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A physical picture is presented for the energy spectrum of a quantum particle localized by a de-
formable nonlinear medium. For a strongly coupled electron-lattice system interacting by a defor-
mation potential, quantum fluctuations of the lattice lead to an exponential band tail at zero tem- -
perature in the zero-phonon sector of the lattice Hilbert space which terminates at the polaron
ground state. This has an exponentially small overlap with a coexisting free-polaron band.

A longstanding fundamental problem in the theory of
an electron interacting with a quantized elastic field is the
elucidation of the spectrum of excited states associated
with polaron formation. The problem is a specific reali-
zation of the general phenromenon of a quantum particle
or classical wave propagating in a deformable nonlinear
medium which has applications in a variety of areas in
physics and engineering. Such nonlinearities lead to bi-
stable response and switching between states of small and
large deformation of the underlying medium.

Studies of strongly coupled electron-phonon systems
have focused largely on the polaron ground-state ener-
gy.!=® When the elastic energy associated with deforming
the quantized lattice field is less than the gquantum-
mechanical binding energy of the electron to such a defor-
mation, the electron is said to be self-trapped, this being
the lowest-energy state of the many-body system.> On the
other hand, quantum fluctuations of the unperturbed lat-
tice by themselves provide potential fluctuations in which
the electron may be localized. In this Brief Report, I
derive from first principles a physical picture of the na-
ture and density of states associated with the transition
from the nearly-free-electron continuum states to self-
trapped small-polaron states. In particular it is shown
that the many-body density of states (DOS) projected onto
the phonon vacuum, for sufficiently strong coupling, ex-
hibits an exponential band tail in the absence of disorder
which terminates at the polaron ground state. Such a pro-
jected DOS may be relevant for optical-absorption pro-
cesses which are fast compared to the time scale of the
lattice distortion required for true self-trapping. On the
other hand, electronic transport is determined by the mo-
bility of the fully developed small polaron.!® The density
of states of the polaron band exists in a different sector of
the lattice Hilbert space in which the lattice normal coor-
dinates are displaced relative to their vacuum position.
For these states, as will be shown, the overlap of the lat-
tice wave function with the phonon vacuum decreases ex-
ponentially with the electron-lattice coupling constant
(Fig. 1). Such a coexistence of different solutions for a
given energy is general characteristic of wave propagation
in a nonlinear medium.

The path-integral method introduced by Feynman? pro-
vides a convenient tool for treating the full quantum-
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mechanical nature of both the electron and the lattice. It
allows a generalization of the one-parameter scaling
theory of the polaron ground-state energy with polaron
radius developed by Emin and Holstein,” which considers
a classical elastic continuum, to include the self-energy
shift of the free-electron continuum as well as a further
lowering of the small polaron energy, both arising from
the nonadiabaticity of the electron-phonon interaction.*!!
1 present first a simple physical picture of the band-tail
density of states and then demonstrate how this picture
emerges from a path-integral representation of the elec-
tron propagator.

The total Hamiltonian H=H, +H,,+H,_,; for an elec-
tron coupled to acoustic phonons consists of the electron
kinetic energy H,=p?/2m, the harmonic phonon energy*

M .
Hac=72(IQK|2+wiIle2) (1)
k
and the interaction
£, . efkx
H, —— .. - 2
e-ac u %QR\/N ( )

Here, m is the bare-electron band mass and M is the
atomic mass. gy=k-qy is the normal coordinate of a
longitudinal acoustic phonon of wave vector k and fre-
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FIG. 1. Many-body density of states p, projected onto the
phonon vacuum depicted as a function of total energy E in
strong-coupling limit showing (i) exponential tail which ter-
minates at polaron ground-state energy Eg and (ii) shift Ep of
square-root continuum arising from virtual phonons. The
small-polaron band pp, occurs in a nearly orthogonal sector of
the lattice Hilbert space.
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quency wy=uk. Also E; is a deformation-potential ener-
gy constant and u is the speed of sound. The summation
is over all wave vectors k in the Brillouin zone of a cubic
crystal containing N atoms.

