U/t=2.5. The resulting phenomenologically re-
normalized g is roughly doping independent at low dop-
ing, rises for 8 > 0.05, and disorders, i.e., g = 1 at 5 2 0.09.
This is slightly lower than the full mean-field magnetic-
to-paramagnetic transition which occurs at §.;~0.14.
Therefore, we confirm that doping disorders the system
even in the above approximation where only interband
contributions to B have been included. A more detailed
picture will energe by including derivatives of the Fermi
function that arise from intraband transitions in the
lower MH band when §5<0.

Unlike the Goldstone modes, the matrix element I";‘f}z
mixes the charge-transfer modes p,, with the spin-
amplitude mode ¢60+9»" for general (q,w,). However,

when w,=0, the mixing term T4}, after translating
w,, —iw,, +u=z,, gives a manifestly odd sum

S 2 /120, —(E; [z} —(E, 4 *]1=0..

pm
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FIG. 17. The coupling constant of the nonlinear o model in-
creases for doping § >0.05. The coupling constant at half-filling
is normalized (Ref. 39) to g==0.685.

Therefore, the spin-amplitude mode ¢* and the charge-
transfer mode p are decoupled at zero frequency for any
q. At ¢=0, the spin-amplitude fluctuation ¢’éo has a

mass gap

M_=UTFH=U[1-120t/UP+0(1/U%],

making use of the gap equation for S. The uniform
charge fluctuation p, has mass gap M, =UTE,=U for
any U/t. Near the nesting vector ¢ =Q,, the mass gap
for the ferrimagnetic spin-amplitude mode ¢5, is M,
while the charge-transfer mode py o has mass M_ which

approaches U, the MH gap at large U /t. The mass ma-
trix I'}'y being positive definite at these two extreme
points in the Brillouin zone thus establishes the stability
of the saddle-point solution to long-wavelength charge-
density and charge-transfer fluctuations. In light of the
nonvanishing off-diagonal response function Y**, the
physical collective modes must consist of linear combina-
tions of the spin-amplitude plus charge-fluctuation
modes. At zero doping, the system exhibits insulating be-
havior at the one-loop level much the same as the saddle
point since only interband transitions appear in the poles
of the frequency sums. Away from half-filling, intraband
transitions within the lower MH band will give rise to ad-
ditional contributions to M, which will make the com-
mensurate SDW instable. Importantly, however, for the
commensurate SDW, the massless spin waves are not
coupled at this order to the longitudinal spin and charge
fluctuations.

The complete loss of translation invariance associated
with the commensurate-incommensurate SDW transi-
tions spells a dramatic difference for the fluctuations
around the saddle point. Evaluating the polarization dia-
grams in the incommensurate SDW state and defining
bgn=0gn —i$} ., We have the same quadratic action

S =BULEIT™E, ,

but with
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guz(pq,n’¢;,n¢Q +q,n’¢1(.2—q,n)
The symmetric matrix T'#¥ is given by
r2,=1+(U/BL) z (A, 4 A

'p,m p+q,m +n

—(USP1GpmGpigmin»  (192)

ng?n_1+(U/BL EAp-i'QmAp-i-q,m—i-nG Gp+q,)n+n ’

pm
(19b)
2T, =(U/BL) 3, (USY'G, Gyt g mtn » (19¢)
pm
2rlllfn=_(U/BL)2(Ap_*l-q,m+n+Ap+Q, )
pm
X(USG, G, 4 gm+n) > (19d)
2F33n=_(U/BL E(Ap+qm+n A‘p-%-Q, )
X(USG Gyt g +1) (19€)

r'?=0, Tg},=T%,,, and T and
—I 2_3q »- Since the chemlcal potentlal is now within the
lower band, there are arbitrarily low-energy intraband
single-particle excitations that contribute to each matrix
element. However, for the incommensurate SDW, we
will concentrate on the low-energy collective excitations
associated with the SO(3) symmetry breaking. Classical
configurations including ferromagnetism, antiferromane-
tism, and column states are characterized by one single
axis for the local magnetic moments. Consequently,
twists about the two spin axes perpendicular to this local
manetization axis rotates the ground state to other states
of equal energy. These broken symmetries therefore give
rise to two Goldstone modes. In contrast, for a Q corre-
sponding to spiral or zone states, twists about any three
orthogonal spin axes lead to new configurations without
altering the planar nature of these states. Alternatively,
these three degrees of freedom correspond to the three
Euler angles that are necessary to completely specify pla-
nar magnetic configurations. This enlarged degeneracy
of the ground state implies that three massless spin-wave
excitations appear in the collective fluctuation spectrum.
The appearance of the third Goldstone mode at incom-
mensurate Q is well known in frustrated spin models*
and in the collective mode spectrum of continuum-field
theories with nontrivial ground states like solitons and
merons.*’ To see how these modes arise in the Hubbard
model for incommensurate SDW solutions, we examine
the effective action at the special points q=0 and +Q.
At ¢=0, we find, as in the commensurate case, that
I'B=r2=0 resulting in the mixing of the lower two
componenets £,&* only. Diagonalizing the action w1th
respect to these two components, the mode ¢, ., +¢Q =q
has a nonvanishing mass gap given by

