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Question 

Why are                      oscillations not observed experimentally ?  

(        is the same as       but with spin-1 instead of spin-0. ) 

� 

K*0 −K *0

� 

K*0

� 

K 0

� 

K 0 s d spin − 0 ↑↓ M(K 0) ≈ 498MeV /c 2

� 

K*0 s d spin −1 ↑↑ M(K*0) ≈ 892MeV /c 2

The mixing process is a second-order weak interaction that must take place on  
timescales associated with the weak interaction. However, the K*0 is massive 
enough to decay via the strong interaction so never lives long enough for this 
mixing process to be relevant. 
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Particle Lifetimes & Decay Rates 

The lifetime τ of a particle is defined in it’s rest frame. This lifetime represents an 
average lifetime. Quantum mechanically we cannot say anything about the lifetime    
of an individual particle. 

The decay rate Γ represents the probability per unit time that a given particle (in a 
collection of particles) will decay. If we begin at t=0 with (say) N0 charged pions,            
the number expected to decay in any given time interval dt is given by ΓN(t)dt, so  

dN = −ΓNdt ⇒ N(t) = N0e
−Γt

Here Γ is a probability / unit time, so has units of (time)-1 (so the exponent above      
is dimensionless, as it must be). The lifetime τ is defined as the reciprocal of the 
decay rate: 

τ =
1
Γ
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Branching Ratios (Branching Fractions) 

Most particles decay into multiple final states, e.g.  

D0 → K −π + , D0 →π−π + , D0 → K +π −

We define a decay rate for each available final state. The total decay rate (and thus 
the particle lifetime) is then given by  

ΓTOT = Γ i
i
∑ τ =

1
ΓTOT

The branching ratio for the ith decay mode is then given by  Br(i) = Γ i

ΓTOT

e.g. from your first assignment  Br(D0 → K −π + ) = (3.89 ± 0.05)%

+  many other final states 

That is, 3.89% of D0 mesons will (on average) decay into this particular final state.      
Or a given D0 meson has a 3.89% chance of decaying into this final state. 

⎡

⎣
⎢

⎤

⎦
⎥

Sometimes refer to  ΓTOT as the particle “width”, Γi as a “partial width” 
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Stable vs. Unstable Particles 

Note that particles that decay only weakly or electromagnetically are typically 
classified as “stable” (i.e. τ >> 10-23 s, the timescale associated with the strong 
interaction). 

For such particles, we often quote lifetimes:   

For strongly decaying particles (or for very heavy particles that decay very quickly, 
such as the electroweak gauge bosons) we conventionally quote the total decay 
width (rate) Γ. 

For instance, from PDG: 

τ (D0 ) = (410.1±1.5) ×10−15 s

Γ(Z 0 ) = (2.4952 ± 0.0023)GeV (this is a weak decay) 

Note the units of energy. This is for “natural” units in which              .   = c = 1
 

 = 6.6 ×10−25  GeV ⋅ s 
     for conversion
⎡

⎣
⎢

⎤

⎦
⎥

N.B. Strongly decaying particles typically have τ ~ 10-23 s, so 

Γ ~ (6.6 ×10−2 ) GeV ~10−1  GeV  or 100 MeV

For example: Γ(K *0 ) = (50.3 ± 0.6)MeVBr(K *0 → Kπ ) ~ 100%

This can be thought of in terms of the uncertainty principle   ΔEΔt ~  E = mc2
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isospin, spin and parity 
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Scattering  

For decays it is the decay rate that we are interested in calculating. What about for 
scattering processes? 

Typically we are interested in the cross-section σ, or the differential cross-section 
with respect to some kinematic variable, e.g. dσ/dθ where θ is a scattering angle. 

θ 

22 scattering in the CM frame. Incoming particles are back to back so outgoing 
particles must be as well. Probability that outgoing particles will be “scattered” at 
an angle θ is proportional to dσ/dθ. The total cross-section is then 

σ =
dσ
dθ

⎛
⎝⎜

⎞
⎠⎟

−π /2

+π /2

∫ dθ Note that use of the word “scattering” does NOT imply that final 
state particles are the same as those in the initial state.  
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Griffiths Example 6.1 Hard Sphere Scattering 

b is called the impact parameter of the incoming particle. In this classical system 
there is a one-to-one correspondence between b and the scattering angle θ, which 
is given by θ=2cos-1(b/R): 

b = Rsinα,      2α +θ = π ⇒ α = π / 2 −θ / 2
sinα = sin(π / 2 −θ / 2) = cos θ / 2( )       b = Rcos θ / 2( )⇒θ = 2 cos−1 b / R( )
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Hard Sphere Scattering in 3D 

Consider and incoming particle with impact parameter in the range bb+db. Due to 
the 1 to 1 correspondence between b and θ, we can say that the particle will scatter 
into the angular region between θ and  θ+dθ. 

Now consider a particle passing through the infinitesimal area dσ. This will scatter into 
a region of solid angle dΩ. As dσ increases so does dΩ. We call the constant of 
proportionality the differential cross-section: dσ = D(θ)dΩ. 

We will generally write this as dσ/dΩ In our spherically symmetric example, 
there is no Φ dependence. 
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Using the figure can show that (in this case):  dσ = bdbdφ      dΩ = sinθdθdφ

D θ( ) = dσ
dΩ

=
b

sinθ
db
dθ

⎛
⎝⎜

⎞
⎠⎟

     and we had     b = Rcos θ / 2( )

db
dθ

= −
R
2

sin θ / 2( )⇒ D θ( ) = R2 cos θ / 2( )sin θ / 2( )
2sinθ

=
R2

4

so the total cross-section is given by σ =
dσ
dΩ

⎛
⎝⎜

⎞
⎠⎟∫ dΩ =

R2

4∫ dΩ = πR2

This is, of course, just the classical cross-section presented to the beam by 
the hard sphere. Hence the terminology “cross-section”. 9 



Rutherford Scattering: Example 6.4 

Rutherford scattering is soft scattering centre (for example some central potential). 

That is, scattering of one charged particle from another (fixed) charge. 

b = b(θ) = q1q2
2E

cot θ / 2( ) This is a non-trivial result that can commonly be found in 
most classical mechanics texts (see Goldstein for example). 

D θ( ) = dσ
dΩ

=
q1q2

4E sin2 (θ / 2)
⎡
⎣⎢

⎤
⎦⎥

2

N.B. this is for scattering of a particle of energy E, and 
charge q1, off a stationary (fixed) charge of charge q2. 

σTOT = 2π q1q2
4E

⎛
⎝⎜

⎞
⎠⎟
2 1
sin4 θ / 2( )0

π

∫ sinθdθ = ