
Phy489 Lecture 9 

Discussion is of baryon wavefunctions because baryons are 
made up of three quarks (which are treated here as identical) 
while mesons consist of distinguishable particles since they are 
made of quark-antiquark pairs. 
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Slide from Lecture 2 

1 

uus



Baryon Wavefunctions 

We will discuss things in terms of baryons, which are made up of three quarks. 
But clearly the same applied to anti-baryons.  

The spin-state of a baryon is  1
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for the case of no relative orbital angular 
momentum (more on slide 4). 
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Baryons in the uds Quark Model 

In the uds quark model, there are three flavours and so 33 = 27 qqq flavour 
combinations (e.g. now counting uud, udu and duu separately). 

What are their symmetries (e.g. under exchange of two quarks)? 

There are also (similarly) 33 colour combinations to consider. 

Will see that for a system of three objects each taking on one of three values 
(here either colour or flavour) the 27 combinations consist of: 

•  10 symmetric states 
•    2 x 8 states with mixed symmetry (anti-symmetric in one pair) 
•    1 fully anti-symmetric 

When discussing orbital angular momentum (so far) we have considered only the 
relatively simple case of mesons, where there are only two objects (a quark and 
an anti-quark) which can have relative angular momentum. Baryons are more 
complicated. 

Where the symmetries referred to are under the exchange of any two quarks. 
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Angular momentum in three quark states 

q1 

q2 

q3 

A B 

q1, q2 have     about point A (CM12)  !

(q1,q2),q3 have     about point B (CM123)  !!

Consider the ground-state                      so                  as above.  ! = !! = 0( ) j = 1
2

, 3
2
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Baryon wavefunction symmetries 

We have said before that the total wavefunction for a fermion (and hence for all 
baryons) must be anti-symmetric in the exchange of identical particles, e.g. 

! 1,2,3,.....( ) = "! 2,1,3,.....( )

This is not the case for mesons (since these are made of quark-antiquark 
pairs) but for baryons (in the case where we treat all quarks as identical – 
this is a subtle point) we require that the TOTAL wavefunction 

! total( ) =! space( ) "! spin( ) "! flavour( ) "! colour( )

be anti-symmetric in the exchange of any two quarks. For the ground-state 
the spatial part of the wavefunction is always symmetric [ in the non-
relativisitic case the spatial wavefunction is just given in terms of spherical 
harmonics – the lowest order SH (e.g. for           ) is just a constant (e.g. 
uniform, which can only be symmetric). 

 ! = 0
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Baryon spin states 

For the spin states (which give the total spin in the case we are considering) 
there are 23 = 8 possibilities: 

!!!

!!"   !"!   "!!
""!   "!"   !""
"""

symmetric   

symmetric   

However, we want these in linear combinations with are eigenstates of total  

angular momemtum (as we did in the previous lecture for the case of                ). 1
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Symmetric eigenstates of total angular momentum 
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By symmetric, here, I mean under the exchange of any two quarks 



Mixed symmetry states 
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Anti-symmetric in 1,2 
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General spin states 

All states can be written as linear combinations of these two sets of pure and 
mixed symmetries. We could also write mixed symmetry term asymmetric in the 
exchange of           , but these would not be independent (we have 8 terms in both 
cases above): 

1! 3
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Let’s turn now to colour and flavour: there are 33 combinations in each case (as we 
wrote earlier). These can also be written in terms of combinations with pure or mixed 
symmetry under particle exchange: 

The three combinations uuu, ddd and sss clearly have pure flavour symmetry. There 
are also other combinations with pure symmetry, e.g. 

1
3
uus + usu + suu( ) In all there are 10 purely symmetric combinations 
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One can make only one purely anti-symmetric flavour combination: 

1
6
uds ! usd + dsu ! dus + sud ! sdu( )

The remaining 16 combinations are: 

•  8 with mixed symmetry (anti-symmetric in           ) 1! 2

•  8 with mixed symmetry (anti-symmetric in           ) 2! 3

Again, we could write other mixed symmetry terms anti-symmetric in          , but 
these would not be independent. So, we have (for states made of three quarks 
with three possible flavours [uds]):    

1! 3

•   a decouplet of symmetric flavour states 

•   a singlet anti-symmetric flavour state 

•   two octets of mixed-symmetry states 
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The same arguments apply to the colour combinations (there are three flavours 
and there are three colours, so the combinatorics is the same). So there are again 
33=27 combinations with the same symmetry breakdown as was just developed 
for the flavour combinations. 

We are now in the position to make a more correct statement of the fact that quarks 
exist only in colourless objects (which is a common way to phrase this). That is: 

All free naturally-occuring particles belong to a colour singlet 

! colour( ) = 1
6
rgb " rbg + gbr " grb + brg " bgr( )

In this case, for a ground-state baryon                                                        must 
be symmetric.  ! = !! = 0( ) ! spin( ) "! flavour( )
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This is anti-symmetric under the exchange of any two quarks. 



For baryons that are made of three identical (same flavour) quarks,                      can 
only be symmetric.   

! flavour( )

For all other cases it can be either symmetric or of mixed symmetry. In the case 
where the three flavours are all different (and only in this case) it can also be fully 
anti-symmetric. 

! spin( )For               one gets a fully symmetric version only for            , so the product j = 3
2

! spin( ) "! flavour( )

cannot be symmetric for uuu, ddd or sss baryons with spin-1/2, (e.g.            ).   j = 1
2

For combinations with two same-flavour quarks (e.g. uud) there are three possible 
arrangements: uud, udu and duu. One can make a symmetric combination and 
two of mixed symmetry (but you can’t make a fully anti-symmetric state). 
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Flavour multiplets (uds quark model) 
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For three different quarks, there are 6 arrangements: 

•  one fully symmetric (belongs to decouplet) 

•  one fully anti-symmetric (singlet) 

•  four of mixed symmetry (belong to the two octets) 

For the total wavefunction, the (mixed symmetry) flavour octet members must be 
have be matched to the    having the corresponding (anti-)symmetry: ! spin( )
! baryon octet( ) =

       2
3

! 12 spin( )! 12 flavour( ) +! 23 spin( )! 23 flavour( ) +! 13 spin( )! 13 flavour( )[ ]

Look at !" (sss) in the PDG. There is !(1672)"      JP = 3/2+    

!(2250)"    JP =  ??    presumably  
 ! or !! = 0( )
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No spin1/2 version (which would presumably be lighter than the spin 3/2 version). 



Flavour multiplets (uds quark model) 
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Note that  an understanding of the baryon wavefunction is necessary for a a 
discussion of (for example) baryon magnetic moments and baryon masses. 
These are discussed in the later sections of Griffiths Chapter 5, but we will not 
cover this material. 



Other Evidence for Colour 

The existence of the #++ led to the hypothesis of colour. There are other pieces of 
experimental evidence for colour. We will see one of the main ones later in the 
course, when we talk about hadron production in electron-positron collisions.   

Another example is the decay width of the neutral pion, which decays (almost 
always) to two photons,   ! 0 "##

! " 0 #$$( ) = Nc
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Here m! is the neutral pion mass, f! is the pion decay constant (more on this later in 
the course) and Nc is the number of quark colours. Value determined from measured 
decay width is: 

Nc = 2.99 ± 0.12

We will learn about decay widths (and their calculation) as the course progresses. 
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Other applications of wavefunction symmetries 

Consider the decay               . At first glance, it would seem that one would 
expect two final states (for decays into two pions – which is the case almost 
100% of the time):  

!0 "##

!0 "# +# $ !0 "# 0# 0

However, only the final state with charged pions occurs: why? 
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We will discuss this in the lecture. 

Note in one case we have a final state consisting of identical bosons. The wavefunction for 
such a system is required to be symmetric in the exchange of the two identical particles. 


