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A path-integral field-theoretic derivation of electromagnetic linear response for the two-
dimensional Hubbard model is given. We find, remarkably, that changes in the Fermi-surface topol-
ogy associated with incommensurate planar spin-density-wave saddle points induce a change in sign
of the Hall coefficient at dopings §4 = 0.02-0.5 for U/t = 2-10. The change in sign is not affected
by short-range magnetic domains. We delineate from first principles an anomalous temperature de-
pendence of the Hall carrier density at dopings close to 6. An additional anisotropic component to
the usual dc conductivity is nonvanishing for certain types of spirals. The paper extends the Bloch-
Boltzmann theory to the case of untraditional Fermi liquids where the damping of the quasiparticles

is I'(¢) ~ max(kpT,¢).

The connection of the two-dimensional Hubbard model
with high-temperature superconductivity! has sparked
broad interest in the nature of Mott insulators.? Two-
dimensional (2D) Mott-Hubbard insulators exhibit un-
conventional electronic, optical, and magnetic behav-
ior when doped with mobile charge carriers. Vari-
ous approximations including the random-phase approx-
imation (RPA),® t-matrix methods,* and Monte Carlo
techniques® have been used. One specific aim of these
studies is to show that even in the presence of weak
interlayer couplings, the Hubbard model may give rise
to a nontraditional Fermi liquid,® where the excitations
near the Fermi surface are no longer sharp but rather
have vanishing spectral weight and damping propor-
tional to the temperature and not temperature squared.
This is borne out by inverse photoemission,” optical-
conductivity studies,® neutron scattering,® as well as
low-energy transport measurements. Transport measure-
ments like resistivity!® and Hall number!?!2 on high-
quality single crystals and films further establish the
anomalous properties of the normal state of the copper-
oxide systems. Whether these features are related to a
ground state that can be approximated by mean-field
theory!3!4 or are essentially nonperturbative effects in-
volving topological defects in the magnetic order remains
to be established. It is our aim in this paper to identify
anomalies in transport and electromagnetic response that
may be attributed to conventional mean-field effects and
isolate them from other anomalies which may require the
incorporation of strong fluctuations or other unconven-
tional effects. We find that certain anomalies in the Hall
data arise from mean-field effects whereas these same
effects alone are incapable of explaining the marginal-
Fermi-liquid response observed in the Mott-insulator to
Fermi-liquid crossover regime deduced from the resistiv-
ity data.

At half-filling, mean-field theory is extremely satisfac-
tory in delineating the properties of the antiferromag-
netic state where fluctuation corrections can be obtained
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in a 1/S expansion with S the on-site magnetization.
In some recent papers,'51® we have discussed using an-
alytical methods the mean-field and fluctuation mag-
netic and electronic properties of these systems, start-
ing from the microscopic one-band Hubbard model at
arbitrary filling. One important result of this analy-
sis at the mean-field level was the closure of the Mott-
Hubbard semiconductor gap with doping and the con-
comitant crossover to Fermi-liquid behavior at dopings
slightly greater than that required for superconductiv-
ity. At the fluctuation level, we demonstrated from first
principles that the doping-induced twist of the magnetic
mean field gives rise to strong spin-charge coupling and
that intraband electronic excitations in the Mott phase
may be described as a charge-plus-spin-twist collective
mode. In addition, interband electronic excitations oc-
cur across an indirect semiconductor gap for small dop-
ing. The spectrum of low-energy collective spin fluctua-
tions exhibits three Goldstone modes, all of which have
a crystal momentum corresponding to the momentum
separation between the top of the lower Mott-Hubbard
band and the bottom of the upper Mott-Hubbard band.
This makes the indirect interband gap accessible to spin-
wave-assisted optical transitions. In this paper, we ex-
tend our discussion of doped Mott insulators to include
coupling to an external electromagnetic field. We also
generalize our previous mean-field studies to finite tem-
perature. We find that the Hall coefficient is positive at
very small doping for an incommensurate spiral magnetic
state but that the curvature of the Fermi surface changes
greatly with further doping leading to a change in sign
for this response coefficient at a critical density 64. In
the vicinity of 6y, the Hall density ng is very sensitive to
temperature. This work is in contrast to other explana- -
tions of these transport effects which invoke either exten-
sions of the Hubbard Model involving additional bands
or higher-order terms in hopping.!” However, mean-field
theory gives no plausible microscopic account for the lin-
ear temperature dependence of the ordinary resistivity.
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Fluctuation effects as well as other interactions may be
required for an understanding of this aspect of the non-
Fermi-liquid behavior of the nonsuperconducting metalllc
phase of these compounds.

Fluctuation effects also give rise to quantitative modi-
fications of the relevant temperature and energy scales
governing the phase diagrams and transport anoma-
lies which we have described at the mean-field level.
At a very high temperature T3y, the mean-field theory
predicts a transition from the antiferromagnetic insu-
lator to a paramagnetic metal in which the static lo-
cal moment and the associated gap between the Mott-
Hubbard bands vanish. This is to be.distinguished from
the antiferromagnetic insulator to paramagnetic insu-
lator transition which occurs at the Néel temperature
Tn € Tp. The Neéel temperature is sensitive to spin-
wave and other fluctuation effects which conspire to de-
stroy the three-dimensional long-range ordering but pre-
serve the Mott-Hubbard gap. The ensuing paramagnetic
insulator exhibits strong two-dimensional domain order-
ing well above Tyy. It is likely that transport anomalies
which are associated with slow iniraband processes are
affected by spin-wave renormalization effects and that
the temperature scale on which they are observed ex-
perimentally is likewise reduced from our mean-field es-
timate. This is especially true of the thermally driven
sign change and anomalous temperature dependence of
the Hall coefficient. Interband processes which occur at
time scales short compared to that of spin-wave fluctua-
tions are less affected by corrections to mean-field theory.
We anticipate, therefore that the overall electronic band
structure which we obtain at mean-field level remains
intact even in the absence of true long-range magnetic
order, except perhaps in the high-doping regime where
the energy scales of electronic and magnetxc excitations
become comparable.

Transport coefficients in the presence of symmetry-
breaking order parameters necessarily require a micro-
scopic treatment where the coherence factors that re-
late the new bands to the fundamental electrons play
an important role in response functions.” We extend the
use of the path integrals to study the linear response to
electromagnetic perturbations around nontrivial saddle
points. We first derive the Bloch-Boltzman transport
formulas for transport in the case of the tight-binding
model and then extend the theory for the case of a mag-
netic background. Our discussion of transport in the
Mott-Hubbard system is restricted to the study of band-
structure effects arising from nontrivial magnetic order-
ing. We omit vertex corrections to the electromagnetic
coupling which arise mainly from spin-wave corrections
of order 1/S. An incorporation of these effects leads to
the replacement of the quasiparticle lifetime = by the
transport relaxation time 7 in conductivity'®!® as in
the many-impurity problem.

I. LINEAR RESPONSE FOR NARROW-BAND
METAL

In this section we obtain the usual conductivity and
the Hall conductivity at any temperature for the case of
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a tight-binding Hamiltonian. This provides the necessary
background for the analysis of conductivity for magnetic
ground states covered in Sec. III.

_A. Formalism

Without any loss of generality, we consider the narrow-
band Hamiltonian

H= Z tz] ggcial

{if} .o

(1.1)

where the sum (ij) denotes pairs of sites, e.g., nearest
neighbors, and o is the spin index and ¢;; the hopping
matrix elements. This model is symmetric in spin and for
simplicity we suppress this index in this section and it can
be accounted for by multiplying the transport coefficients
by two. The electromagnetic field A is introduced in a
gauge-invariant way?® by replacing t;; with

. J’
gy — i (A) = tijexp (%—/ A(r) -dr> . (1.2)
i
The conserved current is given by functional derivative
J = —6H/8A. Linear response at any temperature can

be obtained from the grand canonical partition function
given by
Z[A] = Tr{exp[-B(H — uN)]},

where 4 is the chemical potential, 8 the inverse temper-

ature, and N = ), cfc,-. In path-integral form, this can
be written

- Z,[A],E e'ﬁ?(f)ij:NV/D[c*,c] exp{—-/oﬁ d.‘rﬁ},

(1.4)

(1.3)

L =c;" [(6/6? - ;1)5;1' + ti}(A)]Ch

with the summation over sites implied and A the overall
normalization constant. Since the A(r) field is not quan-
tized, the path-integral form gives it only 7 dependence
without introducing r derivatives.?! We approximate the
continuum phase factor in ¢;;(A) so that the Hamiltonian
depends only on the lattice sites r;,

J

/ A(r)-dr~A(R,-j)-r,-j, (15)
1

where r;; = r; — r; and R;; = (v; +r;)/2.
The Fourier transforms for the Grassmann variables

and the gauge field for the lattice with L sites are given
by

CJ(T) (l/\/ﬂL)Eexp(zp r; — zwm‘r)cp,
(1.6)
Aij(r) = Y _exp(iq- Rij — iwaT)A,,
q

where the Matsubara frequencies for the fermions is
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Wy = m(2m + 1)/B and w, = 2n7/B for the gauge field.
We have used the relativistic notation for the momentum

and frequency indices, e.g., p = (p, wy,). The electronic
dispersion is given by

€p = Z ti; exp(ip - ryj).
(i7)

(1.7)

For the nearest-neighbor model, the dispersion becomes
€p = —2t(cospr + cosp,) where the lattice constant
@g has been set to unity. From here on we set h =
1. The partition function can be written Z[A] =
N [ Dlc*,clexp(—S), and we find that the term of or-
der n in A in the action S is given by the moment of ¢,
with respect of r;;, or

8
(ie)* /n! dr tijel (Ay -ri)c;
J J J J
0 (i)
=(e*/nl) > cpenlsin acq(AS - Al),  (1.8)
P.q,9a

where the upper indices on the dispersion imply differ-
entiation, i.e., ¢ = d¢,/0p*. The four-momenta in the
sum are constrained to Za=1,_',n ge = p— q. The action
to quadratic order can be brought to the form

S = Z cp(Kpq + VoglAley,
.

VoalAl = ecgarg/245-4
+(ee‘z/g)el‘j'/"prq/2 DoAY AR+,
¥

(1.9)
Kpg = 8pGy ! = bpg(—iwm + & — p). '

We refer to the vertex with n photons as vertex V™.

Since transport involves absorption of energy from ex-
ternal sources, we must introduce a damping rate for the
quasiparticles in order to obtain finite conductivities. For
simplicity, we assume an isotropic damping rate for the
phenomenological Green’s function

G;! = —iwm + €, — p + isgn(w, )T (1.10)

The quasiparticle lifetime 7 is then given by ' = 1/27.
In the tradition Fermi-liquid regime,?? one sets ' ~
(kgT)?/Ep < 1, where Ep is the Fermi energy. An
analysis of the optical data® for the high-7, materials
reveals instead I'(w) o max(&g7T,|w|). In either case,
transport quantities will depend only on 7 since we omit
vertex corrections to the electromagnetic coupling.

The Grassmann integrals over the fermionic degrees of
freedom can be readily performed?!:23 using the identity
J Dyt Dy exp[pt (K + V)] = Det[K + V] which gives
for the effective action

—BQ[A] = Trin K + TrIn(1 + K1V [A]) (1.11)

up to various c-number terms arising from the normal-
ization of Z[A]. The particle constraint!® for doping § is
(N) = —0Q/0p = L(1—8) which for weak perturbations
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A becomes

(Ny=(1/B)) CGp = flep — 1), (1.12)
4 P

where f is the Fermi function f(z) = 1/[exp(z) + 1]
and the Matsubara sum was performed using standard
techniques.?® The first term in the effective action only
plays a role in determining the Fermi energy u and plays
no role in determining the current response.

We can express the current response in terms of a spa-
tially uniform electric component afﬂ and a static mag-
netic component aZ via - '

J& = —(1/V)6Q[A)/6 A%

Q|A=a5+aB' (113)
Here, we have defined the induced current with respect
to the normalization volume V. The second term in the
effective action Q[A] in Eq. (1.11) determines the current
response using the identity ' '

Trin(l + K~'V[A]) = — i Tr(K "'V [AD™/m.

m=1
(1.14)

Applying the definition of the current in Eq. (1.13), the
current to zeroth order in the external fields is

0Ty = 6w, 06q,0(e/BV) Z Grey
P

= (e/V)bun 0890 Y € flep — ). (1.15)

The right-hand side (rhs) is just the paramagnetic cur-
rent in the absence of any external fields and for any
dispersion having inversion symmetry ¢_, ='¢, this term
vanishes, i.e., 60Ty = 0. ) ‘

B. Ordinary conductivity

Contributions to Jq" to linear order in af come from

loops with two V! vertices and one V2 vertex. Adding
these contributions, we find

51EJ: = —(eZ/V)afﬂ{ Zc;’cg(l/ﬁ) ZGp,mGp,m+n
p m :
_ngﬁ(l/ﬁ)ZGp.m},
p m
" (1.16)

where the subscripts n, m = fw,, iw,,. The cancellation
of the w, = 0 part of the rhs is necessary for finite con-
ductivity and a consequence of gauge invariance.?® To
demonstrate the cancellation, we first define
(P, wn) = (1/8) D Gp,mGpmin- (1.17)
m sl

The second term on the rhs is independent of n and the
leading contribution from the first graph can be written

(p,0) = —0f/0¢y. Further, since ¢20f/0¢, = 0/0p°,
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we can integrate by parts in the first integral using pe-
riodic boundary conditions, and find that the w, = 0
contribution of the first integral cancels the entire sec-
ond term. :

The imaginary-time response functions can be used to
calculate the real-time retarded response at any temper-
ature by performing the analytic continuation from the
upper half-plane where sgn(w,) > 0 to the real axis,?*
i.e., iw, — w. This continuation must be performed,
however, only after we defined the Matsubara sum as a
contour integral in the complex-frequency plane. In real
time, we have E,, = iwaZ, and therefore if we write the
response to the electric field as 6F J2% = 0P (w)EP, we
find the conductivity to be given by

0P (w) = ~(e?/V) D 5eB(1/iw)(p,w), (1.18)
P

where (p,w) = H(p,wn)lw _.- For processes involv-
ing absorption, we are interested in the real part of the
conductivity or the imaginary part of II(p, w,). We eval-
uate II(p,w) by introducing the advanced and retarded
Green’s functions!® defined by G{}(A) = 1/(—iwm + ¢p —
p £ iI'), which are analytic in the upper and lower half-
planes, respectively. Using standard techniques!® to eval-
uate the Matsubara sum of the product of two Green’s
functions, we obtain for I(w) = Imll{p, w)/w,

Ip=— /_ ” (de/x) OF /8 T2(e)/[(e — € + m)? + T2(e)]?

(1.19)

in the zero-frequency limit where Iy = I(w — 0). For
Fermi liquids with quasiparticle damping I' — 0, we can
approximate limp_,q I'2/[z2 + I'?)? = 276(z)/T giving for
the dc conductivity the Bloch-Boltzman formula

od? =(21/V)D_ 2P (~8f0ep), (1.20)
P

where agﬁ = Reoc®’(w — 0). Integrating by parts, we
find the rhs is proportional to e? [ d*pe3® f(e, — ). For
parabolic dispersions, the dc conductivity is given by the
Drude formula oo = e?*rn/m, where n = (N)/V. How-
ever, in the nonparabolic case where the second derive-
tive of the dispersion is nontrivial, we find that the con-
ductivity acquires a temperature dependence from the
bandwidth W of order T/W beyond the temperature ef-
fects arising from 7.

In the presence of strong correlations, the narrow-band
system has an additional complication that I" is not nec-
essarily small compared to the Fermi energy. In fact,
in the normal state of the copper-oxide superconductors,
one finds I'(¢) ~ o max(kgT,¢) (Refs. 8 and 9) with a
ranging from 1 to 10. In this case, the appropriate zero-
temperature formula is instead the full formula given in
Eq. (1.19). We plot the function I, = aly/3? for various
values of o in Fig. 1. There is a significant deviation of
I, from the conventional answer I, = (1/28)(—8f/d¢p)
for quasiparticles near the Fermi surface when o = 1, 2.
The exact integral cannot be performed analytically, but
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FIG. 1. An exact evaluation of the Matsubara sum 7, vs
z = (ep—pu)/kpT with T = amax(kpgT,¢€) at o = 1, 2, shown
as dashed and dotted lines, respectively. The conventional
result is shown as a solid line.

we may still write Iy = 7(—0g/8¢,), where g(e) = f(€)
for « << 1. This implies that when T is sufficiently
large, the Drude formula is replaced oq = e2rn*(T)/m,
where n*(T) = (1/V) [d®p g(ep). Since u(T) is fixed
by the particle constraint, the integral over g(e,) must
be temperature dependent. Therefore, residual tempera-
ture dependences can arise in the usual conductivity for
very narrow bands from two independent sources, non-
parabolic effects which are of order T/W and short quasi-
particle lifetimes effects proportional to «(T/W). It is
precisely when the Landau Fermi-liquid assumption of a
long-lived quasiparticle is no longer valid that the Bloch-
Boltzmann formula is modified as in Eq. (1.19).

C. Hall conductivity
Whereas the terms to order e? give the usual conduc-

tivity, the terms of order e give rise to the Hall conduc-
tivity. The next-order terms arise from loops with three

+
E:m+n ", _
Y q & Gn sl
6:“ * + n 4 +
gon o ry 73 =
. p,m+n

g.m
o c']'.n
e
q
g n <
p,m
FIG. 2. The six diagrams of order e® in the free energy

Q[A] that contribute to the Hall conductivity.
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V1 vertices, or one V! and one V2 vertex, or finally with
one V3 vertex. Furthermore, each such dxagram after dif-
ferentlataon with respect to A gives terms quadratic in
af| quadratic in a®, or linear in each. The subdiagrams
J
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that lead to the Hall coefficient contain one power of af
and one power of af. For simplicity we confine our at-
tention to these diagrams which are shown in Fig. 2. The
induced current can be brought to the form

62 qw" (ea/Vﬁ)a ﬁ037 Z{ aﬁ'y ZGpm"'fpfp[p q/2ZGp ,m p+ mGp m-—n

el D G,,_,mGP+,mG,,+,m+n]
m

— Cﬁ‘v Z GP mGP+ m+n T 6£6:7 Z Gp,mGp,m+n - 67 ﬁ Z Gp m p+ m}
m

where p* = p + q/2. The first term corresponds to the
diagram with one V3 vertex, the next two to the trian-
gle diagrams, and the last three to the two-vertex graphs
in Fig. 2. It is straightforward to show using the same
integration by parts performed for the usual conductiv-
ity that the ¢ = 0, w, = 0 contributions from the first
five dla.grams exactly cancel the entire last dlaglam with
one V3 vertex. We are primarily interested in the zero-
frequency, long-wavelength limit of the response. Writ-
ing 6gjq“w = O'Zﬂe(w)Eﬁ B;, we notice that the real part

of U‘H ‘(w) requires us to evaluate the real part of each
Matsubara sum to linear order in q and w,,. The last two-
vertex graph is independent of w,, and its contribution to
lmear order in g va.mshes since ¢ appears symmetrically
as p*

Not. only do terms independent of w, cancel but also
all terms independent of q, e.g., the second two-vertex
diagram. The q = 0 part of the triangle graphs can be
brought to the form

(3/VB)aPaBr Y [eaveh 4 B7e2]> G2 .Gpmin
P m

(1.22)

using G2 = —8G, /08¢, and integrating by parts. The
first term in the above equation cancels the entire second
two-vertex graph. The other term cancels the q = 0 piece
of the first two-vertex graph as can be easily seen from
Eq. (1.21).

It is only the first three diagrams in Fig. 2 that
contribute to the Hall conductivity in the zelo fre-
quency, long-wavelength limit.
the first three Matsubara sums using Gpt m = Gp,m F

(g° /2)616,G'§m and define the frequency sum
Ox(p,wn) = (1/8) Y Gp m(Cpmin — Cpmen)-
(1.23)

In terms of Iy, the Hall response is given by
62T 0., = (€2/2V) a®Pqla®

X Z (6566:‘6; — € em' 6)HH(p,wn) (1.24)

We expand cp 0/4 and

(1.21)

|

Writing B¢ = £97ig®aB” and exchanging v, § in the sec-
ond term of the momentum sum, the Hall conductivity
becomes

o3P (w) = (e3/2V) }: 2 B g (p, w)/w,

(1.25)

where as before, we must evaluate Iy at iw,, — w. After
a lengthy calculation,'® we obtain

In = %/_oo (de/m) (—8F/8¢) T3(e)/[(e—eptp)+T (),

(1.26)

where Iy = —limy_o Rellg(p,w)/w. For I' — 0, we
may approximate [ImGF]3 by limp_o ['3/[x? + I‘2]3 =
(37/8I?)6(x). Substituting this into the previous equa-
tion and defining the Hall conductivity o3P = a%f (w —
0), we arrive at :

off¢ = —(372)V) Z €p (€p X“V)ffzﬁ? (=0/¢p),
P

(1.27)

which is the standard Bloch-Boltzman result for Fermi
liquids. Therefore, when the bandwidth is finite, the
conventional result holds in the traditional Fermi-liquid
regime of small damping rates. For parabolic bands,
we can partially integrate the above formula to obtain
oy = of* = —e37r2n/m? at any temperature. For the
nonparabolic case, the momentum sum becomes temper-
ature dependent of order T/W. Defining the Hall co-
efficient Ry = og/o"® oV, R;,l = —ne for parabolic
bands, but it acquires a well-known temperature depen-
dence again of order T/W for the narrow-band case.

In addition to this bandwidth effect for nonparabolic
bands, we examine the implications of relaxing the as-
sumption of small quasiparticle damping to the form
['(¢) = o max(kpT,¢). As shown in Fig. 3, the exact in-
tegral I = a?ly /B from Eq. (1.26) differs significantly
from the Fermi-liquid result If = (1/28)(—8f/8¢,) for
o = 1, 2. The larger widths can be accounted for by writ-
ing Iy = —2720h/d¢,, where h(ep) is some new function
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0.12

5™ 0.08

0.04
0 o : P g e et
Y] 1 2 3 4 5
p:4
FIG. 3. An exact evaluation of the Matsubara sum I§ vs

z = (ep— u)/ksT with ' = e max(kpT, ¢€) at a = 1,2, shown
as dashed and dotted lines, respectively. The conventional
result is shown as a solid line.

and approaches f(e, — p) for small I'. Importantly, this
implies that even for parabolic bands, oy is no longer

proportional to n but some temperature-dependent effec-.

tive ng (7). The microscopic calculation of the Hall con-
ductivity shows that an anomalous quasiparticle width
leads to a residual temperature dependence for the Hall
coefficient proportional to a(T/W).

In light of the dependence of the transport quantities
on the subtleties of the bandwidth and T, a calculation of
I'(p,¢) in the regime of strong correlations is important.
Equally imperative are the physical scattering processes
that lead 7 to be replaced by 7 in the interacting case.
We can alternatively assume that interactions drive the
narrow-band Fermi liquid into a new mean-field state
which incorporates the most singular interaction chan-
nels. For example, at half-filling the 2D Hubbard model
is unstable towards antiferromagnetic ordering. Likewise,
at small doping a magnetic state could arise such as in
spiral or incommensurate antiferromagnetism.!®® The
quasiparticles of these states may also have a nontriv-
ial damping, but since this is outside the scope of this
article, we assume that the resulting particles have long
lifetimes and therefore residual temperature dependences
should arise only from the nonparabolic dispersions. We
find nevertheless that the rich magnetic phase diagram
itself exhibits dramatic temperature dependences for the
Hall coeflicient and a doping-induced sign change.

II. MAGNETIC GROUND STATES
IN THE HUBBARD MODEL

The copper oxide superconductors are well
approximated! by a nearest-neighbor tight-binding one-
band Hamiltonian with a strong on-site repulsive inter-
action. In the presence of external electromagnetic fields,
the Hubbard model is

H= Z ti;(A) cwc],, +UZ n,Tn”,
{is).o

(2.1)

— A _
where n;o = ¢ Cis.
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A. Saddle-point approximation

To evaluate the ground-state properties, we express
the grand canonical partition function using functional

integrals as before and obtain for the action § = ff dr L,
with the Lagrangian density

L= Zd’r[(a ﬂO 6” + tt](A ]Q/}J
(i7)

—(U/4) 3 (o) (2.2)

Here, we have introduced the Grassmann spinor ¥; = -
(ci1,ci,1), and the matrices are defined as o® = I,
the identity matrix with ¢%,a = 1,2,3 being the three
Pauli spin matrices.?® The quartic Hubbard term can be
brought to a quadratic form by using a four-component
Hubbard-Stratonovich field?® ®# = (p, ¢) corresponding
to the charge density and the three spin components, re-
spectively. This decomposition is particularly relevant
for the Hubbard model in light of the antiferromagnetic
metal-insulator transition that occurs at half-filling. The
resulting partition function is

2= [ Dig,y7, @#1e=
(2.3)
]
S =/0 dr{ ¢; [(6r — #o)éu‘ + 855
+U<I>“‘I>“ ) <I>"1pTa'“¢,}

Here, the summation over nearest neighbors, sites, and
spins is implied. In addition to the Fourier transforms for
the fermion and gauge fields in Eq. (1.6), we implement
for the order-parameter fields the transformation

() = Zexp (k- r;

k,n

— tw,T)P. (2.4)

The Gaussian fields satisfy ®{ = ®*%,. The action in
Fourier space requires we introduce a matrix correspond-
ing to the Gaussian fields via M, = ®5_ o* and with the
convention that repeated indices are summed this gives

S = BLURH @Y — Y} [Kpg + Vpg(A) + U MpJthy.  (2.5)

Here, the spin-diagonal matrices K and V can be read
off from Eq. (1.9).

In a previous paper,'® we demonstrated a variety of
self-consistent saddle points in the absence of electro-
magnetism. These ground states ®§ consisted of uni-
form charge density po = n and planar magnetic or--
der parametrized by Qo = @F - i®Y = S for some
Q that was self-consistently determined as a function
of U/t and §. For any U/t, we showed that commen-
surate antiferromagnetism at half-filling evolves to uni-
form spiral states Q # Qu = (7, ) at nonzero doping.
These states are plausible mean-field approximations for
the normal state of the metallic and semiconducting re-
gions of the phase diagram appropriate to the cuprates
from their optical and transport properties. These re-

16
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sults suggest that the incorporation of fluctuation effects
may then lead to a complete description of their electro-
magnetic response. Unlike the zero-temperature phase
diagram extracted before, we are interested here in the
finite-temperature phase diagram to determine if a resid-
ual temperature dependence to Ry can arise from the
temperature dependence of Q and S alone in the limit of
long-lived quasiparticles.

To obtain the finite-temperature phase  diagram, we
must evaluate the free energy from Q. For a general
saddle point, ®* can be decomposed into mean-field and
fluctuation parts as ®# — @4 + &# M — Mo+ M. The
electron Green’s functions in the magnetic background is
given by the inverse of T = K + M. Before computing
the inverse, we translate the spinor to the form Py =
(c1p+,m»r€1p-,m), Where pE=p+ Q/2 so that the matrix
T is diagonal in momentum and frequency space. This
implies that T is given by

G A
Thq = bpq ( pA'm g1 > )
p=.m

where A = US with po in the propagators replaced
= p+Un. The off-diagonal contributions correspond to
the spin-flip scattering processes induced by the magnetic
configuration along the x and y spin axes. The uniform
charge distribution simply redefines the chemical poten-
tial. The momentum translation of the fermions likewise
affects the interaction matrices M and V.
fermion basis, the Gaussian fluctuations interact with the
fermions via

My, = (pP-?{_'*' $o—q p—a+Q )
br-p+q Pr—q = $p—g

(2.6)

(2.7)

where the four-vector @ = (Q,0). The electromagnetic
vertices are similarly influenced and we find they acquire
matrix form V(A4) — W(A). W(A) can be written by
substituting for e;"/’2+°;72 in Eq. (1.8) the diagonal matrix

eai;‘zan_’_ 5
Eporon = pH/2+q%/

. ). 09
0 b /24a-/2) B

Therefore, the vertex with one photon now reads
1 — o3l
W,plg(A) = 9Xpg Ap g . . . .
he matrix T can now be diagonalized in spin space
T — TP = T by transforming the spinor x, = U, vy,
g P p¥p
with
_ cosf, sinf,
Up = (—sinﬁp cosﬁ,;) (2.9)

where tan 26, = 2US/(¢,- — ¢p+). The Jacobian in the
fermion measure of the path integral is triviai®® under
the above unitary transformation and the fermions x,
correspond to the upper and lower Mott-Hubbard bands
with dispersions

Bf =gy \[h2+41,

where 2g, = ¢,~ + €,+ and 2hy, = ¢,- — €,+. In this new
basis for the fermions, the electromagnetic interaction

(2.10)

In the new -
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- is now given by a rotation of the matrix %, /\;;‘*“""n =

UPTZ;};”'”""Uq making the one-photon vertex now Wplq = -
g/\;l,gAO‘_q The coherence factors U, arise from the
mean—feleld magnetic state just as they arise in the mean-
field description of BCS superconductors.?* The spin
and charge fluctuation fields are now Dy, = Ul M,,U,.
Hence, the total fermion action equals x][Tpq + Wpe(A) +

U Dplxq- The new propagator matrix is given by

-1 _ Gy 0

o6 (G &
with G = 1/[—iwp, + EE — p).
The fermions X, can now be integrated out in the

background uniform charge density and magnetic ground
state to give for the effective action

TrIn[T + W(A) + U D]

(2.11)

= Trln[T] - f: Tr{-T"'[W(4) + UD]}*/n. (2.12)

n=1

The saddle-point condition®®?® is that the linear terms
in ®* from the above cancel those from ®1#®* after
the mean-field decomposition. We determine the saddle-
point conditions in the absence of A since this has been
introduced only as a weak perturbation to perform linear
response. The saddle-point equations therefore become

n=(1/L)3, {ff +f;} and

1= (U/L)Y (fy — F)(EFf ~EF) (2.13)
, P

for the S order parameter where f¥ = f(Egz — ). Terms
of quadratic or higher order in the spin and charge fluctu-
ations describe the collective modes associated with spin
waves, multiparticle excitations, and the like.!® These
terms although higher order in 1/S, contain essential
corrections to all linear-response functions, particularly
spin-correlation functions. We omit these corrections for
now and concentrate instead on the saddle-point trans-
port properties in the presence of symmetry breaking.

In addition to the two self-consistency conditions for n
and S that we obtained for the magnetic saddle points,
we can determine Q from requiring that the free energy
be minimized. Neglecting all spin and charge fluctuations
beyond linear order, we obtain for the thermodynamic
potential

Q= ULn?+ ULS? —(1/8)Tr In[T)

+(1/8) Y Te[-T~'W (A" /n. (2.14)
n -
The third term can be simplified using the identity for
the fermionic Matsubara sum Y, In[—iwp, + z] = In[1
+exp(—pFz)] up to irrelevant ¢ numbers, giving for the
A-independent thermodynamic potential

Qo =ULn® + ULS?* = (1/B) > In[l+ e PEr-m]
p,a=+

(2.15) |
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From the particle constraint, we obtain the equation for
/1 given by

1-6= (/L)Y {f + 7}, - (2.16)
P

making 2n = 1 — §. Therefore for fixed doping and U/t,
n is independent of Q and S unlike p. The free energy
Fo = Qp + po(N) is finally given by

Fo/L = US4+ Un® + u(1 — 6)
—(1/BL) > W[l +e AE-m] (2.17)

p,a=%

In the zero-temperature limit 8 — oo, the free energy
must go to the ground-state energy since the entropy is
zero and we find Fyg — Ejy, where

Eo/L=US*+U(1—6)%/4+(1/L) D> {Ef £} + E; f;}
P

(2.18)

just as we found in the previous article.!® The saddle-
point results can be equivalently obtained from minimiz-
ing Fy with respect to S or n. The second term in the
free energy is the repulsive energy of the uniform electron
gas and is canceled by the positive background by charge
neutrality and is irrelevant for any saddle-point analysis
of Q and S.

B. Phase diagrams

The nontrivial saddle-point constraint Eq. {(2.13), the
particle constraint for p, and the condition

8F,/6Q =0 (2.19)

at fixed doping U/t and temperature comprise the four
coupled integral equations that determine the saddle
point with lowest free energy for states with uniform
charge and spin-rotational symmetry breaking. In Fig.
4 we plot the phase diagram of the 2D Hubbard model
at U/t = 4 by solving the above equations on a 500 x 500
mesh of the Brillouin zone. At half-filling, up to the mag-
netic transition temperature Ty = 0.73%, we find that
antiferromagnetic moment formation is favored. How-
ever, at any nonzero dopings, spiral states are more sta-
ble at low temperatures. For low dopings 6 < 0.11, a
(1,1) spiral where Q, = Q, # = is favored whereas
for dopings 0.11 < é < 0.45, a (1,0) spiral where Q.
or @y = w is formed.'*'® The paramagnetic metal to
spin-density-wave {(SDW) boundary can be determined
from Eq. (2.13) by setting S = 0 which then reduces to
1 = Ux(Q, Tas) where the spin susceptibility is given by

p

€p+Q — €p

(2.20)

This instability criterion corresponds to the random-
phase approximation (RPA) for the Hubbard model.'?
Even in more sophisticated approximations,?” the phase
boundary extends to considerable finite doping. Our
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FIG. 4. The finite-temperature mean-field phase diagram

of the 2D Hubbard model at U/t = 4 displays paramagnetism
(P), antiferromagnetism (AF), (1,1) spirals at low dopings
and (1,0) spirals at moderate dopings. The Mott-Hubbard
band crossing occurs at 6. and the transition between the
two types of spirals occurs at 6,. Ry is positive in the region
below the dotted curve and negative otherwise.

analysis here goes beyond this phase boundary since the
coupled integral equations probe the nature of the SDW
states below the transition temperature Tps(6) for any
doping. From the instability criterion Eq. (2.20), we
note that when there is a symmetric density of states for
dispersion ¢p, the critical temperature satisfies Tjs(6) =
Tar(—6). Specifically, a similar symmetry relation should
hold for the physical Néel temperature Ty which sepa-
rates the long-range antiferromagnetically ordered insu-
lator from the fluctuation dominated paramagnetic in-
sulator. Typically Ty is nearly an order of magnitude
lower than Tys and occurs at an experimentally observed
temperature whereas T37(6§ = 0) occurs above the melt-
ing point of the entire solid. Furthermore, the particle-
hole symmetry even in the presence of spiral magnetic
states'® ensures that the order parameters also satisfy
Q(8) = Q(—6) and S(6) = S(—6), implying that the
phase diagrams of the hole and electron-doped systems are
the same. Note that Fo(8) # Fo(—8) and p(8) = —u(=6).
When the temperature is increased in any of the spiral
states, there is a smooth second-order transition to the
antiferromagnetic states for § < 0.28 or a first-order tran-
sition into the paramagnetic state for 0.28 < § < 0.45.
The bare parameters of the Hubbard model can be
roughly approximated from various experimental mea-
surements. Infrared measurements®® fix the insulating
gap of the antiferromagnetic samples to A ~ 2 eV.
Neutron-scattering experiments on dynamical spin-spin
correlations fix the spin-wave velocity?® to hv, = 0.85
eV A. Lastly, uSR measurements3® give (S) ~ & for the
spin-wave renormalized on-site magnetization. In the
large U/t limit, the spin-wave velocity is proportional
to J = 4t2/U, giving J ~ 0.16 eV. Neglecting any
self-energy corrections for the Mott-Hubbard band dis-
persions other than those that can be absorbed into S,
the charge gap in the Mott-Hubbard picture is given by
A =2U(S). Combining these results, we obtain t ~ 0.35
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eV and U/t ~ 8 for the 2:1:4 copper oxide in reason-
able agreement with band-structure calculations.3! This
choice of ¢ enables a direct fit of the bare Hubbard pa-
rameters to key experimental signatures without recourse

to an ad hoc spin-renormalization factor necessary to ob-

tain ¢ = 1 eV.!® Although the true values of J and A
are significantly altered by spin-wave and other renor-
malization effects, the preceding analysis shows that the
actual materials are most likely to be in the intermediate
range of U/t = 4-12. Likewise, the exact positions of the
paramagnetic-SDW boundary and other phase bound-
aries will be strongly influenced by fluctuation corrections
since in a strictly 2D system, continuous symmetries can-
not be broken. In fact, the observed Néel temperature
Tn in the layered copper oxides is primarily determined
by the spin-exchange constant in the ¢ axis J,. The cou-
pling along the ¢ axis and spin-wave fluctuations drives
the Néel temperature to what is experimentally observed
Tn S 0.1 . We expect from Fig. 4, however, that the
true phase diagram of the full three-dimensional (3D)
system with fluctuations still contains a sizable region
where spiral SDW states are stable.

Temperature and doping frustrate the order parameter
S to zero as shown by the paramagnetic-SDW transition
line in Fig. 4. Doping and temperature also frustrate the
ground states by steadily moving Q away from Q, and
thus increasing the pitch Q,—Q. These combined effects
move the upper and lower Mott-Hubbard bands closer
together until they actually cross at doping . shown in
Fig. 4. This band crossing leads to a degeneracy of hole-
like states in the top of the lower band with electronlike
states at the bottom of the upper Mott-Hubbard band as
shown in Fig. 5. Despite the indirect nature of the gap
that connects the upper-band states to states near the
chemical potential, their effects in optical absorption are
nontrivial in the presence of spin waves, lattice excita-
tions, and impurities. For dopings beyond b., the effec-
tive Mott-Hubbard gap Amp = min(E}) — max(E; ) =
2US — 4t cos(Qz/2) — 4t cos(Qy/2) < 6 The proxirnity
of the upper Mott-Hubbard band and its role in the Hall
coefficient and usual transport occurs at slightly higher

FIG. 5. The dispersions for the upper and lower Mott-
Hubbard bands relative to the Fermi surface (Er). The pock-
ets of hole states at the top of the lower band and the pocket
of electron states at the bottom of the upper band are related
by an indirect optical gap (A1) which is considerably lower
than the minimum direct gap (o).
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dopings and temperature when A; = min(E}) — Ey ~
kpT. The temperature and doping dependence of the
spiral order parameters Q and S, the presence of the
upper Mott-Hubbard band, and the band crossing dras-
tically alter transport behavior. To extract these quanti-
ties using linear response is nontrivial since in the Mott-
Hubbard picture, the electromagnetic vertex has been
completely modified for the spiral Mott-Hubbard bands.

III. TRANSPORT FOR THE MOTT-HUBBARD
SYSTEM

We now explore the role of the coherence factors U,
in linear-response functions at arbitrary temperature.
The microscopic derivation provides a field-theoretic for-
malism for lmear response in the presence of nontrlwal
ground states.®

The terms in the thermodynamlc potentlal dependent
on A give the effective action for the gauge fields cou-
pled to the electrons moving in a ordered magnetic back-
ground. Q(A) obtained in the last section in Eq. (2.14)
is given by

QA) = (1/8) ) Te[-T~'W(A)]"/n. (3.1)

To obtain finite conductivities, we must again introduce
a phenomenological lifetime for quasiparticle excitations
in the upper and lower Mott-Hubbard bands by writing
the propagators G'i =1/[~ lwm-i-E —u-{-zsgn(wm)l‘i]
The bandwidth of the lower Mott- Hubbard band varies
from 4J for large U/t in the antiferromagnetic state to 8¢
for Q = 0 in the ferromagnetic state. The spiral band-
widths are therefore in the range 4J < W < 8t. Fits
to the finite-frequency optical absorption in the normal
state of the copper oxides®3® give I'(T) ~ 1 — 10 kpT.
This implies that in the region for small bandwidths and
large quasiparticle widths, we have T' ~ W/3 ~ E;/3
using T = 300 K and J = 0.16 eV. In the other extreme
of W = 8t and I' = kpT, we find T ~ E;/100 using
t = 0.35. Therefore for some material parameters, the
usual weak-scattering result ' €« Ef is valid whereas
for spirals with small pitch T can be a significant frac-
tion of Er. Since we are interested in the leading-order
transport properties of the band-structure effects in the
magnetic background, we assume for our calculation that
the material properties allow us to safely assume I' < Ep
and neglect any momentum dependence to I’ (Ref. 34) in
addition to the vertex corrections that lead to the trans-
port relaxation time.

A. Absence of paramagnetic currents

At finite doping, twisted antiferromagnetic order gives
rise to pockets of holes at finite wave vectors. We verify
that these pockets do not give rise to currents in the
absence of an external field. From Eq. (1.13), we obtain
that the response to zero order in the external fields is

80T = (e/V B)bu, 06 _OZ {G; DA™~ +GF MY,

(3.2)
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where the superscripts on the vertex functions A denote
the matrix element, e.g., [A\]~+ = [A]'2. Since the band
electrons are momentum eigenstates, the only contri-
bution is from zero-momentum, zero-frequency photons.
Using the definition of the matrices ¥ and U, we find

- (5 )

pp Fg  Efe )’
where F¥ = —sin26, hJ and Ei"‘ = aEi/ap Note
that in the long—wavelength hmlt the dlagonal part of
the single-photon vertex for the new band fermions is

just given by the group velocities E;,*:"' as in usual Fermi
liquids.

(3.3)

For a transition between bands or a finite mo-

mentum transfer, however, the vertex is nontrivial in-

volving the angle #,. Evaluating the Matsubara sum, we

find the'crystal current in the absence of any fields to be

600y = (e/V)u,,0600 ) {E;f7
P

+ EFefty. (3.4)

The group velocity can be written E’i"‘ = gp +hy cos26,.
Under the translation plus mversmn operatlon P —
—p—Q, we note g, — gy-and h, — h, giving E‘h — E=t
In contrast, since g5 — —g2 a,nd hg — —hg the gloup
velocities are odd under thls transformation and hence
J

§,T8 = —aEP(2/VB)y > {E{,“"Egﬁ > GELGE L, — [MEFIEEY Gg},

p.u=%t

Boe2rvpy {F: FP> (G mGmin + G:,mG;,m;n)} :
s —

The first two terms correspond to the four single-band
pieces and the last two terms to the mixed-band pieces.
To obtain finite de conductivity the w, = 0 contribution
of the first and last two terms must cancel the entire
second term for each band. From the definition of £ and

U, we find for the W? vertex,
AZaP — (Ep’ *f+Cpf HpP ) , (3.7)

g I

Here, the coherence term C5# = (sin26,/A)F2F? and
the band-mixing term is H“ﬁ = —sin26, F‘"‘/3 with
F"/’ = BF“/ap‘s Unlike the one-photon vertex the
dxa.gonal terms of the two-photon vertex is not sxmply
E*"‘ﬁ as in Fermi liquids but receives a correction of or-
der 1/U from C’g‘ﬁ Expressing the first Matsubara sum
in Eq. (3.5) at w, = 0 as a partial derivative with re-
spect to B as in Sec. I, we see that it cancels with the
E';,‘"ﬁ piece from the W2 vertex. The C;j‘ﬁ term from the
W2 vertex cancels with the last two interband Matsub-
ara sums at w, = 0. To see this, we make the standard
deformation in the complex plane?? for the last two sums
which gives

(1/B)Y CymGim =} - I)IEF —E7]. (3.8)

the initial Brilliouin zone.
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60,,7;" = 0. Despite the anisotropic Fermi surface for the
states in the lower and upper Mott-Hubbard bands for
spiral antiferromagnetism, there is no true crystal mo-
mentum reflecting the fact that the gaps for the original

up- and down-spin electrons open on opposites sides of
16

B. Ordinary conductivity

The usual conductivity is obtained from the pieces in
the effective action quadratic in A. These consist of one-
loop graphs with two W! vertices and a graph with one
W?2 vertex. The fermion lines in the loop graphs can
be from the identical band or from different bands. In
the latter type, the absorption and emission of a photon
interchanges the band index from lower to upper or vice
versa. In total, there are six diagrams that contribute
to 61Jq° proportional to af and six proportional to a®
The imaginary part of the response from the interband
diagrams is crucial for the cancellation of the diamagnetic
graph with one W? vertex. From Eq. (3.3), we simplify
the one-photon vertices and find the contribution of the
six diagrams to linear order in the electric gauge potential
to be

(3.5)

(3.6)

The difference in the denominator is just the direct gap
between the two bands and can be written 1/[E}f — E]
= sin 20, /2A which when multiplied by the two factors
of Fis _]ust the coherence term from the W2 vertex. As
in the case of the narrow-band metal, we find that the
entire diamagnetic term is exactly canceled for any dop-
ing and temperature by the real part of the single- and
mixed-band loop graphs. The cancellation of the diamag-
netic term’in the normal state required the interaction of
the lower band with the upper band to cancel the order
1/U correction to the diamagnetic vertex even though
the Fermi surface is entirely in the lower band at finite
doping. It is apparent that the microscopic interactions
of the bands which is beyond standard Bloch-Boltzmann
theory was necessary to prove this cancellation.

The real part of the first term at w, # 0 in Eq. (3.5) is
exactly the standard result from Bloch-Boltzmann the-
ory for electrical conductivity. Performing the Matsub-
ara sums after introducing the retarded and advanced
Green’s functions and doing the analytic continuation for
sgn(wy) > 0 as outlined in Sec. I, we find in the Fermi-
liquid limit of I' < Ep that the imaginary part of the sum
gives the usual term ofy/OE for w — 0. For sufficiently
low temperatures, i.e., when LBT &K Ay, the lower band
dominates the cqnduct1v1ty Partially integrating in mo-
mentum space, the real part of the linear response to the
E field is given by uJf = o’OﬁE’fi where
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o5? = (277 /V)D | E;°Pf(E; = p).
P

We recognize this is as the volume form of the Bloch-
Boltzmann result which conventionally is written as a
Fermi surface integral as in Eq. (1.20). At zero temper-
ature for § — 0, we can approximate f(E; — p) = 1

making the integrand a total derivative and using peri- -

odic boundary conditions; we get c3° — 0 for the com-
pletely filled lower Mott-Hubbard band. It is clear that
05 = og® only for antiferromagnetism and (1,1) spi-
rals where @ = Q. In addition to the nonvanishing
components o§® and o§¥ that one finds for the narrow-
band metal with no symmetry-breaking order parame-
ters, there is an additional anisotropic component oJ¥
specific to (1,1) spirals. This off-diagonal conductivity
can be brought to the form

og? = (e*r7/V) Z (sin® 29p/A)h;hg By — ).

p

(3.10)

For (1,0) spirals and antiferromagnetism, hY = sinp,
whlle the dlspersmn depends only on cos py There-

fore the integrand is odd under the parity transforma-
tion py — —py, making o3? vanish for (1,0) spirals. In
twinned single crystals, the signature of a (1, 0) spiral is
the anisotropy o§* # o’ whereas for the (1, 1) spiral,
the unambiguous signature is the nonvanishing tensor
o5”. Both of these anomalous coefficients vanish for para-
magnetic, antiferromagnetic, and ferromagnetic states.
We plot the conductivity tensor divided by the lifetime
as a function of temperature at fixed doping in Fig. 6
for the self-consistent (1, 1) spiral at U/t = 6. Note that
for the 2D tight-binding model, the momentum sums be-
come (l/V)Z — (1/d)(1/21r)2fd2p, where d is the
unit cell spacmg along the ¢ axis and the momentum in-
tegral is to be performed over the 2D Brilliouin zone. The
temperature dependence of the conductivities is a convo-
lution of I'*(7") = I'(T") and the momentum integral for
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FIG. 6. The anisotropic conductivity o3¥/r (dotted-

dashed line) is a significant fraction of the usual conductivity
05" /T (dashed line) for (1, 1) spirals. Here, U/t = 6,6 = 0.1
and the conductivities are in units of e®t/4%d, where d is the
lattice constant in the c direction.

(3.9)
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FIG. 7. The fall of 05* /v (dashed line) with temperature

for (1,0) spirals reflects the evolution of the pitch with tem-
perature .whereas the conductivity o}/ remains constant.
Here U/t = 6 and § = 0.2.

the conductivity. We obtain the residual temperature de-
pendence from the Fermi-surface changes by considering
ﬁ/'r We note that the anisotropic component is a sig-

'nlﬁca,nt fraction of the usual conductivity and vanishes

when Q unwinds to Q,. From the shape of the temper-
ature curve, we can conclude the conductivities decrease
more rapidly than 7. This is very unsatisfactory since the
experimentally observed resistivity appears to be linear
in temperature for moderate dopings. We must assume
that quantities sensitive to the absolute value of T like the
conductivities require a better knowledge of the dynam-
ical quasiparticle renormalizations and the concomitant
vertex renormalizations in the spiral ground states. The
two nonvanishing transport coefficients for (1,0) spirals
are plotted as a function of temperature in Fig. 7. The
conductivity in the antiferromagnetic y direction of? is
always much smaller than the conductivity in the spiral
direction o§® which is maximized when Q = (0, 7), the
column state.!® The conductivity o&* decreases for in-
creasing temperature until it coincides with o¥¥ near the
spiral-antiferromagnetic transition.

C. Hall conductivity

Terms cubic in A in the effective action Q(A) give rise
to the Hall conductivity. Among these terms, we concen—
trate on those that appear with one power of af and a®
in the induced current 62J“ For diagrams with a single-
band index, these dlagrams are exactly those in Fig. 2.
The diamagnetic term with one W3 vertex is independent
of q and wy,. As in the case of the tadpole diagram with
one W? vertex considered above, it is canceled by the
real part of the two triangle and three two-vertex graphs
evaluated at zero momentum and zero frequency after
including the interband terms. The second two-vertex
graph is independent of q and is canceled by the trian-
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gle graphs evaluated at q = 0 after including interband for the reader. For the Hall conductivity, contributions
processes. The third two-vertex graph is independent of to linear order in q and w, come from the two triangle
wy, but has no pieces linear in q. Since these calculations  graphs and the first two-vertex graph in Fig. 2. These
have no measurable consequences we leave this as a check loop graphs with only the lower band included give

P—m p+ m—[—n
@ v - - ~— - -
+E By [’\p+p+] ZGP—.m ptm>ptmin
m

+E, “E; 7,\113 ——Z Gt mGo m_n}, | (3.11)

5298, = (e3/V B)aEP o Z{ S(E;TP + C"’)Z G-
P

Except for the appearance of the A matrix in the triangle graphs and the coherence term C;'ﬂ in the two-vertex graph,
this result is similar to the narrow band metal worked out in Sec. I. The terms linear in q from the Green’s functions

in the two triangle graphs cancel each other. Expanding the Green’s functions in the two-vertex graph and the A
matrix, we find

52 J7 = (e2/2V B)aE? [ (¢°al” —q"aB) >~ E;“E;7E; P
P

'(46“57)255“0}3’[’5;6] > (G5 (G mtn — Gmn)- (3.12)
P

m

The first momentum sum has the usual gauge-invariant form whereas the second anomalous term depends on the
coherence term from the W? vertex in the first two-vertex graph.

Like the diamagnetic term, the appearance of the coherence term in the Hall conductivity is canceled by including
the interaction matrix element of the lower-band. with the upper-band. To see this we consider the triangle graphs

shown in Fig. 8 with two lower-band fermion lines and one upper-band fermion line. Evaluating the graphs in Fig. 8
using the diagrammatic rules, we obtain

8;° Ii (63/‘/[3)“[” . Z{ [’\II’OISW]—_[’\P P] ’\zl?:l'-qp - Z G ptemGpm-n
P

Y20l I A G CqmGrman (5.13)
where we have chosen the loop momenta in order to simplify the upper-band Green’s function. From the relation
[A,’,iaq,pﬂq]““ = EN + {(a+ b)/2}q‘5E'{,‘°"s + 0(q?), (3.14)

we see that the pieces linear in g from the A terms with index « cancel. The pieces linear in q from the off-diagonal
A components can be obtained using the general result

AL agpregl T = F + ¢ [(a + B)H) + (5in 26, /A FE(bE;Y — aEFY)]/2, (3.15)
P hagorsg ™™ = Fy +d°[(a+ 8)H)® + (sin26,/A)F(aE;" — bE}F)]/2. (3.16)
Inserting a = 1, b = 0 for the first diagram and a = 0,6 = —1 for the second diagram, we find that the linear pieces in

q again cancel leaving only the contribution from the Green’s functions. If we introduce the retarded and advanced
Green’s functions to evaluate the Matsubara sum, we would find the integral in the complex plane is dominated by
the quasiparticle poles in the lower band near the chemical potential at temperatures where A, > kgT'. Hence we can
replace the iwm in the upper-band Green’s function by the pole at E —pu, making G’+ = 1/[E+ ET] =sin26,/2A

P
as we showed by exact evaluation for the diamagnetic cancellation. Lastly, expandmg the Green s functions, we get

5B = (3/2VB)alP ¢ el > By E7% (sin20,/A)FPFY > [Gy ml?(Griman — Grm—n)s (3.17)

P m
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FIG. 8. The two triangle graphs involving interband pro-
cesses which cancel the coherence terms in the Hall conduc-
tivity obtained from a single band alone.

which precisely cancels the CI‘,"B term from Eq. (3.12).
The Matsubara sum in the remaining term in Eq. (3.12)
can be evaluated using standard techniques'® giving fi-
nally for the Hall conductivity the canonical answer,

0,;/3: = — (637'_/1/)
x Y E;(B; x V)E;P(-8f; JOE;),
P

(3.18)

where E_° denotes the group-velocity vector. The volume
form of the Hall conductivity for a magnetic field along
the ¢ axis can be brought to the form

o}t = — (e37/V)
X Y (E; ™ E;¥ — Ey™E;Y®)f(Ey = p),
P

(3.19)

where we have used I'* = I'. At zero-temperature, the
nontrivial coherence terms of order 1/U from the two-
photon vertex are canceled by including interband inter-
actions giving the conventional transport formula for the
Hall conductivity. Therefore, response functions in the
limit ¢ — O are entirely determined by the group veloc-
ity vectors. The fine structure of the band itself and the
interactions of the upper and lower Mott-Hubbard bands
are of importance only for quantities like the optical con-
ductivity.

The cancellation of the coherence term in Eq. (3712)
is strictly valid only in the Fermi-liquid limit T'* <« Ep
and in the low-temperature limit kT < A;. These as-
sumptions allowed us to replace the upper-band Green’s
function by the quasiparticle pole at E7 — p. However,
when kT ~ A; and Amy < 0, there is a degeneracy
in the electronic spectrum between states in the upper
and lower bands. In this regime when the occupation of
the states in the bottom of the upper band is not sup-
pressed, the dc transport can occur by scattering of lower-
(upper-) band states to lower- (upper-) band states and
lower- (upper-) band states to upper- {lower-) band
states. This requires that we treat the Matsubara sum
multiplying the C’;B term in Eq. (3.12) differently. We

need to include the quasiparticle pole at Ef — p as well,
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which then gives rise to an unconventional contribution
to the conductivity when f(E;,*‘ — p) is sizable. It is pre-
cisely in the interband transitions, where coherence terms
arise, that corrections to the Bloch-Boltzmann analysis
emerge. In contrast, the coherence term from the dia-
magnetic diagram is uninfluenced at finite temperature
and is always canceled by the real part of the other di-
agrams to each order at zero external four momentum,
i.e., at ¢ = 0. For our analysis of the Hall coefficient,
we present the results at temperatures where kpT < A,
where interband effects can be ignored.

Since spirals create pockets of holes states,'® the Hall
coefficient has a 1/6 dependence at low dopings which
then dramatically goes to zero and changes sign, reflect-
ing the significant changes in the Fermi surfaces at higher
dopings. The Hall coefficient Ry = 0%¥* /0%%0%? is man-
ifestly independent of = in the conventional Fermi-liquid
limit ' <« Ep, where in addition the momentum de-
pendence of the scattering time is neglected. From the
particle-hole symmetry of spiral magnetic states, we find
that the Hall coefficient of the electron- and hole-doped
materials are related by Ry(6) = —Rg(—$6). In Fig.
9, we plot Ry for the commensurate antiferromagnetic
state at three temperatures 8 = 1000/t, 20/t, and 5/t
with A = ¢ fixed. The Hall coefficient is always nega-
tive at finite doping and diverges rapidly as we increase
the temperature for moderate dopings. At the mean-field
level, there are no pockets for the antiferromagnetic state

which has dispersion”)’_*}’;,b = *,/e2 + A?. Consequently,

the Fermi surface at any finite doping encloses the ori-
gin and the point Q. In the two-sublattice picture, the
Fermi surface of the antiferromagnetic state enclosesonly
the origin making a change in sign of Ry impossible. In
contrast, a doubling of the Brilliouin zone becomes nec-
essary for incommensurate magnetic states. Near § ~ 1,
where the dispersion is almost parabolic, the temperature
dependence disappears for the antiferromagnetic state.
A major reason for the sensitivity of Ry to temperature
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FIG. 9. The Hall resistivity in units of Vo/e where W is

the volume of the unit cell for the antiferromagnetic, state
when A = t vs doping for 8 = 1000/t,20/1, and 5/t, shown
as a dotted line, dashed line, and dotted-dashed line, respec-
tively. At mean field, Ry is always negative and exhibits a
strong temperature dependence at low doping due to non-
parabolic effects.
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near moderate doping is the vicinity of the singularity
in the density of states at the upper edge of the lower
Mott-Hubbard band when Q = Q.

Whereas commensurate antiferromagnetism predicts
Ry(8) < 0 for any 6 > 0, spiral states always lead to
a sign change at the mean-field level. In Fig. 10 we plot
the Hall coefficient for a (1, 1) spiral with @ = 5x/6 and
a (1,0) spiral with Q, = 37/4, Q, = =, and ferromag-
netism all at A ={ and zero temperature. We note that
at small doping Ry ~ 1/6 while at intermediate doping,
there is always a change in sign in the range 0 < § < 2
whenever 7 > @ > 0. Ry for the ferromagnetlc state
with dispersion ¢, + A at doping 6 is the same as the
Ry of the paramagnetic state with doping 26 — 1 and
therefore has a sign change exactly at quarter filling. We
note that the slope discontinuities in Ry for the spiral
states is due to logarithmicsingularities in the densities of
state in the Mott-Hubbard bands.!® For very high doping
¢ ~ 1, the curves in Fig. 10 converge since the dispersion
is nearly parabolic for any Q and S. Unlike the pock-
ets that may arise for the antiferromagnetic state when
self-energy corrections are performed, the pockets for the
spiral states are very robust and extend to significant
doping for any intermediate value of U/t. We combine
the doping dependence of .S and @ for the spiral states
at zero temperature and plot Ry in units of Vo/(:‘ where
Vo is the unit cell volume for U/t = 4,5,6,7.5in Fig. 11.
For the 2:1:4 copper oxide with a unit cell of 94.2 A3, this
becomes Vp/e = 5.89 x 10~* cm®/Coulomb. The discon-
tinuities in Ry reflect the transition from (1, 1) spirals
to (1,0) spirals. Near the sign change Rg drops precipi-
tously and the Hall coefficient beyond the sign change is
shown in dashed lines. In Fig. 12 we compare the dopings
where a sign change occurs in each type of spiral with the
doping where the transition between the two types of spi-
rals occurs for U/t < 10. For U/t < 6, the sign change
occurs in the (1,1) spiral states whereas for U/t > 6,
the sign change occurs within the (1,0) spiral states. For
7 < U/t < 12, the sign change occurs when the (1, 0) spi-
ral unwinds to the column state given by Q = (0, ) at
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FIG. 10. The Hall resistivity for (1,1) spiral (dotted

line), (1,0) spiral (dashed line), and the ferromagnetic state
(dotted-dashed line) with A = ¢ fixed. A sign change always
occurs between 0 < § < 0.5.
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.FIG. 11. The Hall resistivity for the 2D Hubbard model

at U/t = 4,5,6,7.5 (square, triangle, diamond, star) vs dop-
ing at zero temperature. Near half-filling Ry > 0 and the
transition from (1,1) to (1,0) spirals does not interrupt the
precipitous fall of Ry. The values of —Ry beyond the sign
change at 6y are traced.

6 =% When U/t > 12, the (1, 1) spiral unwinds into the
ferromagnetlc state where the sign change then occurs at
6 =% without any transition to the (1, 1) spiral. We note
that when U/t < 6, most of the (1, 1) phase has a positive
Hall coeflicient and at higher dopings, the (1, 0) phase has
a negative Ry. As we increase U/t, both phases have
positive Hall coefficients until quarter filling. Ordinary
antiferromagnetic ordering is inconsistent with the exper-
imentally observed positive Hall coefficient at moderate
doping whereas for spirals, the sign change can occur at
any doping up to quarter filling. We can associate the
doping-induced sign change of the Hall coefficient with
the Fermi-surface topology change from pocket-type to
one enclosing the origin which occurs at one of the sad-
dle points!® of EZ. The sign change occurs when g1 ~ ES
and p = (— Qx, — @y /2), one of the saddle points for
any S. Low-temperature data®® on both the electron
and hole copper oxides have always shown an anomalous
reduction of Ry from 1/6 at § > 0.03 along with a pre-
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FIG. 12. The critical doping 65 where Ry changes sign

from being holelike to electronlike vs U/t for (1,1) spirals
(square) and (1, 0) spirals (triangle) at zero temperature. The
(1,1) to (1,0) transition is labeled by the dotted curve.
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cipitous fall and change in sign at § ~ 0.1 —0.2. In our
mean-field picture, this is consistent with //t =4 ~ 6 in
remarkable agreement with the spin and optical data at
half-filling,.

