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It is suggested that an interacting many-electron system in a two-dimensional lattice may con-
dense into a topological magnetic state distinct from any discussed previously. This condensate
exhibits local spm—§ magnetic moments on the lattice sites but is composed of a Slater determinant
of single-electron wave functions which exist in an orthogonal sector of the electronic Hilbert space
from the sector describing traditional spin-density-wave or spiral magnetic states. These one-electron
spinor wave functions have the distinguishing property that they are antiperiodic along a closed path
encircling any elementary plaquette of the lattice. This corresponds to a 2w rotation of the inter--
nal coordinate frame of the electron as it encircles the plaquette. The possibility of spinor wave
functions with spatial antiperiodicity is a direct consequence of the two-valuedness of the internal
electronic wave function defined on the space of Buler angles describing its spin. This internal space
is the topologically, doubly-connected, group manifold of SO(3). Formally, these antiperiodic wave
functions may be described by passing a flux which couples to spin (rather than charge) through
each of the elementary plaquettes of the lattice. When applied to the two-dimensional Hubbard
model with one electron per site, this new topological magnetic state exhibits a relativistic spec-
trum for charged, quasiparticle excitations with a suppressed one-electron density of states at the
Fermi level. For a topological antiferromagnet on a square lattice, with the standard Hartree-Fock,
spin-density-wave decoupling of the on-site Hubbard interaction, there is an exact mapping of the
low-energy one-electron excitation spectrum to a relativistic Dirac continuum field theory. In this
field theory, the Dirac mass gap is precisely the Mott-Hubbard charge gap and the continuum field
variable is an eight-component Dirac spinor describing the components of physical electron-spin
amplitude on each of the four sites of the elementary plaquette in the original Hubbard model.
Within this continuum model we derive explicitly the existence of hedgehog Skyrmion textures as
local minima of the classical magnetic energy. These magnetic solitons carry a topological winding
number p associated with the vortex rotation of the background magnetic moment field by a phase
angle 27y along a path encircling the soliton. Such solitons also carry a spin flux of pr through the
plaquette on which they are centered. The p = 1 hedgehog Skyrmion describes a local transition
from the topological (antiperiodic) sector of the one-electron Hilbert space to the nontopological
sector. We derive from first principles the existence of deep level localized electronic states within
the Mott-Hubbard charge gap for the p = 1 and 2 solitons. The spectrum of localized states is sym-
metric about E = 0 and each subgap electronic level can be occupied by a pair of electrons in which
one electron resides primarily on one sublattice and the second electron on the other sublattice. It
is suggested that flux-carrying solitons and the subgap electronic structure which they induce are
important in understanding the physical behavior of doped Mott insulators.
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I. INTRODUCTION . -

The discovery of high-temperature superconductivity!
has sparked broad interest in the magnetic properties
of strongly correlated electron systems. It was origi-
nally suggested by Anderson? that a “spin-liquid” phase
of strongly interacting electrons may be responsible for
many of the anomalous electronic and magnetic features
observed in such systems. Experimental evidence® for a
fundamentally new magnetic phase of this many-electron
system comes from the fact that in the absence of any free
charge carriers, the oxide superconductors exhibit an an-
tiferromagnetic Mott-Hubbard gap. As charge carriers

are introduced by the process of doping, this long range

antiferromagnetic order disappears leading to a metal-
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lic phase with striking non-Fermi-liquid properties. It is
from this parent, metallic phase which superconductiv-
ity emerges as the system is cooled. Understanding the
nature of this unconventional metal, appears to be the

- central focus of many-body theory as apphed to these

systems.*

Some insight into the mature of strongly interacting
electrons exhibiting magnetic correlations comes from
one-dimensional systems.’® Here it is well known that
antiferromagnetic spin systems can condense into spin-
liquid-type phases consisting of fermionic spin solitons.”
In the presence of charge carriers these systems may
not exhibit Fermi-liquid behavior but rather a Luttinger-
liquid behavior.® When applying such concepts to the
oxide superconductors, which consist of weakly coupled
two-dimensional layers, it must be borne in mind that
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a continuous change in physical properties takes place
in these materials as a function of doping. This change
is from manifestly three-dimensional antiferromagnetism
at zero carrier concentration, to non-Fermi-liquid or spin-
liquid behavior for small carrier concentration and ﬁnally
to more conventional behavior at high carrier densities.?
It is possible that spin-liquid behavior in this h_lgher—
dimensional system has a fundamentally different micro-
scopic origin than the corresponding spin-liquid states of
exactly soluble one-dimensional models.

-An attempt to incorporate the three-dimensional an-
tiferromagnetic behavior and Mott-Hubbard band struc-
ture into the spin-liquid scenario has been made by Schri-
effer et al.® He suggested that the removal of electrons
(addition of holes) to the Mott-Hubbard antiferromag-
netic insulator would be accompanied by a local dis-
tortion of the antiferromagnetic background Denoting
the local magnetic moment on site ¢ by (s;), Schrieffer
suggested that for weak electron-electron interaction the
magnitude of (sz), and accordingly the magnitude of the
Mott-Hubbard gap A = 2U|(s;)| would be locally sup-
pressed. Here U is the on-site Hubbard repulsion be-
tween electrons of opposite spin. This leads to a mag-
netic polaronlike state (spin bag) for the charge carrier.
On the other hand, Shraiman and Siggia!® noted that
in the large-U limit the charge carrier may lower its en-
ergy more easily by a local distortion of the orientation of
(s;) while keeping the magnitude s = |(s;}| fixed. They
suggested that a single charge carrier would be accompa-
nied by a dipolar texture in the magnetic background. A
global twist of the magnetic background also leads to a

change of the overall Mott-Hubbard effective one-electron -

band structure. Mean-field theories have verified that for
a uniform density, &, of charge carriers (holes), a small
deviation q of the wave vector describing magnetic or-
der from that of the antiferromagnetic order leads to a
lowering of the kinetic energy of charge carriers by an
amount of order —t6(ga). Here t is the intersite hopping
matrix element for electrons and a is the lattice constant.
The pitch, ¢, of the resulting spiral magnetic state leads
to an increase in the classical magnetic exchange energy.
If we denote the antiferromagnetic exchange energy scale
t2/U by J, then this increase in magnetic energy scales as
+J(ga)?. It follows that a twisted magnetic state whose

spiral pitch g increases continuously with § minimizes the -

total energy.

Both of the above. pictures utilize the fact that the
Moti-Hubbard system is analogous to a doped semicon-
ductor in which the electronic band structure is sensi-
tively determined by the magnetic moment background.
In the spin-bag scenario sensitivity to the magnitude, s,
was considered whereas in the spiral magnetic phases,

this sensitivity was extended to the order parameter

space Sy (surface of a unit sphere) describing the local
magnetic moment orfentation. In this paper we point
out that the Mott-Hubbard band structure may in fact
be sensitive to a larger order parameter space than the
sphere S;. This is because the Mott-Hubbard semicon-
ducting gap is sustained, not by a collection of classical
magnetic moments, but rather by a background field of
spin—% electrons. The underlying classical order parame-

ter space which gives rise to spin'% is not the sphere S
but rather the entire group manifold of SO(3) describing
the group of rotations in three dimensions. Physically,
what distinguishes these two manifolds is the fact that
there is a meaningful phase factor to the electronic wave
functions comprising the magnetic background and that
this phase can severely affect the band structure inde-
pendently of the actual local moment orientation. This
phase corresponds to a rotation of the underlying electron
spinor field about the axis (3;) of the local moment itself.
It can be regarded as the third Euler angle associated
with the electron’s internal coordinate frame in addition
to the two Euler angles which define the axis (3;). We
show that these considerations give rise to a topological
variant of the conventional spin-density-wave and spiral
magnetic states of the Hubbard model. The effects of
this additional phase degree of freedom can be incorpo-
rated by introducing the notion of “spin flux.” This “spin
flux” corresponds to a homotopically nontrivial phase
rotation of the electron spinor around a closed trajec-
tory in coordinate space. This, for instance, could occur
if the internal coordinate system of the electron under-
goes a 2w rotation as the electron encircles an elementary
plaquette of the two-dimensional square lattice. For sim-
plicity, we consider a uniform topological magnetic con-
densate in which the local moment structure is that of an
antiferromagnet and an elementary unit of spin flux pen-
etrates each plaquette of the lattice. We will show later
that spin flux can be dynamically generated by the nu-
cleation of a vortex-antivortex pair in the local magnetic

moment background. In this case a drastic modification

of the effective one-electron band structure takes place in
which the conventional nested Fermi surface for the two-
dimensional square lattice collapses to a set of four Fermi
points which occur at the corners of the square Brillouin
zone of the spin flux phase. A continuum theory for

charged, quasiparticle excitations near these Fermi points

maps exactly to a (2+41)-dimensional relativistic Dirac
field theory. Here, the “Dirac mass gap” is precisely
the Mott-Hubbard gap A = 2Us and the “Dirac spinor”
is an eight-component field variable which describes the
two components of electron-spin amplitude on each of
the four lattice sites of an elementary plaquette. This
mapping is an illustration of the mathematical connec-
tion between topology, relativity and the spin-statistics
theorem. Within this spin flux phase, we demonstrate
the natural occurrence of hedgehog, Skyrmion textures
in the local moment background as well as the subgap
electronic structure which they induce. These textures
induce phase vorticity in the magnetic background and
may be regarded as topological solitons. A proliferation-
of such solitons in the presence of charge carriers is sug-

gested as an alternative to conventional spiral antifer-

romagnetism and as a possible scenario for spin-liquid
behavior.

In Sec. II, we present a brief review of the topology
and underlying two-valuedness of spin-; wave functions.
In Sec. III, we derive from first principles the electronic
structure of the uniform spin-flux phase and its mapping
to a (2+1)-dimensional continuum field theory. Finally
in Sec. IV, we show that subgap electronic structure may



be induced by the presence of topological magnetic soli-
tons and we present a numerical study of the resulting
electronic spectrum.