A projected density of states may be defined through
the matrix element of the evolution operator

Go(x,0 | x,1)=(o;x | exp(—iHt /#) | ;% ) ,

where x is the electron coordinate and 1, is the ground-
state wave function of the lattice:

Yofar} = [ (Moy/m#)' ™ expl — (Mo, /25) | gy | 2] .
k

(3)

The projected DOS onto the phonon vacuum then be-
comes

polE)= f_ww 2:; exp(iEt /#)Go(x,0 | x,t) 4)
which is independent of x by translational symmetry.
Since the wave function ¥, is normalized, it is straightfor-
ward to verify by direct integration of p, with respect to
E that the total number of states in this projection is pre-
cisely the number of one-electron states in the absence of
the electron-phonon interaction. An alternative projection
which also satisfies this unitarity property may be ob-
tained by displacing the harmonic-oscillator wave func-
tion (3). Defining ¥,4(gy)=1vo(gy +dy), where dy de-
scribes of displacement of the normal coordinate of wave
vector k in the polaron ground state, a polaron density of
states p,,; analogous to (4) may be defined by replacing 1y
in Gy by ¥,5. This latter projection describes transport
states whereas the former projection might be probed by
optical excitation of an electron from the valence to con-
duction band of a semiconductor. In the presence of stat-
" ic disorder the deformability of the quantized lattice in
response to the electron influences the nature of already
existing Urbach band tails.!? Sufficiently strong
electron-phonon coupling can, however, lead to a band tail
even in the absence of disorder.

The existence of a polaronic band tail in po(E) may be
seen by considering the probability distribution for the lat-
tice in its unperturbed ground state obtained by taking the
square modulus of the wave function (3):

Plgy}~exp —E(Mcok/ﬁ)]qk]2 . (5)
K

In the adiabatic limit, it follows from (2) that the electron
sees an essentially static random potential with Fourier
components Eyzkqg,/V'N. If the electron can form a lo-
calized state in a potential fluctuation on a time scale
short compared to the actual oscillation period of the po-
tential well, then the exponential part of the density of
states po(E) is obtained by maximizing (5) with respect to
{gy ] subject to the constraint that the electron binding en-
ergy plus the elastic lattice distortion energy equal E. If
the elastic energy can be neglected, the resulting DOS is
analogous to that of an electron in a static Gaussian ran-
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dom potential with a spatial correlation length determined
by the Brillouin-zone cutoff in the wave-vector summa-
tion.!> The presence of the factor wy in (5) gives greater
weight to long-wavelength fluctuations and so the result-
ing band tail is that of an Urbach tail in one higher spatial
dimension, in a sense to be explained below. Very deep in
the tail, such a picture breaks down due to the increasing
importance of the elastic energy which in fact causes the
tail to terminate at the polaron ground state. In the vicin-
ity of the ground state the electron creates a potential well
rather than simply stabilizing one which arises from the
probability distribution (5).

In the very shallow part of the band tail, the nonadiaba-
ticity of the electron-phonon interaction also leads to a

_breakdown of the nearly static potential-well picture. If

for simplicity one considers an electron which is harmoni-
cally bound to a local lattice deformation with a harmonic
oscillator frequency v, then it follows that the size of the
potential well R ~Vv'#i/mv. The dominant oscillation fre-
quency op of such a well is simply that of the associated
phonon of wavelength R. In the shallow part of the tail
the electron is weakly bound and the frequency
v<op=2mu(mv/#)'/* as v—0. Consequently the poten-
tial well oscillates on time scales shorter than the time re-
quired for the electron to localize. In this energy regime,
the density of states is influenced by the shift of the
continuum-band edge associated with the emission and
reabsorption of virtual phonons (Fig. 1).

As discussed in a previous paper'! a continuum model
for electron-phonon interactions may be obtained by re-
placing the wave-vector sum in (2) by an integral in which
points in k space are weighted by VH.(k)/(2w)3. Here V
is the volume of the crystal and the choice of the cutoff
function H, (k)= exp[ —(mw/4)(k/ko)*] with ko=mn/a
preserves the volume of the Brillouin zone of a simple-
cubic crystal of lattice constant a. The projected Green’s
function has a Feynman path-integral representation'® ¢
of the form

Go(0,0]0,0= [ DX(r)expliSr /), X(0)=X(1)=0
®

where the effective action Sy is obtained by integrating
over all phonon coordinates and the remaining integration
is over electron paths X(7). A trial action S, is intro-
duced in which the electron is harmonically coupled by a
spring constant K, to a fictitious mass Mg, both be-
ing variational parameters, and a first-cumulant expan-
sion of the true action Sy is performed about this trial
action. This leads to an approximant to the Green’s func-
tion which has poles along the real-time axis spaced by
the period of osciliation 27 /v of the trial harmonic oscil-
lator. The time integral in (4) is interpreted as a contour
integral in the lower half complex time plane and may be
distorted by writing t= —iT+¢' and integrating over all
real t'. Choosing vT >>1, the approximant becomes!!

Go(0,0]0,8)~(my /2mi#it 2 sin(bt /2) exp[—F(z)] ,
(7a)

where b= (K 0 /My )%, mr=m +M a1, and



=it[(3v/4)(2—p/m) —E /F]+Tins(2)

u
Im<t>=§sac [k—

Here, py=mM ;0 /(M50 +m) is the reduced mass and
S, is a dimensionless coupling constant defined by
#iukoS,c =E2/(2Mu?). For vT >> 1, the kernel

u _l.('r——t)'r

L (8)
mv tmr

— iQtik}

The second term in (8) expresses the fact that the center of
mass {(c.m.) of the polaron with total mass my can move
freely through the solid.

It is readily seen that the function F(¢) has a saddle
point —iT; along the negative imaginary time axis for en-
ergies — | E| which are above the polaron ground state.
If Ty is small compared to the time required for the c.m.
of the polaron to translate a lattice spacing, the second
term in (8) may be neglected. In this infinite-effective-
mass approximation (myr= o), the time integral in (7c)
may be evaluated to give ‘

F(t)=—it[E—Eg(v)}/#
+[L(0)—T({B)]S,c/T1+(2ep /mHiv)] , (9a)

where

Ee)=22 1.0 /12-+4e /it 7 (9b)
is the scaling form of the polaron ground-state energy
Here, £ =#ukg is the Debye energy and ep =#k3/2m is
analogous to an electron bandwidth. Also,

L= [," dgq"exp(—q*—Bg) . 9c)

is a parabolic cylinder
B=iukot(w/2+ep/tiv)~ /2

The physical picture of localization by a nearly static
potential well follows from solving the saddle-point equa-
tion F'(¢)=0 _using the small-time expansion
I(0)—I(B)~V7B/4—pB*>/4. This is equivalent to
neglecting the factor iukr in I(z), Eq. (7c), which
expresses the retardation of the electron-phonon interac-
tion. In the saddle-point approximation the exponential
part of the DOS becomes po( E )}~ exp[ —F(—iT;)] where
2

function with argument

4

acD

SB

F(—iT,)= +

(|E | + 3w | T (10)

Generalizing this result to d spatial dimensions reveals
that the factor in large parentheses here is raised to the
power (d +1)/2. A similar result'>!*> may be obtained for
the band tail arising from a static Gaussian random po-
tential in d  spatial dimensions with rms
ﬂuctuatlon ~gpV/S,c and spatial correlation length
~k0 in which the corresponding exponent is d /2. This

is precisely the shift in weight of the phase space resulting

from the factor w; in the static probability distribution

().
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(7b}

2 t et 3 k2 . . .
[ arte—n) [~ dkkPexp — g lr—iQnt)] —iukr | . (7c)

—

It may be demonstrated'® that the approximate DOS
(10) is in fact a lower bound to the true density of states
for any value of the variational parameters and the
greatest lower bound 1is obtained by choosing
(#iv)*=8 | E | g5 /3m. The resulting DOS is an essentially
linear exponential throughout the range of validity of the
small-time expansion which can be accurately fitted to the
expression

—21.1y /8,7, (11)

|E| 7ep and y=¢€p /ey is the nonadiabaticity

Pol E) ~ exp(

where y=
parameter.

The self-consistency of the small-time expansion re-
quires that the value of B at the saddle point with #v
chosen to maximize the DOS be small compared to unity.
This in fact occurs over an intermediate energy range
spanning many decades in the DOS provided S,.y >3.5.
This may be compared to the threshold value S,.y~3.0
for small polaron formation obtained from (9b). The
small-time expansion, however, fails to be self-consistent
in the limit £—0. Physically, this is due to the oscilla-
tion of the broad, shallow potential wells on the time scale
required for the electron itself to oscillate within the well
as discussed previously. In the opposite limit of E--»Ejg,
the polaron ground-state energy, the small-f expansion is
again inadequate since the electron must now create its
own lattice distortion rather than simply finding one and
stabilizing it. Such a process may be described by the
large-time expansion I,(8)~1/B* in Eq. (9a) which re-
veals that for energies approaching the polaron ground
state, the saddle point T, diverges as [E—Eg(v)]~1/3.
Here, in fact, the saddle-point approximation itself breaks
down and the entire contour integral must be performed.
In particular, for E < Eg(v), the time contour in (4) may
be closed in the lower half-plane, enclosing no singulari-

- ties, thereby demonstrating the vanishing of the density of

states below the polaron ground state. For E > Eg(v), the
contour cannot be closed. However, sufficiently close to
Eg(v), the contour passing through —iT lies in the range
of validity of the large-time expansion of (9a) and the
DOS may be approximated by neglecting I,(3):

P E)pyoi(E) exp] —(mS,. /4N /245 /Hv)™1],  (12)

where p,i(E)= m¥[E—Eg(v)]V2/m*# is a free-polaron
continuum Whlch vanishes at Egz and has an effective
mass my. Here both m¢ and v are chosen to minimize
the polaron ground-state energy. In obtaining (12) the
factor sin®(bt/2) appearing in (7a) has been incorporated
into the exponential and the complete contour integration
has been performed. It is straightforward to verify that
the exponential damping factor in (12) is precisely the
Franck-Condon overlap integral | (i | #p01) | * of the lat-
tice wave functions in the phonon vacuum and polaron
ground state as discussed previously. It followed that the
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polaron density of states p,, exists in a nearly orthogonal
sector of the lattice Hilbert space from the exponential
band tail py, their actual overlap decreasing exponentially
with the coupling constant S,.. The apparent infinite
continuum of polaron states, however, is an artifact of the
free particle form of the electron kinetic energy: Al-
though an ultraviolet cutoff ko, was introduced for the
phonon coordinates no such cutoff restricted the electron
motion. Real band-structure effects may lead to a finite
polaron band which coexists with an exponential band tail
in their respective sectors of the many-body Hilbert space.

In summary, a physical picture for the spectrum of en-
ergy levels for a coupled electron-phonon system exhibit-
ing three distinct regimes has been derived. At high ener-
gies, the nonlinearity of the medium gives rise to nearly-
free-electron states with a perturbative self-energy correc-
tion. This crosses over to self-trapped states near the po-
laron ground state by means of a finite linear exponential
tail. This is analogous to an Urbach tail arising from stat-
ic short-range disorder only, except in d -1 dimensions.
In materials for which the electron-phonon coupling is
near the threshold for polaron formation, in the absence
of disorder such a tail would be pinched between the pola-
ron band edge and the shifted free-electron continuum

edge. The presence of static disorder, however, can
trigger polaron formation even for weak coupling.® For
an amorphous semiconductor the resulting interplay be-
tween static disorder and electron-phonon interactions
may be of considerable importance in describing band tail-
ing and localization. The deformability of the underlying
lattice may also play a significant role in determining the
nature of a mobility edge separating extended from local-
ized states. In the case of classical waves propagating in a
disordered medium, the presence of an analogous self-
focusing nonlinearity may also enhance the prospects for
experimental observation of localization.
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