M_=(US/m* [ d* (f7 —fONEF —E P,

with T'=TI*P,

where we have omitted the intraband pieces proportional

. bard model.
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to derivatives of the Fermi function. In this approxima-
tion, M _ decreases by up to 30% from its value at half-
filling at a doping near the MH band closure for U /t=35.
Meanwhile, the mode ¢, ., ——*¢TQ —g has zero mass when
we make use of the saddle-point condition. This mode
corresponds to rotations of the local magnetic moment
around the z axis in spin space. We note that, in the lim-
iting cases of ground states with magnetlzatlon along a
single direction, the modes ¢ . qiqSQ —g become ¢7 and
¢}, respectively, as they must. At ¢ ==xQ, we find in-
stead that [T =T2#=0, therefore decoupling the ¢ com-
ponent from all the other components. Again making use
of the saddle-point condition, the action becomes
l"q +0,0=0 making both modes ¢%, massless. These
modes correspond to rotations of the magnetic moments
out of the x —y plane through twists along the x axis and
the y axis in spin space. For the case of antiferromagne-
tism, ferromagnetism, or column states, these two modes
at =Q reduce to a single mode ¢% consistent with our
calculation for the commensurate SDW. The Goldstone
theorem protects the three massless modes for twisted
SDW states against mass corrections in the presence of
higher-loop effects. Although the massless spectrum con-
sists of three modes as in Heisenberg models, additional
massless modes corresponding to redistributions of bond
exchange energies*® will not arise for the Hubbard model
since H g is, by definition, sensitive to the orientation of
every local magnetic moment ¢7.

Unlike the antiferromagnet at half-filling where all
charge fluctuations are decoupled from spin-wave modes
to quadratic order, the twisted SDW solution couples
them in a fundamental way through the terms I'} and
r ;f‘n. The nonvanshing mixing at finite momentum and
frequency implies that the true eigenmodes are linear
combinations of the §*s. A natural consequence of this
coupling on the spin-wave dispersions will be a softening
of the in-plane and out-of-plane spin-wave velocities in
agreement with the reduction of #c reported in neutron-
scattering data.*® This off-diagonal spin-charge response
is a significant departure from the physical picture of
noninteracting quasiparticles obtained at the saddle
point. For example, in the doped antiferromagnet, the
intraband charge response to an external electromagnetic
field necessarily produces an accompanying magnetic
twist mode. The lifetime of single-particle electronic ex-
citations is therefore strongly influenced by scattering
rates involving spin-wave exchange. This suggests a pos-
sible microscopic origin of the breakdown of convention-
al Fermi-liquid behavior in the normal metallic state of
the copper-oxide superconductor.

V. SUMMARY

In summary, we have presented a framework from
which both conventional and unconventional aspects of
the normal-state properties of the copper-oxide supercon-
ductors may be understood. This has been obtained by
considering fluctuation corrections to both the insulating
and metallic SDW ground states of the one-band Hub-
Our approach allows a description of the
magnetic ordering observed at very low doping. If the
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double peaks seen in neutron scattering” in supercon-
ducting samples can be attributed to incommensurate
SDW ordering, then ¢ ~0.27-0.43 at 6~ 0.11. In our
saddle-point approximation, this implies that U/t ~3-4
in close agreement with the choice based upon the on-site
magnetization at half-filling. In addition, the observed
reduction in the on-site magnetization with doping is also
qualitatively consistent with the reduction of S obtained
at the mean-field level for the twisted SDW states.
Asymmetric scattering cross sections with polarized neu-
trons and optical dichromism as in other rare-earth spiral
magnets offers a unique way to test whether single Q
twist states are realized in the layered cuprates.®> Any
local-parity violation effects observed here would be con-
sistent with a single Q twist state. However, even this
signal could disappear with the doping-induced onset of
short-range magnetic order which, in our framework, can
be accounted for as arising from domain walls which
separate regions of degenerate Q in otherwise homo-
genous samples. Spin-wave dynamics for the incommens-
urate SDW states is significantly altered in the presence
of an additional Goldstone mode as in known rare-earth
helimagnets.*® An alternative possibility is that doping-
induced reduction of the on-site magnetization may also
induce pitch fluctuations and lead to a spin nematic with
short-range magnetic ordering.

On the electronic side, there is experimental evidence
for an unconventional version of the traditional Fermi
surface of a normal metal. The twist states predict a high-
ly anisotropic Fermi surface especially at low doping.
Most photoemission studies are confined to a single qua-
drant in the Brillouin zone and the results are not in con-
tradiction with the twist states.”® In the presence of
domains, however, even a significantly anisotropic Fermi
surface would be less distinguishable. The unconvention-
al nature of the Fermi liquid is associated with anoma-
lously short quasiparticle lifetimes. A more detailed
study of one-loop response functions is needed to deter-
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mine whether the calculated charge-spin coupling in the
twisted magnetic background is responsible for the ob-
served marginal Fermi-liquid behavior.

Finally, a doping-induced closure of the interband
Mott-Hubbard charge gap occurs for every U /t. The as-
sociated rearrangement of states considerably reduces the
DOS at the Fermi surface relative to the U=0 metal.
The crossing induces a pileup of states above the Fermi
surface and has a width comparable to the doping-
induced peaks seen in infrared absorption.?” The rapid
lowering of the upper MH band should also be discern-
able in tunneling, photoemission spectroscopy (PES), and
inverse PES experiments performed at various dopings.
The observed sharp drop in the Hall coefficient at
8=0.17 is also consistent with the drastic change in the
Fermi surface. Although the upper MH band does not
cross the chemical potential and change the topology of
the Fermi surface, its proximity to the Fermi surface will
alter scattering rates and transport coefficients even at
the mean-field level. Since the mean-field electronic and
magnetic properties qualitatively approximate many
features of the layered perovskites, it is very suggestive
that the charge-spin collective effects evident at one-loop
order and perhaps higher-order scattering processes may
provide explanations to the anomalous non-Fermi-liquid
behavior of these systems. A careful evaluation of
response functions including these effects is therefore
very important.
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