II. WAVE FUNCTIONS FOR SPIN-%
ELECTRONS

In this section, we describe an extension and gener-
alization of the physical Hilbert space of an interacting
many-electron system. This extension is consistent with

the fundamen’ﬁal axioms of quantum mechanics as ap- -

plied to spm—— particles, but to our knowledge has not
been d1scussed previously in the context of many-body
theory in condensed matter physics. This extension is
relevant and perhaps essential to the understanding of
strongly correlated electron systems in which local mag-
netic moments appear, and with which the charge de-
grees of freedom of the electron gas must interact. All

of the consequences of this extension which we describe,

such as the spontaneous appearance of SU(2) spin flux in
the many-electron system, the relativistic dispersion rela-
tion of charged quasiparticles in two dimensions, and the
natural occurrence of flux-carrying magnetlc solitons are
precise and direct consequences of the axioms of quantum

theory and the topology of the physical rotation group

SO(3).

Elementary particles in physical three-dimensional
space are divided into two fundamental classes: bosons
and fermions. The origin of this dichotomy may be re-
garded purely as a geometrical property of physical three-
dimensional space. This is evident from a direct applica-
tion of the axioms of quantum mechanics to the space of
Euler angles describing the local or internal coordinate
frame of the particle.11:12 This set of Euler angles is a
parametrization of the manifold of the compact Lie group
SO(3). If we label the three Euler angles as (71,72, 7s),
then geometry alone specifies the metric tensor g;; on this
group manifold by the relations gi3 = g2z = ga3 = 1 and
g23 = gaz = cosny. All other components are zero. This
fact is sufficient to specify classical mechanics within this
manifold. For instance the rotational kinetic energy of
a symmetrical spinning top (whose rotational kinematics
is completely specified within the space of Euler angles)
is given by!3

Linternal = 2 Egzj"h'r/] . (2'1)

ij

Here 7; = %n,-, I is the moment of inertia, and ¢ is
the time variable. This specification is simply an expres-
sion of the fact that classical motion follows the geodesic
paths'? within the group manifold SO(3). The rules of
canonical quantization then determine the precise form of
all internal wave functions describing the various states
of intrinsic spin angular momentum which this object
can possess. Defining the classical conjugate momenta,
p; = OL/8%;, and imposing the quantization condition
[Mas Pg] = tAdag leads to a Schrédinger equation (see Ap-
pendix A)

(2.2)

H internal\p internal = E \I, internal -
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Here Hipterna) is simply the Laplacian operator on SO(3)
and the wave function Winternai{(17) may be interpreted as
a transformation amplitude!* for a component of spin
when the quantization axes are rotated by the set of
internal Euler angles 1. The axioms of quantum me-
chanics require that Winterna1 must be a continuous, dif-
ferentiable function and that |‘I’intema1i2 must be single-
valued. It follows immediately that this wave function
can describe only integer or half-integer spins. For ex-
ample, a solutmn of the internal Schrédinger equation
describing a spin angular momentum of 7/2 is given by
Tinternat(n) = cos(n1/2)expli(n2 + ns)/2]. This wave
function is a two-valued, continuous function. Clearly,
under a continuous 27 rotation (n; — n; + 2m) the wave
function changes sign and so both Winternal 20d —¥internal
must be associated with any given point 7 of the group
manifold SO(3). The fact that motion along a continu-
ous closed path in the group manifold can continuously
change the value of the wave function by a factor of et
without the presence of a singularity is a consequence
of the doubly connected topology of SO(3). The group

- manifold may be depicted as a solid ball of radius 7w with

the antipodal points identified (see Fig. 1). With each
point on the sphere, we associate a rotation matrix. The
axis on which the point lies defines the axis of rotation
and the distance of the point from the origin defines the
angle of rotation. There are two homotopically nonequiv-
alent classes of closed paths that may be traversed within
this manifold: those which cross the surface of the sphere
and those which do not. The fact that the former cannot
be continuously deformed to zero is what allows the wave
function to be both two-valued as well as everywhere con-
tinuous and differentiable.

3>

/

S0(3)

FIG. 1. The group manifold of SO(3) is depicted as a solid
ball of radius w. There is a 1:1 correspondance between
points = p# in this manifold and physical rotation ma-
trices T = exp(in - o/2) which describe a rotation about the
axis 72 by an angle p. Since a rotation by w is equivalent to
a rotation by —m, the antipodal points of the solid ball must
be identified. Two homotopically, nonequivalent paths A and
B within this manifold are depicted. Path A can be continu-
ously deformed to a single point whereas path B cannot. Spin
flux arises when the internal coordinate frame of an electron
traverses the path B during the course of a closed trajectory

in external coordinate space.



384 SAJEEV JOHN AND ANDREY GOLUBENTSEV 51

From the previous argument, it is apparent that the
internal electron wave function exhibits antiperiodicity
along any internal path [within SO(3)] which crosses the
surface of the group manifold (Fig. 1) once. The ques-
tion whether this antiperiodicity can manifest itself for
a closed path in external coordinate space, however, has
not been addressed in the context of many-body theory.
For this to occur, the electron would need to undergo
spin-dependent scattering along its coordinate space tra-
jectory, in such a way that its internal coordinate space
was rotated by 2m (see Fig. 2). For the conventional
spin-density-wave state, spin-dependent scattering oc-
curs by virtue of a coherent or condensed state of the
electron gas in which the electron spin operator acquires
a nonzero expectation value. Scattering from this local
magnetic moment background, gives a nontrivial spatial
dependence to the effective one-electron wave functions
which make up the many-body state. A simple example

is a two-dimensional spiral magnetic state of wave vec- .

tor Q polarized in the z-y plane.'® Defining (1,0) as the
spinor for a +%4/2 state in the 2 direction, such a state
is composed of one-electron wave functions of the form
Xk (r) = [cos8(k)e™ T, sinf(k)e!+Q) ], Here, r is the
position of the electron in the two-dimensional Euclidean
space, sinf and cos @ are spin amplitudes for an electron
of wave vector k and the many-body wave function con-
sists of a Slater determinant of such states taken over a
Fermi sea of wave vectors. This can be rewritten as
— ik +Q/ 2T y—ins(x)as /2 €05 O(K)

Xi(r) =e A ‘(smo(k) » (23)
where n3(r) = Q -r. In this simple model, it is clear
that as the electron traverses any continuous closed path
in the external coordinate space r, its internal coordinate
frame undergoes a continuous rotation by the Euler angle
713 (r) which is topologically trivial: the function n3(r) is
path independent and single-valued.

In the two-dimensional square lattice, the spiral, spin-
density-wave state is periodic with respect to 27 rota-
tions in coordinate space and the many-electron wave
function lies in what we call the nontopological sector of
the Hilbert space. Let RZ** be an operator which rotates
the electron’s external coordinate r by an angle of 27
about an axis 2 which pierces the center of some particu-
lar plaquette of the square lattice. Then RZ*|xx) = |xi)-
For Q = Qo = Z(1,1) (where a is the two-dimensional

C

FIG. 2. An antiperiddic spin—% wave function may be pic-

tured as a Mobius strip. The two sides of the strip corre-
spond to the two values of the spinor wave function +x. A
closed electron trajectory, C, in coordinate space corresponds
to a trajectory around the strip. As the electron encircles
the closed loop, C, the value of its wave function switches
continuously from +x to —x.

lattice constant), and a suitable choice of 8(k), the cor-
responding Slater determinant wave function describes a
Néel antiferromagnet polarized in the +& direction. A
topological variant of this state, |x.°P °y with precisely
the same local magnetic moment structure is obtained
by applying a spatially varying phase rotation to the un-
derlying one-electron spinor states:

X PO (r) = em I Ee=/25 (r), (2.4a)
where the Euler ahgle field is given by
me) = [ A-at, (2.4b)
A(r) =) (-1)As(r - Ry) , (2.4¢)
-3
“and )
é
A]_(r) = ; o (2.4(21)

Here, the line integral (2.4b) runs from some arbitrary
reference point ry to the point in question r. The “vec-
tor potential,” A(r), is the sum of vector potentials
A, (r) arising from solenoids placed at the center, R;
of each plaquette (see Fig. 3). 6 is a unit tangential
vector perpendicular to the coordinate vector r. This
corresponds to a vortexlike phase rotation of the elec-
tron spinor field about the local axis of magnetization
& around each solenoid. While preserving the antiferro-
magnetic ordering, this transformation describes a phase
change of e along any closed path in r space which
encircles an odd number of elementary plaquettes. The -

—> - —— . . ’ y
© ® @ B
- e -~ e . X > -
® © ®
® ® © ,
B ® e

"f;-A.-dT=i21f

FIG. 3. A topological variant of an Z-polarized anti-
ferromagnetic spin-density-wave state is shown. ~Here the
one-electron spinor wave functions have been given a topo-
logically nontrivial phase rotation about £ by an Euler angle
field 5 (r). This field is path dependent and may be regarded
as the line integral of a fictitious vector potential. The vector
potential arises from placing a solenoid at the center of each
plaquette. The resulting wave function is antiperiodic along a
closed path, C, that encircles any elementary plaquette. This
is analogous to the 7 twist in a Mobius strip. ’
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inherent two-valuedness of the internal electronic wave
functions (in the space of Euler angles) is now manifest
as a two-valuedness in external coordinate space. This

two-valuedness is defined by the fact that R<|x;>P°'") =

—|xiPely, and we refer to these one-electron spinor wave

functions as being completely antiperiodic. Moreover, in
the absence of electromagnetic coupling, there is no el-
ementary one-electron matrix element which connects a
periodic wave function to an antiperiodic one. Let A be
any one-electron operator which is invariant under a 27
rotation. Since R™* = (R&*)~! and RF**ARS® = A,

it follows that (xi™*|Alxx} = (™" RE| AR xx) = - -

—(xf‘°P°l|A|xk). Therefore, (x;°p°1|A|Xk) = 0, and a
quantum-mechanical transition of a single electron from
the nontopological sector of the Hilbert space to the
topological one is strictly forbidden. As we will show
in Sec. IV, a one-electron transition from a state which
is periodic to one which is antiperiodic about a given
plaquette (or vice versa) requires the motion of an ele-
mentary unit of spin vorticity of the local moment back-
ground to or from this plaquette. This spin vorticity is in
fact carried by magnetic solitons (Skyrmions) which are
free to move in the two-dimensional lattice. The soliton
creation operator, V1, involves a rotation of the internal
spinor states of electrons from 0 to 27 around a closed
loop in coordinate space which encircles the soliton core.
It follows that under a 27 rotation in external coordinate
space, this creation operator in fact satisfies the prop-

erty RS*V1RS* = —V1T. Soliton motion requires rear-

rangement of the phases of all of the other electrons in
the many-body system and is mediated by the Coulomb
interaction. Accordingly, we expect that strong electron-
electron interaction is an essential prerequisite for the
occurrence of the topological effects which we describe in
this paper. The soliton states as well as spin-flux back-
ground may be regarded as a new variational wave func-
tion which describes spin-dependent scattering and the
resulting many-body correlations.

II1. SPIN-FLUX STATE OF THE 2D
HUBBARD MODEL

In a recent series of papers,’®'® we have presented

a careful study of the magnetic and electronic proper-
ties of the strongly correlated Hubbard model starting
from a mean-field theory of spiral magnetism and con-
tinuing to the lowest-order fluctuation corrections. This
was based on the viewpoint that in a physical system
such as the layered high-T, oxide superconductors, the
exact behavior of the two-dimensional Hubbard model
was modified by weak interlayer couplings. Based on

the experimental observation of long range antiferromag-

netic order in these materials, we assumed that the effect
of weak interlayer couplings was to stabilize mean-field
approximations to the two-dimensional model: although
the Mermin-Wagner theorem?!® forbids long range order
at finite temperature in two dimensions, these mean-field
approximations provided a useful starting point for de-

scribing the actual physical system at small values of the

carrier concentration § {1 — § = average electron occupa- -
tion per site). As the carrier concentration § is increased
from zero, magnetic order disappears within these lay-
ered materials. In our approach, this disappearance of
long range order is associated with fluctuation correc-
tions to mean-field theory which tend to restore broken
symmetry. Evidence for underlying magnetic correla-
tions which have been disrupted by fluctuations comes
from magnetic neutron scattering.20722 Inelastic neutron
scattering peaks are observed in Y;BasCuzOr_s at the
antiferromagnetic wavevector Qo =-2(1,1). Here, a is
the lattice constant for the square lattice. For the re-
lated compound, Lay_sSrsCuQy, antiferromagnetism is
observed at § = 0, but inelastic neutron scattering peaks
appear for nonzero doping at Q = Qg + q where the de-
viation vector takes on four possible values q = +¢(1,0)
and £¢(0,1). The magnitude of the spiral pitch g varies
continuously with doping §. Experimental data on this
variation of pitch with doping?® can be fitted to the
corresponding spiral magnetic mean-field theory of the
Hubbard model.}”:1® The fit is accurate for a ratio of
on-site electron-electron interaction U to hopping matrix
element ¢ which is in the range of 4-6. This is not in-
consistent with the occurrence of domains of short range
ordered spiral magnetism in which the size of the domains
is slightly larger than the average spacing between charge
carriers. This could arise from actual domain walls sepa-
rating various degenerate spiral states or from some other
nonlinear fluctuation effect.

Another independent experimental signature which
is consistent with mean-field theory is the depen-
dence of the Hall coefficient Ry with doping §.2* In
Las_sSrsCuQy, it is observed that Ry changes sign for
§ ~ 0.18.. Remarkably, this behavior can also be de-
scribed using nearly the same Hubbard model parameters
as before.'® The sign change, in this picture, is a natural
consequence of the evolution of the Fermi surface topol-
ogy with doping. For small doping, there is a small Fermi
surface with a positive (holelike) Ry whereas for larger 4,
this evolves into a large Fermi surface with an (electron-
like) negative Ry. The precise value of § at which Ry
passes through zero is determined by the ratio U/t and
the nature of the spiral magnetic mean-field background.
In effect, the changes in spiral magnetic pitch and the
magnitude of local moment formation with doping 4, in-
duce significant modifications of the effective one-electron
band structure. With the choice of U/t ~ 4—6, the Mott-~
Hubbard semiconducting gap which appears at § = 0
evolves into an indirect gap for § > 0 and eventually dis-
appears entirely at around é = 0.3 within this mean-field
picture. This eventual closure of the Mott-Hubbard gap
for large doping is also consistent with the reappearance
of metallic (Fermi-liquid) behavior for doping § > 0.3, in
the copper-oxide materials.

Although mean-field theory describes certain general o

electronic and magnetic features of these materials, it is
fundamentally inadequate in describing key features of
the parent phase, from which superconductivity emerges
(as the temperature is lowered). These key features
are entailed in the marginal-Fermi-liquid hypothesis and

pllenomenology.25’26 Among the nearly universal anoma-
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lies contained in this phenomenology are the unusual
temperature dependence of the Hall coefficient, the per-
sistence of linear temperature behavior in the ordinary
resistivity, and the striking broadband midinfrared ab-
sorption within the Mott-Hubbard gap. Neither mean-
field theory nor its lowest-order fluctuation (spin-wave
or spin-charge collective mode) corrections!” can account
for these effects.

The glaring persistence of non-Fermi-liquid anomalies
as well as the inadequacy of conventional mean-field the-
ories of the Hubbard model to address them has led us to
ask whether the underlying two-valued nature of spm——
wave functions may lead to anomalies at a very funda—
mental level which have hitherto been unexplored.?” We
begin by describing the spin-flux or topological antiferro-
magnetic state. This state is a variant of the conventional
spin-density-wave mean-field state in which the underly-
ing one-electron spinor wave functions are forced to be
antiperiodic around each of the elementary plaquettes of
the square lattice. This uniform spin-flux state may be
regarded as an alternative mean-field ground state of the
Hubbard model. As we describe in Sec. IV, the exis-
tence of such a state introduces the possibility of topo-
logical fluctuation corrections to the conventional anti-
ferromagnet. In fact we show that magnetic hedgehog
(Skyrmion) solitons locally interpolate between these two
ground states. That is to say, a topological soliton cen-
tered on a given plaquette of the two-dimensional (2D)
lattice changes the symmetry of one-electron states en-
circling this plaguette from periodic to antiperiodic or
vice versa. The structure of the hedgehog is such that
this local tunneling event also inverts the local magnetic
moment structure near its center. As such, these solitons
may lead to a rapid destruction of long range antiferro-
magnetic order. In this paper, we point out the kine-
matic possibility of such effects from a microscopic point
of view, but leave the detailed energetics and resulting
dynamical consequences to a future publication. One re-
markable feature is the conversion of the conventional,
anisotropic, Mott-Hubbard, band structure in 2D into a
quasirelativistic one.

From the standpoint of second quantization, the topo-
logical structure of the many-electron Hilbert space may
be described by considering the set of all physically ad-
missible local gauge transformations on the Hubbard
model: 2829

——tZ[be) +h c] +UZn,Tn,¢

(u)

Here bza creates an electron at site ¢ of spin a. We con-
sider a local gauge transformation on this operator which

implements an Euler angle rotation of the electron’s in-

ternal coordinate system. Denoting the three Euler an-
gles by m; = (912, 72:, M3:), we define the rotated electron
operator c;-ra by the relation b:-ra = [eilno)/ z]agc!ﬂ. Here
o = (0',0%,0%) are the three Pauli spin matrices and
there is an implicit summation over the repeated index
B. It is clear that such a substitution leaves the inter-
action term invariant. However, if the Euler angle field

3.1)

7; varies with index 4, the electron hopping terms will
be modified. Defining a SU(2) gauge field A* by the
relation

3
(s =) lg = [ de- Aval, (3.2)

the gauge—transformed Hamiltonian becomes
H = Z[CIQT;Jﬂcjﬁ + H.C.] -+ UZniTnﬁ 5
(i3 i

where the hopping coefficient ¢ for the link (%, j) has been
replaced by the SU(2) matrix

(3.3a)

3
T = exp (1/2/ de - A"o“) . (3.3b)
i ,
Here, we assume for simplicity that each of the Euler
angle rotations is about some fixed axis 7.

There is a crucial difference between the nature of
physically admissible gauge transformations for spm——
electrons and those familiar from elementary scalar quan-
tum mechanics. In the latier case, the wave function
1(r) is required to be single-valued in three-dimensional
Euclidean space. A relabeling of the phase of the wave
function ¢ — exp[if(r)+], leads to the introduction of
a U(1) gauge field into the Schrodinger equation. Pro-
vided that the gauge field is chosen to have the form
A = V¢ for some single-valued field 6(r), the spec-
trum is unchanged. The introduction of more general
configurations of the gauge field for which V x A # 0,
however, corresponds to the addition of electromagnetlc
forces. As described in Sec. II, for the case of spin—i elec-
trons, the internal wave function defined on the space of
Euler angles is two-valued. There are two distinct spinors
which describe the same physical rotation of the electron
and two distinct SU(2) matrices, T, which describe the
same physical rotation of the electron’s internal coordi-
nate system. This is a direct consequence of the doubly
connected topological nature of the group manifold of
SO(3). It follows that the one-electron spinor wave func-
tion x'(r) = [¢%(r), ¢} (r)] describing the up- and down-
spin amplitudes can be relabeled at each point in space
by a local SU(2) gauge transformation x — T(r)x which
creates a phase change of either +1 for any closed loop
in the coordinate space r. In other words, the product of
SU(2) matrices in (3.3a) T**T?3T3*T*!, describing hop-
ping around an elementary plaquette can be chosen to be
either +-1. In the case of a phase change e*", it is appar-
ent that V x A # 0. Nevertheless, we postulate that such
a gauge field is admissible without the introduction of an
external Yang-Mills force. It does, however, describe a
distinct topological sector of the many-electron Hilbert
space which may be accessible in the presence of strong
electron-electron interactions.

The choice T*2T23734T4! = —1 describes a singular
gauge transformation and consequently is not a unitary
transformation of the Hamiltonian on the conventional
Hilbert space of periodic wave functions. The appear-
ance of the spin flux in the Hubbard Hamiltonian may
be regarded as the introduction of a variational many--
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body wave function that spans not only the conventional
Hilbert space but the extended Hilbert space which in-
cludes both periodic and antiperiodic wave functions.
The SU(2) gauge field which enters the kinetic energy
is simply a mathematical bookkeeping device for keeping
track of symmetry changes in the wave function around
specific plaquettes. Similar mathematical devices have
been employed in U(1) charge-flux phases of the ¢-J
model,3%:31 the resonating-valence-bond model®? and the
anyon model.33 In the charge-flux variational wave func-
tions, the U(1) gauge field affects both up- and down-spin
electrons identically. It is equivalent to the vector poten-
tial describing physical electromagnetism. Although the
electromagnetic interaction is not explicitly present in
the Hubbard model, its effect enters through the vari-
ational wave function on which Hubbard Hamiltonian

acts. Transitions from a zero-flux state to a U(1) charge- -

flux state may be regarded as a consequence of vacuum
fluctuations of the physical electromagnetic field.*4

In the case of spin flux, the SU(2) gauge field [Eq. 3.3b]
is coupled to the Pauli spin matrices. As a result, there
are no static charge currents or magnetic fields associ-
ated with our variational wave function. The dynamical
generation of spin flux may nevertheless arise from tran-
sient fluctuations in the many-body system coupled to
physical electromagnetism. For example, a current fluc-
tuation in the many-electron system with a toroidal sym-
metry can spontaneously create a conventional charge-
flux of ®# and —m, respectively, on {wo adjacent
plaquettes. In the presence of such a quantum fluctua-
tion, both up- and down-spin electrons encircling the first
plaquette will acquire a phase of ™. Since this is equiva-
lent to a phase of e~*7, such a charge-flux fluctuation can
trigger a nonzero transition matrix element between the
nonflux state and the spin-flux state. The change in flux

by 27 in one spin component is equivalent to a radiative

transition accompanied by a spin flip. After this tunnel-
ing process takes place, the currents and magnetic fields
may subside, leaving behind a spin flux of © and —7 on
the adjacent plaquettes. The nonunitary modification of
the kinetic energy simply keeps track of those plaquettes
in which our trial wave function has undergone a change
in symmetry from periodic to antiperiodic. . B
An alternative, but weaker, mechanism for dynamical
spin-flux generation comes from a many-body general-
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ization of the spin-orbit coupling. As in the case of elec-
tromagnetism, this interaction does not appear explicitly
in the Hubbard Hamiltonian. Nevertheless electrostatic
fields may arise from charge-density fluctuations in which
the Coulomb interaction is not screened.

The continuum spin-orbit interaction may be written
in terms of an SU(2) gauge field A ,:

X h
%spin orbit — %P . Al"o-#’ (3.43)
where
hprgn = Exo '(3.‘4b) -
2 2mc? .

and the electric field E is the total microscopic electric
field experienced by a given electron in the many-body
system. In order to create a spin flux of « through an
elementary plaquette, it is necessary that this electric
field have a sufficient magnitude to probe the relativistic
structure of the electron wave packet. Such electric fields
arise from highly improbable quantum fluctuations. Ac-
cordingly, the rate of homogeneous spin-flux nucleation,
by this mechanism, is many, many orders of magnitude
slower than the rate of other electronic processes in the
many-body system. The interaction Hamiltonian (3.4)
nevertheless has the required symmetry to trigger a tun-
neling process between the periodic and antiperiodic sec-
tors of the generalized Hilbert space. Heterogeneous nu-
cleation near impurity potentials may increase the tun-

‘neling rate.

Unlike the physical electrdmagrietic field, the;croﬁﬁgu-
rations of our SU(2) gauge field take the form of small
quantized (in units of ) vortex loops in three dimen-
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sions. They can be nucleated by local electromagnetic

and spin-orbit effects. When such a vortex loop (with a
radius larger then lattice constant) penetrates the two-
dimensional plane, it corresponds to the nucleation of a
soliton-antisoliton pair. The structure of these solitons is
described in Sec. IV. The dynamics of the SU(2) gauge
field is determined entirely by the energetics of the many-
electron system as specified by the Hubbard model inter-
action parameters. It is simply a mathematical device
which implements our fundamental hypothesis of Sec. II.
This is the conjecture that the many-electron Hilbert

FIG. 4. Unit cell with a four-point basis.
The spin-flux phase is obtained by associat-
ing the SU(2) matrix T (see text) with each

" directed link of the 2D lattice. Here x = a#
and y = aj. The vector 7 is associated with
each plaquette and describes the quantization
axis for antiferromagnetic ordering (+7) of
the spin-% moments on sites 1,...,4. These
local moments are depicted by small arrows
on the lattice sites.
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space can be consistently extended to include both peri-
odic as well as antiperiodic states and that both sectors
are physically accessible. We emphasize that this effect
is a many-body effect. For a single electron, a transition
. between the periodic and antiperiodic sectors of the ex-
tended Hilbert space is forbidden by angular momentum

conservation. It would require that a half-unit (%/2) of

angular momentum be added or removed in the process.
The vortex loop in the many-electron system, however,
penetrates the lattice in two places. Therefore, the cre-
ation of a soliton-antisoliton pair requires only integral
units of total angular momentum to be exchanged with
- the physical electromagnetic field.

We consider a general Hartree-Fock, mean-field,
factorization'®?® of the Hubbard model in which the
ground state expectation value of the electron spin oper-
ator is given by %(c:-faa"‘ﬁciﬁ) = sfi;, where fi; = %A(r)
is a unit vector describing the orientation of the local
magnetic moment at each lattice site ¢, and A(r) is a

aﬁc,,@ +H c]

KE = Z[

(id}

b

slowly varying plaquette variable which defines the axis of
quantization of the local antiferromagnetic ordering. For
the uniform antiferromagnet one can choose A(r) = +2.
[Later, we will introduce magnetic textures by allowing
#(r) to vary slowly with r.]

A simple topological variant of this spin-density-wave
state may now be obtained by associating the SU(2) ma-
trix T = —texp{if[A(r) - o]} with each directed link of
the lattice as depicted in Fig. 4. With this choice it is
apparent that the product of SU(2) matrices around any
elementary plaquette of the 2D square lattice is equal to
-1.

In the topological sector defined in Fig. 4, the unit
cell now contains four lattice sites labeled 7 =-1,...,4,
and accordingly we define a set of four two-component
spinor fields x7) = (c ,C -L) to describe the one-electron
wave function. The kmetlc energy term of the Hubbard
Hamiltonian may be expressed in terms of these spinors
as .

T2 12 (3 2) (3 (2)
= Z{xrilaTxil)Jr X2 TX+ XL 4 g TX 0 + Xt g TX st X TX w09 T+ X 40 TX a0

+ X‘r(l) (4)

r+2uﬁ r+ay

+Xr(1)TX(4)

r+aj

.} + H.c.

Here, the subscript on x denotes the actual location of the
site in question and the summation over r is a summation
over plaquettes It is convenient to introduce the Fourier

transform xk ) defined by

XS‘.’I') = N——I/ZZeikvrxl({j) .
k

(3.6)

Here, N is the number of plaquettes in the lattice and
the summation over k extends over the reduced Brillouin
zone depicted in Fig. 5. The mean-field Hamiltonian
can now be expressed in terms of an eight-component
field Tf(r) = (xtW),xT @), x1(3) 514} defined on the
plaquette containing r. In terms of the lattice Fourier
transform Py, the kmetlc energy may be compactly re-
expressed as

KE = Z\I' [4z(K) + A, (k)] Ty, (3.7a)

where the 8 X 8 matrices describing hopping in the z and
y directions, respectively, are given by

o Tt 0 o
Ac(k) =2cos(kea) | T 0 o (3.7b)
0 0 T o0

and

4 o (3) 1(4) @)
(3-5)
|
0 0 o0 T
Ay(k) = 2cos(kya) | 3 2 5’; ° (3.7¢)
' T80 0 0

An interesting feature of the uniform spin-flux phase is
that these matrices anticommute:

B {Am(k)‘a Ay(k)} =0. (3'8)

fal

"
k
X (m/a,0)

ko= 35 (1,1

FIG. 5. Reduced Brillouin zone (inner square) for the
spin-flux phase. Here, a is the lattice constant. The large

square is the Brillouin zone of a free-electron gas. The middle

square defines the band edge for a conventional antiferromag-
net with one electron per site. The point ko and its symme-
try related partners define the band edge for the correspond-
ing topological antiferromagnet. A “relativistic” continuum
Hamiltonian is obtained by linearizing the dispersion relation

" about these four zone-corner points.
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This is a direct consequence of the topological phase fac-
tor acquired by the electron as it encircles an elemen-
tary plaquette. As we will see, this anticommutation
algebra between hopping in the z and y directions is
a necessary and sufficient condition to provide a quasi-
relativistic dispersion relation for single-particle excita-

tions. Rather than the conventional anisotropic disper-

sion relation of electrons on a two-dimensional square lat-
tice which takes the form € = —2t[cos(k;a) + cos(kya)],
the dispersion relation in the presence of spin flux be-
comes e = +2t[cos?(kya) + cos?(kya)]}/2. This is a sim-
ple illustration of the fundamental connection between
topology, relativity, spin, and statistics.3® In addition to
the usual Pauli matrices o, which act on the internal
spin space of the electron, it is convenient to introduce
two new sets of 4 X 4 matrices which act on the four site
indices of Ehe elementary unit cell:

e [zg g] (3.92)
and
w= [ 0] w=i[8 F] =0 1]
(3.9b)

Clearly, the set T and the set v individually satisfy a
cyclic Pauli spin algebra, but commute with each other:
[75,7%] = 0 for all j and k. Using the direct tensor prod-
uct of these maftrices with the physical Pauli spin ma-
trices o (which act on the electron’s internal wave func-
tion), it is possible to rewrite the kinetic energy term of
the Hubbard Hamiltonian in the 8 x 8 matrix form

Ho = —-2tz of Llcos(ka)a. + cos(kya)ay]\Ilk , (3.10)

where

bz = [12+ (- ‘7')"":/]/\/5 )
(ﬁ - U)Ty]’)'a:/\/i’

and Uy = (N)~Y/2 3 e~ 7@ (r;). Here a is the lattice
constant, N is the number of unit cells, and the reduced
Brillouin zone for the k summation is |k.|, |ky| < 7/2a.
Similarly, the antiferromagnetic mean-field interaction

term U S°; ¢]%(s;) - oapc? becomes

Gy = [10 — (3.11)

k

where &, = . =(fi - 0)7,7, and m = U|(s;)| defines
the magnitude of the antiferromagnetic, Mott-Hubbard
gap. We remind the reader that the unit vector # is a
plaquette variable and not a site variable associated with
local moment orientation. For the antiferromagnet, the
site localized moments are +s7. This sign alternation
within a plaquette is contained entirely in the structure
of the 4 X 4 matrix 7.

A straightforward calculation reveals that the 8 x 8

matrices o = (&g, Gy, ;) themselves satisfy a cyclic

Pauli spin algebra with {a;;a;} 28;5.- This im-
plies that the single-electron spectrum for the topolog-
ical antiferromagnet at mean-field level has the relativis-
tic, Dirac form E = +,/4¢2[cos2 (k,a) + cos?(kya)] + m2.
The band edges for the lower and upper Mott-Hubbard
bands occur at the four equivalent zone-corner points
ko = (w/2a)(£1,£1). An effective, one-electron, con-
tinuum Hamiltonian may be obtained by linearizing the
dispersion relation about these points and making the
replacement k — kg = —iV = —i(0;,0,):

Hest = 2ita(6, 05 + Gy0y) — Mbsv, - (3.13)

This effective one-electron Hamiltonian is an exact
mapping of the antiferromagnetic spin-flux state of the
Hubbard model to a (2+1)-dimensional, relativistic,
Dirac field theory with “charge conjugation symmetry.”
In addition to the complete anticommutation algebra of
the matrices &, &, and &,v., the matrix &. = &,y, anti-
commutes with Heg. This guarantees that the spectrum
of Hegr is symmetric about F = 0. We also note that the
operator v, is a constant of motion since [Heg,vz] = 0.
This is associated with a sublattice degeneracy of the
2D square lattice. The “mass” parameter m = U|(s;)|
must be determined by a self-consistent Hartree-Fock
calculation as in the case of conventional spin-density-
wave theory. A detailed evaluation of the mean-field
(Hartree-Fock) energy of the spin-flux state as a func-
tion of the microscopic interaction parameter U/t, dop-
ing §, next-nearest neighbors and interlayer coupling will

- be presented elsewhere. This will determine the region -

of the mean-field phase diagram in which the spin flux
is energetically favored over conventional spiral magnetic
states. We believe, however, that the true energetics of
the many-body system is dominated by fluctuation cor-
rections to mean-field theory. Fluctuations may be in-
corporated into the effective Hamiltonian (3.13) through
the factor of 7i(r) - & which enters each of the matrices
Gz, Gy, and &,. If the plaquette orientation vector #(r)
is allowed to rotate slowly from point to point in space,
this corresponds to slowly varying twist of the local mo-
ment background, while maintaining antiferromagnetic
correlation within a given plaquette. [In a path-integral
representation of the original Hubbard model, the matrix
field 7Ai(r) - o would emerge as a Hubbard-Stratonovitch
decoupling field for the Hubbard interaction and acquire
a_dynamics of its own.'®718] The experimental observa-
tion of spin-liquid behavior of the doped copper-oxide
materials® suggests that the true physics of the many-
electron system is not determined by the Hartree-Fock
energy and band structure of either the conventional spi-
ral magnetic states or the uniform spin-flux phase alone
but rather by localized tunneling events between these
two mean-field states. We proceed, therefore, to a de-
tailed investigation of the nature of magnetic soliton tex-
tures which give rise to such tunneling and the subgap

" electronic structure which they induce.

= IV. TOPOLOGICAL MAGNETIC SOLITONS

In this section we describe the nature of magnetic tex-
tures which occur in the uniform topological antiferro-_
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magnet. Remarkably, the structure of these solitons is
uniquely specified by geometry. We remind the reader
that the occurrence of topological spin flux as well as the
very existence of spin—% electrons is a direct consequence
of the geometry of physical three-dimensional space as
embodied in the group manifold of SO(3). We demon-
strate, in this section that the requirement that the con-
tinuum mean-field Hamiltonian (3.13) retains cylindrical
(two-dimensional) symmetry in the presence of a mag-
netic texture completely specifies the form of this texture.
This is the requirement that the z component of the to-
tal angular momentum in the many-body wave function
remain a constant of motion. In terms of polar coordi-
nates r = (r,¢), it follows that the operators Heg, va,
and 8y form complete set of commuting operators. The
uniqueness of the magnetic soliton textures is further il-
lustrated by the fact that the condition [Heg,795] = 0
is completely equivalent to the condition that the classi-
cal magnetic twist energy of the texture defined by the
integral [ d®r[8,7(r)]? is a local minimum.

We emphasize that the results which we derive in
this section refer to the topology of the spin flux
phase, namely 71[SO(3)]. Analogous considerations have
been applied by Wiegmann®® and Khveshchenko and
Wiegmann®” to the earlier U(1) charge-flux phases.

Twist of the magnetic background away from antifer-
romagnetic alignment from one plaquette to another may
be accomplished by allowing the matrices « to have slow
spatial variations through the factor A(r) - o which they
contain. It is shown in Appendix B that the generaliza-
tion of Heg for any magnetic texture which varies slowly
on the scale of the lattice constant is obtained by sym-
metrizing the kinetic energy with respect to the momen-
tum operator p =—iV. In particular the Hermiticity of
Heg is preserved for spatially varying #(r) if we make the
replacement o - p — %{a -p + p - &]. These spatial vari-
ations, while preserving the symmetry of the eigenvalue
spectrum of H.g about E = 0, give rise to localized elec-
tronic states within the relativistic Mott-Hubbard gap.

For the sake of argument we consider a uniform topo-
logical antiferromagnet which is polarized in the z di-
rection, perpendicular to the z-y plane of the two-
dimensional square lattice. In this case #A(r) = 2 and
the local moment structure within an elementary pla-
quette takes the form (s;) = +s7(r). We now allow the
plaquette variable 7(r) to have slow spatial variations
from one plaquette to the next. It is convenient to
parametrize a general rotation of 7(r) by means of the
spatially varying unitary matrix U(r):

i(r) - o = Ut (r)o,U(r) . (4.1)
The symmetrized, Hermitian, effective Hamiltonian (3.8)
can be rewritten as

HEE = ita [{&!H 83} + {&ya ay}] - m&z’Yza (42)
where the anticommutator {Gz,80;} = 640, + 8,0, sig-
nifies that the spatial derivatives act on everything to the
right-hand side. Inserting the general magnetic texture,
(4.1), into the matrices &,, ¢t ==, y, 2, we may rewrite

51
Heg = Ut (x)HU(x), (4.3a)
where
 H = 2itaf0,0, +aydy + V] +mp . (4.3b)
Here .
az = (1o + 0,7)/V2, (4.4a)
ay = (7o — 0:7y)1a/V2, (4.4b)
B =—aYe, (4.4¢)
Gz = —O0 Tz Ve (4.4:(1)

are spatially nonvarying 8 x 8 matrices. The price that
must be paid for removing spatial variations from the & -
matrices is the introduction of a new potential

V ={Ds,ax} + {Dy,ay}, (4.5a)
where the “invariant derivative” is defined as
D, =U(r)8,U'(r) . (4.5b)

In deriving the transformed effective Hamiltonian (4.3b)
we have made use of the fact that

3, (UTU)=8,(1)=0 .

" The eigenvalue spectrum in the presence of a mag-
netic texture is determined by the Schrédinger equation
Hego(r) = Etho(r). In terms of the transformed, eight-
component wave function ¥,(r) = U(r)o(r), this be-
comes ’

Hpy = By

with # given by (4.3b). Even in the presence of spa-
tially varying magnetic textures the eigenvalue spectrum
of (4.6) remains symmetric about E = 0. This follows
from the observation that if 1;(r) is a solution of (4.6)
with energy F, then 0,95 (r) is a solution with energy
—FE. To demonstrate this, we make use of the iden-
tities oyaj,0y = o, for p = z,y, 0yBf*0, = =B and
o,U*(r)o, = U(r) for any unitary spin-rotation matrix.
It follows that oyH*oy = —#. Noting that o2 = 1, it
follows from (4.6) that oy H*02¢} = Eoyi;. Therefore,

H(oyyt) =—E(oytp7)

(4.6)

(4.7)

as required.

We consider next a general axially symmetric configu-
ration of the background field #(r) and transform (4.6)
to polar coordinates r = (rcos¢,rsin¢). First we have
to transform the kinetic energy term in (4.6)

idmaz + i, 8y = oy (cos ¢0, — Sm¢6¢>
, . r

+iay, (Sin O, + co: ¢ 6¢>
= i(ct, cos ¢ + oy sin ¢)0,

+i(ay cos d — a, sin @) %‘1 . (4.8)
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Since the a matrices satisfy the cyclic algebra a0, = -

i€y a; + Oy, it follows that

(0m cOs @ + ay sin @) = a; exp(ic.P) (4.9)
and :
(0y cos @ + ag sin @) = o, exp(ia,¢). (4.10)
Therefore,
10Oy + 10y Oy
= exp(—ia,¢/2) [z'am (3,. + %) + iay%}
x exp(ic,$/2). (4.11)

Thus, by means of the unitary transformation of the wave
function ¥1(r) — exp(ic,¢/2)1y(r) we can achieve the
separation of variables in a free (D, = 0) Dirac equa-
tion. Next we consider the transformation of the invari-
ant derivatives term in (4.6) to the polar coordinates. We
will take rotation U(r) in the form compatible with the
axial symmetry of the problem:

U(r) = exp[—ioy,0(r)/2] exp(ino.4/2),

where 6(r) is a general function describing the magnetic
twist in the radial direction and the integer parameter
is a topological charge3®:3¢ of the # field provided that
6(r) varies from 0 to 7 while r runs from 0 to co. A de-
tailed review of magnetic textures which are local min-
ima of the classical magnetic twist energy, [ d?r(8,7)%,
is given in Appendix C.

In polar coordinates, it is straightforward to verify that
the invariant derivative potential V, Eq. (4.5a), may be
rewritten as

(4.12)

V = {D,, aze**=%} + %{Dq;, ayet=?}, (4.13)

where the radial and angular invariant derivatives D, and
Dy are related to their Cartesian counterparts by

D, =cos¢pD, — SI:d)

D¢ (4. 1 48.)
and

cos ¢
r

D, =sin¢D, + Dy . (4.14b)

Introducing the transformed invariant derivatives

D, = e*=#/2D eta=d/2 (4.15)
it follows that
V = e id/2( gl /2 (4.16a)
where
. . 1 - »
V(I’) = {D'f‘aam} + ;{Dd:,ay} . (416b)

This is analogous to the free kinetic energy term
(4.11). Defining the transformed wave function %, =
VTei=#/2U(x)1hy, the Schrodinger equation (4.6) takes
the form - o

’H"/’Z = E"J’Za

where
H = 2ita (ama, + 220, + %f/(r)) +mB.  (4.17)

The effects of the magnetic texture are completely con-
tained in the potential V' (r). We wish to determine the
conditions under which this potential is amenable to sep-
aration of variables in the polar coordinates r and ¢.
Accordingly, we evaluate V(r) for the axially symmetric
rotation field (4.12).

Using the representation of the a matrices (4.4),
a straightforward but lengthy calculation gives [using
(4.12)]

V(r) = _Tw cosO(r)o,ay T

+ e [cos$A_(r) + sin AL (r)7a],

= (4.18)

where S o

‘7}4:&(7'7) = ((3,.9)0'3, + § sin Oam'yz) /\/5 ' (4.19) '

Separation of variables in the Schrédinger equation is
possible if there exists a unitary transformation which
when applied to V(r) leaves it independent of ¢. This
in turn is possible if the matrices defined by Eq. (4.19)
anticommute. Explicitly,

2
{A,(r), A_(r)} = (8,0)% — %Sinzﬂ : (4.20)
Requiring that this vam'sh:, yields the condition
9,0 = sl—‘f sinf,s, =-+1 (4.21)
r

on the radial function 6(r). Remarkably, this condition
is mathematically equivalent (see Appendix C) to the
requirement that the function #(r) correspond to a local
minimum of the classical magnetic twist energy:

Honag = / Pr(9,4) - (9,7) . (4.22)

The separability condition (4.21) may also be arrived
at by requiring that the product of SU(2) matrices
712723734741 remains equal to —1 around all plaquettes
(except the plaquette containing the soliton core) to lead-
ing order in the gradient expansion. In physical terms,
the symmetrization procedure (derived in Appendix B)
for the kinetic energy, allows relaxation of the orientation
of local moments within a given plaquette in response to
the formation of a magnetic texture. The auxiliary con-
dition (4.21) is therefore necessary to preserve the flux

quantization requirement in the presence of this internal



392

relaxation. . . -

Using the condition (4.21) we may now derive a purely
radial Schrodinger equation. For this purpose it is con-
venient to define the spatially nonvarying matrices

Ay = (0y £ 517205)/V2. (4.23)

Clearly, Ay = 8,0 A with {A,, A_}=0. Also, A, A_,

and s30,7, satisfy a cyclic Pauli algebra. It follows that
V()= —ig cosfo,ay

LT

V2

Using the fact that o, commutes with 75, ag, and ay,
we obtain an equation for the transformed wave function

,¢,3 = _\/;e;—isldz¢/2e_ib‘z¢/2U¢0:

8,0e*17=4/2 f_e~inr:9/2, (4.24)

Hips = Erps, (4.25a)
where
. «x . )
H = 2ita [a,,a,. + Ty(3¢ + 13101/2)] +mp
——-tar—u[sl sin(r)7,A_ — cosf(r)o,a,].  (4.25D)

This effective Hamiltonian clearly has no explicit de-
pendence on ¢. Since [i8y,H] = 0, a purely radial
Schrédinger equation may be obtained by replacing i3
by an angular momentum quantum number £. Before do-
ing this, we make some final simplifications in the matrix
structure using the identities

A = e—if11,a,1r/80,yei31*/,3011r/8’

ay = e—to’,r,‘rr/S,rmezo,T,w/S,

(4.26)
oy = e—iq;'rzrr/S(_,ymo_z,’_y)eio',r,w/s.

Applying the unitary transformation defined by ¢4 =
el /Bein1 V22 7/8ypy  (4.25) becomes

Hapy = Erpy . (4.272)

Here __

H = 2ita ['rma,. — %o‘zﬁ, (3¢ +i%0'z)] +mpg

-t%[31 sin 01,0y + cos 0y, T1y] . (4.27b)
It is straightforward to verify that 7, i84, and -, consti-
tute a complete set of commuting operators. In addition
to the angular momentum quantum number £, we de-
note the eigenvalues of v, by s; = +1. In Appendix C
we' describe in detail our method for solving this radial
Schrédinger equation. A summary of the results is pre-
sented in Figs. 7—9. '

The general solution of Eq. (4.21) takes the form (see
Appendix C) )

o(r) = 2 tan—(r/pe)" ",

where p. is an arbitrary scale parameter which defines
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the core radius of the soliton.  The u = 1 soliton is de-
picted in Fig. 6. The validity of the continuum approx-
imation, however, requires that p. > a. For all nonzero
values of p, the soliton texture induces localized one-

_electron states within the Mott-Hubbard gap. For a very

large core radius p. > a, there are in general a num-
ber of angular momentum states labeled by the quantum
number £. Each state is doubly degenerate. This degen-
eracy corresponds to an electronic wave function which
resides primarily on one sublattice of the underlying 2D
square lattice and its partner which resides primarily on
the other sublattice. The sublattice electronic probabil-
ity density for an £ = 1/2 angular momentum state in the
# = 1 Skyrmion texture is depicted in Fig. 9. This bro-
ken sublattice symmetry is invariably a consequence of
the on-site Hubbard repulsion, which prevents a degen-

- erate pair of localized electrons from occupying the same

sites. For any given state of energy E and angular mo-
mentum £, there is a corresponding state of energy —F
and angular momentum —£. The symmetries and degen- _
eracies of the soliton spectrum are summarized in Table I.

For all solitons, both integer and half-integer values of £

are considered since we have allowed both periodic and
antiperiodic wave functions within the extended Hilbert
space. However, as the soliton core size p. shrinks to the
scale of the lattice constant a, high angular momentum
states merge into the Mott-Hubbard continuum, leaving
behind only a few low-{ states within the gap.

For a Skyrmion texture with topological charge u = 1,
it is necessary that £ # 0 for the physical wave function
to be nonsingular at the origin (see Appendix C). Set-
ting s; = 1 and £ = 1/2 yields the solid curve in Fig. 7.

Plaquette
- = ...~Field B
| 7
| v
i e(r)//
| 7
1
g ,7 . r
e P ———|
H=i
Solitop

FIG. 6 The radial dependence of the plaquette vector field

' 7(r) along a line passing through the center of a p = 1

hedgehog Skyrmion located at r = 0. In polar coordinates
r = (r,¢), the vector field A(r) undergoes a 2n-vortex rota-
tion as ¢ — ¢+ 27. Local antiferromagnetic order is inverted
near the center of the soliton. The soliton core radius is de-
noted by pe.



51 SPIN FLUX AND MAGNETIC SOLITONS IN AN ... .. 393

TABLE I. Symmetries and degeneracies in the subgap
spectrum of localized, electronic states in the vicinity of a
topological, magnetic soliton. Each energy level E is doubly
degenerate. The associated wave functions break the 4, B
sublattice symmetry of the square lattice. If the wave function
associated with quantum numbers (E, ¢, 32) resides primar-
ily on sublattice A, the degenerate state (E, —£, —sz) resides

primarily on sublattice B. Also, the spectrum is symmetric .

about E = 0. For any state (E, £, s2) there is a corresponding
state with quantum numbers (—F, —£, 32).

82 = +1 82 = -1
B\l E,—1
—E,—1 —E}

The bound state (doublet) moves deeper into the Mott-
Hubbard gap as the core radius p. shrinks, reaching a
minimum value of approximately 0.75 the midgap energy.
The angular momentum quantum number £ refers to the
transformed wave function ¥3(r). In order to determine
the angular momentum of the physical wave function we
must determine the transformation properties (under ro-
tation) of the original wave function

’l,bo(l‘) — e—isl'y,vr/Seialo,¢/26—ia,¢/2UT(r),z/)S(r) .

For a p = 1 soliton, the matrix Uf(r) changes sign when .

¢ — ¢ + 2m. Therefore if ¢3(r) is an £ = 1/2 state, the
original wave function %5(r) transforms under rotations
in the same way as states in the (topological) Dirac con-

1=3/2
2=
o.sF
o8k ;-
E 1=1/2
Us
o7k
06
0.5 i 1 1 i 1 |
0 i 2 3 4 5 8
(pe U s)
(a t)

FIG. 7. Eigenvalue spectrum of the g = 1 hedgehog
Skrymion plotted as a function of the dimensionless core ra-
dius parameter & = (p./a)(Us/t). E = 0 corresponds to the
center of the “relativistic” Mott-Hubbard gap and F = 1 is
the upper band edge. Each eigenvalue is doubly degenerate
and the entire spectrum is symmetric about £ = 0. The
deepest state has quantum number £ = % and corresponds to
an antiperiodic, physical state localized around the Skyrmion
core. This state reaches a minimum energy of about 0.75U s
when z o~ 0.4. Higher angular momentum states appear as p,
increases.

tinuum. Like states in the Dirac continuum, this state is _
antiperiodic. On the other hand, the £ = 1 state trans-
forms under rotations like continuum states in the non-
topological antiferromagnet and is not accessible from the
Dirac continuum. The appearance of the periodic state
is related to-the fact that the u = 1 soliton induces an
elementary unit of vorticity in the background magnetic
moments and can be regarded as carrying a spin flux of
in its core. When added to the original spin flux of 7 that
penetrates each plaquette it leads to a topologically triv-
ial flux configuration. If solitons are free to move within
the two-dimensional lattice, then the creation operator
for a soliton at r

VT(r) = exp -—i,uz Bl (r) exp | —2 Z .§§-’0]- (r)
i J

has the property that RZ,VI(r)RZ, = (=1)*Vi(r).
Here, 3% and §Y are spin operators at lattice site 7, ¢;(r)
is the angle of the line connecting site 7 with the point r,
0;(r) = 0(Jr; —r|) and the summation is over all sites on
the square lattice. RZ,, (as introduced in Sec. II) is an
operator that performs a coordinate rotation of 2w about
an axis 2 which passes through the vortex core r. The
one-electron transition from a periodic to an antiperi-
odic state which is now allowed by motion of the soliton
vortex through the point r involves macroscopic phase
rearrangement of all other electrons in the many-body
system. C

For topological charge ¢ =<2, a nonsingular subgap
wave function may be obtained by setting s; = 1 and
£ = 0. The bound state energies are shown in Fig. 8.
The £ = 0 state decreases monotonically with decreasing
Pec, approaching a limiting value of approximately 0.64 of
the midgap as p. — 0.

05 l 1 I I )
o 1 2 3 4 5 6

(pc U's)
{a t)

FIG. 8. Eigenvalue spectrum of the y = 2 soliton. The
soliton corresponds to two coverings of the sphere Sz by the
plaquette field #(r). However, the internal Euler angle field
of electrons which constitute this magnetic texture, crosses
the surface (Fig. 1) of SO(3) twice. As a result it is not topo-
logically stable on a lattice. The deepest localized electronic

state has angular momentum quantum number £ = 0.
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G 02 04 06 08 10 Lz 14
(rus)
(t a)

FIG. 9. Sublattice probability densities as a function of ra-
dius for the £ = % localized wave function, near the core of
the 4 = 1 Skyrmion. The £ = ,% state is doubly degenerate.
For one member of the degenerate pair, the wave function re-
sides primarily on sublattice A with a smaller component on
sublattice B. For the other member, the sublattice probabil-
ity densities are interchanged. The soliton core radius p. is
indicated. :

V. SUMMARY AND DIiSCUSSION

We have proposed an extension of the physical Hilbert
space for an interacting many-body system comnsisting of
spm—— particles. This extension arises from the inherent
two-valued nature of sp1n--2- wave functions. A pictorial
representation of this extension follows from associating
a Mobius strip with a closed electron trajectory which
encircles an elementary plaquette of the two-dimensional
lattice. Associate one value, , of the spinor wave func-
tion with one side of the Mobius strip and the other
value, —x, with the other side. As the electron encircles
the closed loop, the value of its wave function switches
from one side of the strip to the other. In other words,
the wave function is antiperiodic around the lattice pla-
quette. This 7 twist of the Mobius strip is mathemati-
cally equivalent to passing a spin flur of m through the
plaquette. The SU(2) gauge field which describes this
spin flux does not correspond to the addition of any ex-
ternal dynamical field despite the fact that the curl of
this gauge field is nonzero. We suggest, however, that
it does correspond to a new topological sector of Hilbert
space for spin—% electrons. This spin flux phase is dis-
tinct from previously discussed charge-flux phases.3® Un-
like the charge-flux state, the electrical currents associ-
ated with spin flux circulate in opposite directions for
opposite components of spin, leading to no net physical
magnetic field.

We have suggested that ant1per10d1c1ty of one-electron
spinor states may arise in a strongly interacting electron
gas in which the motion of an electron is strongly influ-
enced by its interaction with the local magnetic moment
background of the other electrons. Elementary units of

spin flux may arise from vorticity in the local moment .

background. From purely geometrical considerations, we
demonstrated that this vorticity is carried by hedgehog-

Skyrmion, magnetic, textures. While Skyrmion textures
may arise within the conventional (nontopological) anti-
ferromagnet, their mathematical description is greatly fa-
cilitated by considering the alternative mean-field ground
state into which they cause tunneling. This new mean-
field state is a uniform {topological), spin flux, antifer-
romagnet. This state exhibits a quasirelativistic Mott-
Hubbard band structure. The true ground state of a
doped Mott-Hubbard electron system may in fact be de-
scribed by a large number of local tunnelling events (soli-
tons) between these two mean-field states. This quantum
liquid of solitons may be responsible for the destruction
of magnetic long range order with doping in the high-T,
oxide superconductors. Since the time scale of magnetic
fluctuations is long compared to optical excitation time
scales (across the Mott-Hubbard pseudogap), it is plausi-
ble that a well-defined subgap electronic structure exists
even within a spin-liquid phase. This subgap electronic
structure is associated with electronic wave functions lo-
calized near the core of a magnetic soliton. These local-
ized states exhibit a variety of angular momentum quan-
tum numbers including electric dipole allowed transitions
which may lie in the midinfrared. Since magnetic solitons
are strongly coupled to other fluctuations such as con—
ventional spin waves, the spin-charge collective modes,!
and other solitons, it is likely that electronic excitations
within a given sohton are strongly damped. This pro-
vides a possible scenario for the ubiquitous, broadband,
midinfrared optical absorption observed in copper-oxide
superconductors. 40742

We emphasize that our magnetic solitons, although su-
perficially similar to those which arise in semiclassical
nonlinear o models such as {4.22), in fact describe tran-
sitions to an entirely new type of wave function for spin—%
electrons. Accordingly they are associated with a gener-
alized Hilbert space. This possibility is a very fundamen-
tal one which must be traced back to the formulation of
quantum mechanics for spm—— particles. Unlike the vari-
ational wave functions Wh.lch describe fractional charge
and fractional statistics of quasiparticles in the quantum
Hall effect,*® our states are those of the bare electrons
themselves. Also, our antiperiodic (Mobius strip) wave
functions are not a consequence of two-dimensionality
but rather a consequence of the inherent two-valuedness
of spin—% wave functions. We hope that these consid-
erations may provide some new avenues for understand-
ing the unconventional properties of strongly interacting
electron systems.

ACKNOWLEDGMENTS

S J. would hke to thank P. W. 'Anderson, G. Baskaran,
and M. H. Cohen for some valuable discussions. This
work was supported in part by the Natural Sciences and
Engmeenng Research Council of Canada, the Canadian
Institute of Advanced Research Program in Supercon-
ductivity, and the Ontario Laser and Lightwave Research
Centre.



APPENDIX A: TOPOLOGY OF SPIN-1 WAVE
FUNCTIONS

In this appendix we provide a brief review of the
connection between the geometry of rotations in three-
dimensional spa.ce and the two-valued internal wave func-
tion of spin—-z- electrons. In general quantum mechanics
is formulated from an underlying classical theory defined
by a set of coordinates, conjugate momenta and a La-
grangian. Quantum mechanics is derived from the un-
derlying classical mechanics by replacing the coordinates
and the conjugate momenta by noncommuting operators.
For the case of spin %, the underlying classical mechanics
is that of the symmetric spinning top!'''? described by
a set of Euler angles n = (91,72,73). In a space-fixed
coordinate system (z,y,z), the components of angular
velocity w are given by!®

We = 1}1 COS T2 + 73 sin 7y sinng,
wy = 718072 — 773 sinm cos g,
Wy =173COSN + %2 -

(A1)

For a symmetric, spinning top with moment of inertia I ,
the Lagrangian £ = 1I(w)? is given by

I : . < . o
L= 5(77% + 1% + 73 + 272n3 cos M) .

This may be regarded as the Lagrangian for free pé,rtiele
motion in a curved space [the group manifold of SO(3)]
whose metric tensor!? is given by g11 = g2z = g33 = 1
and ggs = cos7;. This is depicted in Fig. 1.
ac
The conjugate momenta, p; = o, AT€ given by

= Iﬁl:
p2 = I(12 +73 cos 1),
ps = I(fjs + M2 cosm) .

(A2)

The Hamiltonian, # = >, 7:p; —
in terms of this conjugate momenta:

1 1
H=_-1{p2+
21 {p1 sin® 1,

In the canonical quantization procedure we replace p;
and 7); by operators which act on a Hilbert space of wave
functions (n) defined on the space of Euler angles 7.
We require that

L, may be expressed

(Pg + p§ — 2(cos 771)172103)} . (A3)

(73, p5] = ihds; . (A4)

Using a differential representation of the operators p; =
?%, we arrive at the Schrédinger equation

Hp(n) = E¢p(n), (A5a)

where

k
H= *§V§0(3) (A5b)

and the Laplacian operator on SO(3) is given by
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5% 7]
Vgo(s) o 3 T cotm — B

1 & +-l-?-2——2cos —32 :|
sin®n, |00  On3 G

(A5c)

It is straightforward to verify that the third Euler angle
n3 is a cyclic variable which appears neither in the ex-
pression for # nor in the angular momentum operator L.
Since p3 commutes with both H and L, we may write

¢(n) = e—ilm,s(/)(nla 772)a

where the quantum number u associated with the con-
jugate momentum p; can be either a half-integer or an
integer. These two possibilities correspond to half-integer
and integer intrinsic angular momentum states of the
spinning top. Half-integer values are allowed because the
internal Euler angle space 7 is a topologically, doubly
connected manifold. The classical order parameter space
for quantum spin % is the group manifold of SO(3) rather
than the sphere S,.

A direct comparison of quantum mechanics on SO(3)
and quantum mechanics on S; is instructive. Sy may be
parametrized by the two angles (11,72). The gradient
operator and Laplacian operators in Ss are given by

E) fia O

(A6)

W, = e — A7
Ve = om T n m On2 (A7)
and
o? 15} 1 82
2 _ Y - A8
vaz 677]2, + cotmy 8771 + ( )

sin? 1, O3
It is straightforward to verify that the effects of the Euler
angle n3 are mathematically equivalent to the presence of
a gauge field A = (0, —p cotny) which acts on the sphere

S,. That is to say, the SchrodJnger equation (A5a) may
be rewrltten as

1

= [—(Va, —iA)? + p?] (n1,m2) = Ed .

¥i (A9)

Here, we have made use of (A6). Th_ls gauge field is
precisely that of a magnetic monopole?* which sits on
the center of the sphere S:

V x A = uf,

where 7 is a unit vector in the radial direction. -
In (A5) we may look for an internal spin-1 wave func-
tion of the form ' - -

Y(n) =

It is easy to verify that f(71) = cosn; /2 is a solution for
which E = ( ) This wave function is precisely the
spin transforma.tlon amphtude14 that an electron in spin
—F/2 state measured in a laboratory coordinate frame T'
will be in a —7/2 state when the measurement is repeated
in a new laboratory coordinate frame S which is related
to T' by a set of Euler angle rotations 7.

Smpemimtnre (A10)
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APPENDIX B: EFFECTIVE ONE-ELECTRON
HAMILTONIAN FOR A MAGNETIC TEXTURE

In this appendix we present a microscopic derivation
of the one-electron continuum Hamiltonian when the lo-
cal magnetic-moment background has spatial variations.
These spatial variations are described by a plaquette ori-
entation vector A(r) which varies with r. In this case
the SU(2) matrix describing electron hopping between
nearest-neighbor sites is given by T'(r) = —tefi?(),
From Fig. 4, a typical hopping term is given by

]

(B1)

Here summation is over all plaquettes. Furthermore, 72(r)
is generalized to a continuous vector field which coincides
with the required lattice values when r is at the center
of a plaquette. The question now arises, which value of
#(r) to use in the hopping term. We adopt the conven-
tion that for hopping from site r to site r + d we will use

Ar + d/2) Since the variation of #(r) within a given
plaquette is assumed to be small, the deviations from
perfect antiferromagnetic correlation that this choice in-
duces within a given plaquette are likewise very small. As
in the uniform state, we make the slowly varying envelope
approximation for the field operators in the vicinity of the
band edge ko = £(1,1) and we write x(]) eikorgld),
where %I is a slowly varying function with a spectral
width Ak < kg. Making the Taylor expansions

7 = %9 + (d- V)zY) (B2)
and
T(r+d/2) =T(r) + ?d -V)T'(r) , (B3)
the hopping term has the continnum form
Hopping = ~2ia [ & (2. %/)T%®
+%>2’f(2)(amT)>z<1>] + H.ec.
‘ (B4)
Integration by parts of the first term yields
“r
Hopping ~ 2ia’ / Prt®(To,)xM, (B5)
Exd o _
where the operator T'9, is defined by
o 1
(T82)f = §[0.(1F) + T(@.1)] - (B6)

Comparison of this result with that of the uniform anti-
ferromagnet (T independent of r) reveals that the net
effect of a magnetic texture is that the operator T8,
must be replaced by the symmetrized, two-way derivative

terms leads to the generalization

. 1., ~
&Py = §[ap(r)pu + Pubipu(r)]

in the effective one-electron Hamiltonian.

APPENDIX C: MAGNETIC TEXTURES
IN TWO DIMENSIONS

In this appendlx we begm with the hypothesis that the
magnetic twist energy of a texture A(r) in the plaquette
field is proportional to

Honss = 3 [ 2(0,2) - (0,7 -

We demonstrate explicitly that the condition for separa-
tion of variables in polar coordinates (r,¢), of the effec-
tive one-electron Hamiltonian, (4.17), is identical to the
condition for a local minimum of Hag-

The topological charge of @ of a texture 7(r) is de-
fined by the number of times that the vector field 7(r)
covers the sphere S; as the coordinate r covers the two-
dlmensmnal Euclidean space:3®

(C1)

Q= g / d®rfi - [Bur x B, 7i]€py, (C2)

where ¢, is the standard antisymmetric tensor. We de-
fine the auxiliary fields®®

Vi = 8,7 £ €, (R X 8,7) (C3)
and observe that
/ PV () VER) >0 . (C4)

Using the fact that 7 -
may be rewritten as

Hmag 2> 47|Q] .

=1 and 7 (8,7) = 0, Eq. (C4)

(C8)

It follows that a local minimum in Hpag, for a fixed value
of @ is obtained when the equality in (C4) and (C5) is
satisfied. ThlS is the condition that
(r) =0, u==,y. (Ce)
In polar coordinates r = (r, ¢), the minimization condi-
tion (C6) may be reexpressed as
8y = T (A x gh) (CTa)

and

Loyh = £(3x 0,4) . (C7h)

‘We now parametrize the magnetic texture by the winding
number p and a general function &(r):
fi(r) =

[sin @ cos(u¢), sin O sin(ugd), cos 8] . (C8)

Here, it is apparent that @ = p and it follows from both
Egs. (C7a) and (C7b) that
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8.0(r) = ﬂ:g sinf . (C9)
This is precisely the criterion (4.21) for separation of vari-
ables in H.g.

A solution of (C9) is facilitated by the substitution
u(r) = tané(r)/2. Direct integration of the differential

equation then yields u(r) = (r/p.)**1, s; = +1. Here p,

is a constant of integration which we identify with the
soliton core radius. For g = 1 and s; = +1, the solution
can be reexpressed in terms of 6(r):

2 2
Pc—T
cosB(r) =

This is depicted in Fig. 6.

(e=1) . (C10)

APPENDIX D: SOLUTION OF THE RADIAL
SCHRODINGER EQUATION

The effective one-electron Hamiltonian for the mean-
field spin-flux state, containing a topological magnetic
soliton texture, leads to a set of eight coupled, complex,
differential equations. This multicomponent Schrodinger
equation may be rewritten as a set of purely real dif-
ferential equations for a radial function ¥ g (r) by some
further unitary transformations. In order to derive these
equations, the following identities are useful:

Ty = e—zr,vr/47_me1,r,,1r/4’

—ir.w/4 ity /4

T = —e Tye

(D1)

The Schrddinger equation for the transformed wave func-
tion 15 (r) = e*="/44f,(r) is given by

Hips = Eps, (D2)
where

Oz

H = 2ita [—Ty& — Y T (8¢ + islaz/Z)] +mpB

r

ta .
+Tﬂ'[sl sin 1,0, — cos Oy,7,] .

(D3)

Since 7, and 0y commute with #, we replace these oper-
ators by their eigenvalues s; = +1and £ = 0, :I:%, +1,...,

respectively, to arrive at a matrix equation for ¥raq(r) = -

e~*®4h5(r). Multiplying this equation by ir, gives a di-
mensionless equation in the scaled radius z = r/a and
dimensionless energies ¢ = E/2t, m = (Us)/2t:

02Tz

OePraa(z) = [masz + teTy — €32

+ (ucosﬁ — sl> 5o
2z
) sin 6 )
TS 5 Uy]¢rad($) :

Solutions of this equation are determined by imposing
the condition that the original (physical) wave function

(D4)

1 . ,
Po(r) = We"‘l’Uf(r)e—‘,a"‘S/z
Xeis1a,¢/2e—i31'y,o',7r/8

% e—ia,r,w/4e—irg1r/4¢rad (,,,)

(D5)

is nonsingular as 7 — 0 and as r — cc. o

We begin by consideting a Skyrmion texture with
topological charge || = 1. From Appendix C, we ob-
serve that lim, ;5cosf(r) = ]Z%i[ It follows that the
final two terms in Eq. (D4) are regular at the origin:
(cosf — s1) = s3[(pus1) cos@ — 1] — 0 and ps;sind — 0
asr — 0. If we allow £ = 0, then all terms in (D4) will be
nonsingular and ¥,a4(r) will likewise be regular at r = 0.
From (D5), we see that this would result in a square root
singularity in the physical wave function o (r).

It follows that there are no admissible solutions for the
quantum number £ = 0. Next we consider £ = % -In this
case, the third term in (D4) is dominant as z — 0. For

small z, we have

£ ='%7 a:n'(/}rad 5 —83 ( ) "l"rad .
The eigenvalues of 0,7, are doubly degenerate and equal
to 1. Suppose that s; = +1. Then for small = the
solution of (D6) has the asymptotic form g ~ zF1/2,
Clearly, we must choose the positive eigenvalues of 7,7,
in order that 1o(r) in (D5) is regular at the origin. Let v;
and vy be the eigenvectors of 0,7, corresponding to the
required positive eigenvalue. Then, 9;24(0) = a;v1 +azvs
for arbitrary coefficients a, and a;. For large z, (D4) has
the asymptotic form

02Ty
2z

(D6)

a:v";brad =~ (mdsz + iETy)iﬁrad, r—r oo . - (D7)

The eigenvalues of the matrix (mo,7, + ie'ry)' = M are

" given by Ap = +(m? — 2)/2, If 9..q is 4 normaliz-
g

able wave function, only the negative eigenvalue is ad-
missible. Let w; and ws be eigenvectors of M corre-
sponding to Ay and wsz and wy; be eigenvectors of M
corresponding to A_. ws,...,ws form a complete orthor-
mal basis of the vector space spanned by the o and 7
matrices. It follows that t,4(z) may be expanded as
a linear combination of these eigenvectors at some ar-
bitrary radius z. For instance, if we numerically inte-
grate the first-order differential equation (D4) using the
initial condition t;aqa(0) = vy, the result at any point
z > 0 may be represented as ¥ .q(z) = Z;zl cijw; for
some numerical coeflicients ¢;;. Likewise if we choose
Prad (0) = vg, there exists another set of coefficients €25,

such that ¢aq(z) = E;=1 cajw;. We consider the asymp-
totic (large z) behavior of the coefficients c¢;j(g) which
depend implicitly on the energy . For t.q to be nor-
malizable, we may now use our freedom in the coefficients
a; and a; which define ¥;,4(0). That is to say, a; and a,
must be chosen such that

4 4
Yrad(z) ~ @1 Y c1;(e)w; + az > ei(B)w;
F=1

j=1

(for large z)
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does not contain the eigenvectors w; and w, correspond-
ing to exponentially growing solutions. Using the fact
that w; and wy are linearly independent vectors, the
above considerations yield the condition that

'C(e)(Z;) ~o0,

where the 2 x 2 matrix

Cle) = [C“(E)

612(5)

021(5)]

022(8)

This yields the required eigenvalue condition that
detC(e) = 0. A similar algorithm may be used to deter-
mine the eigenvalue spectrum for other values of £ and
for magnetic solitons with higher topological charge pu.
The results are plotted in Flgs 7-9.
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