Changes of the Fermi-surface topology with temper-
ature also lead to a strong temperature dependence for
Rpy. The temperature dependence in Fig. 9 was entirely
from nonparabolic effects since we kept A and Q fixed.
Since the (1,1) spiral phase has positive Ry and an-
tiferrornagnetism has negative Ry and considering the
phase transition that occurs between the two at finite
temperature as shown in Fig. 4, we expect a strong tem-
perature dependence for Ry. The temperature Ty at
which the sign change occurs increases with doping at
first and then decreases to zero as shown by the dot-
ted line in Fig. 4. Since the Hall-coefficient anomalies
are associated with low-energy Fermi-surface-topology
effects, we expect that the true temperature scale on
which these effects occur will be lowered by spin-wave
renormalization effects. These renormalizations change
the magnetic order on a sufficiently short time scale
to affect dynamics near the Fermi surface and possi-
bly bring these transport anomalies into the observable
temperature scale Ty (é) rather than Th(6). Anoma-
lous temperature dependences have been repeatedly ob-
served in single-crystal data!?3% where in the supercon-
ducting window, a strong temperature dependence is ob-
served which is suppressed at both higher and lower dop-
ings. From Fig. 13 we see the Hall number per unit cell
nyg = 1/Rpy is flat at very low temperatures and then
crosses over to a parabolic temperature dependence in
the vicinity of the spiral-antiferromagnet transition. Ex-
periments have focused on the temperature dependence
below the sign change in the hole doped superconductors
where a linear T dependence has been observed. In most
of the copper-oxide samples the Hall number is found to
increase with temperature in accordance with our mean-
field results. We ascribe the unusual doping dependences
observed in ny for the copper oxides at moderate dop-
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FIG. 13. The Hall number per unit cell g = 1/Ry in

units of ¢/Vp vs temperature for the (1,1) spiral at U/t =5
and § = 0.05,0.10, 0.15 shown as dashed, dotted, and dotted-
dashed lines, respectively. Near the spiral-antiferromagnetic
transition, the sign change in Ry leads to a strong temper-
ature dependence for nyg ~ 1/(T — Ty), where Ty is the
temperature at which the sign change in Ry occurs.
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ings to the Fermi-surface topology changes that induce.
a sign change in Ry naturally in the incommensurate
SDW mean-field states of the 2D Hubbard model. If
spin-wave effects in fact reduce the relevant temperature
scales, these same effects may also account for the un-
usual temperature dependence of ng.

In addition to the temperature dependence from the
Fermi-surface changes, there is also an anomalous contri-
bution related to the proximity of the upper band. When
Ay ~ kpT, the occupation of the upper-band states con-
tributes to the conductivities. Although this requires a
complete treatment of the loop graphs with both band
electrons present as we mentioned earlier, a simpler ap-
proximation can be made by just adding the upper- and
lower-band contributions separately. In this approxima-
tion, the Hall coefficient becomes

ryz + oFY?

o
Ry = i = A (3.20
" o + o) (320

where the + signs refer to upper and lower bands, re-
spectively. This two-band formula explicitly avoids the
band interactions which we know are nonvanishing from
the microscopic calculation. For most U/t and § > 0,
the region where Ay ~ kgT is where Ry is already neg-
ative, i.e., near the paramagnetic-SDW boundary. Since
the sign of Ry is different for each band, the upper-
band contribution in the above formula leads to a pre-
cipitous rise in Ry towards the paramagnetic value at
the same doping and temperature. Unlike other two-
band explanations for the temperature dependence Ry,
the second band in this case arises naturally from the
Hubbard model itself. The temperature dependence that
arises from the upper band, however, is only important
at relatively high temperatures near Tjr(8) and the low-
temperature effects are entirely due to the lower Mott-
Hubbard band.

At very low dopings é < 0.03, both the in-plane and
out-of-plane resistivities diverge in the zero-temperature
limit revealing an insulating behavior33 contrary to the
picture of a spiral metal presented here. However, in the
moderate doping region, the materials are metallic at all
temperatures and in some small window become super-
conducting. The mobility in the magnetic ground states
of the 2D Hubbard model is influenced by the anisotropic
topology of the hole pocket, the presence of nonlinear
dispersive spin-wave modes, massive charge-fluctuation
modes corresponding to interband transitions, and non-
trivial distributions of the density of states near the Fermi
level.1® Although the spiral metal will in turn receive
enormous corrections at small dopings, these fluctuations
are suppressed energetically by an energy scale propor-
tional to the inverse correlation length when long-range
magnetic order is destroyed by frustration effects at mod-
erate dopings. Interestingly, the destruction of the long-
range order can be brought about precisely by the in-
trinsic degeneracies of the spiral states themselves.!® In
the presence of these domains, the Fermi surface becomes
symmetric although still pocketlike and the short-ranged
spiral may remain a metal to low temperatures.

Extensive neutron-scattering studies reveal that long-
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range magnetic ordering is destroyed for § > 0.03 in
the layered copper oxides.3” At moderate doping, the
correlation length is roughly the order of the interhole
spacing. However, the spin-spin correlations are un-
like a completely disordered state and strong fluctua-
tions near Q, are borne out by the nuclear relaxation
measurements.3® Due to the underlying lattice symme-
try, a (1,1) and (1,0) spiral state with wave vector Q is
energetically degenerate with four other states, respec-
tively, in an oriented lattice. The equivalent states for
a (1,1) spiral are Q" = (Qz, Qy),(Qz, —Qy) and their
reflections across the origin. For the (1,0) spiral, they
are @* = (@, 7),{—Q, m) and their reflections across the
line Q; = Q. In the presence of an external electric
field along the z axis, each of these states are distin-
guishable. A possible reconciliation of the NMR data
with the neutron data is that moderate doping favors
the creation of domains with the magnitude of the pitch
fixed by the doping but the orientation varying among
the degenerate states. Evidence for strong incommen-
surate fluctuations in the moderate doping region also
comes from the prediction of a slightly non-Korringa re-
laxation rate for the oxygens and a strongly non-Korringa
relaxation rate for the coppers.3® Incommensurate order
is also consistent with an increasing rms deviation of the
local orienting field with doping observed in uSR relax-
ation measurements.’® Lastly, anomalous double peaks
in neutron scattering3” for the 2:1:4 system could also be
related to spiral states.

Most of the transport results we have calculated are
exactly the same in the short-ranged domain struc-
ture. We consider the usual conductivity tensor evalu-
ated for @*. In the integral in Eq. (3.9), if we replace
ps — —ps, we find that o7?(Q*) = 65P(Q) as long as
o = B. In contrast, the anisotropic component satisfies
ol (@*) = —o'gy(Q). Unlike the other components, the
anisotropic element for (1,1) spirals is canceled in sam-
ples with short-range order or crystals that are unori-
ented. Even though the Fermi surfaces of the degenerate
spirals are on opposite sides, the diagonal components of
the conductivity in the domain-averaged sample is the
same as in the long-range ordered spiral metal. Insert-
ing the same transformation in the integral for the vol-
ume form of the Hall conductivity in Eq. (3.19), we find
that o7/*(Q*) = o7 (Q) for both (1, 1) and (1,0) spi-
rals. The topology of the Fermi surface is the same for Q
and @* and hence this result is not surprising. Bringing
this all together, we find that since the Hall coefficient
for the two degenerate spirals, it is unaffected by short-
ranged ordering. The unusual temperature and doping
dependence of the Hall coefficient is insensitive to the
transition to short-ranged ordering which may itself be
brought about by the lattice degeneraaes of the spiral
magnetic states. .
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IV. CONCLUSIONS

We have shown how the 2D Hubbard model away from
half-filling involves a Mott-Hubbard band structure that
recaptures the sign changes of the Hall coefficient with
doping. These same Fermi-surface changes lead to a
nontrivial temperature dependence for the Hall coefli-
cient with sign changes at low doping. Spiral magnetic
states, dynamically short ranged or long ranged, are rich
enough to capture these anomalous sign changes. We
have also shown that for a narrow-band system, resid-
ual temperature dependences in the transport coefficients
can arise from an unconventional quasiparticle damping
rate. However, the Fermi-liquid assumption combined
with the pitch variations with temperature do not ac-
count for the linear resistivity. Obviously, the fluctua-
tion corrections for the quasiparticle lifetimes of the spi-
ral Mott-Hubbard bands is desirable. These corrections
may lead to qualitative modifications in the short-ranged
spiral where dynamical restoration of the broken symme-
try takes place. It is not clear whether a long-wavelength
spin-wave approximation described by the nonlinear o
model is sufficient to describe this restoration or whether
short-wavelength topological excitations which probe the
full Mott-Hubbard gap are necessary. In general, fluctu-
ation corrections to the effective action §2(A) will be of
three types. The first consists of self-energy renormal-
izations to the fermion lines giving corrections to I'(p,€).
The second consists of electromagnetic vertex renormal-
izations which bring interband processes as corrections
and most importantly modify the time scales involved in
conductivity from the quasiparticle lifetime to the trans-
port relaxation time. The third consists of diagrams
where each photon is connected to a different loop and
the loops are interconnected by fluctuations. In this lat-
ter type, the dispersion and renormalizations for the spin
waves and their damping rate will provide important cor-
rections to conductivity. Since such diagrams are higher
order in 1/S, they play an important role especially at
moderate doping where the frustration of S is significant.
These spin-wave renormalizations must play a crucial role
in lowering the temperature scale on which anomalies in
low-energy dynamical response occur. The mean-field
predictions for Ry in the spiral magnetic states are in-
dicative that further many-body corrections should be
pursued completely, both from the standpoint of quan-
titative modifications of temperature scales as well as
qualitative effects needed to explain the marginal Fermi-
liquid behavior and high-temperature superconductivity.
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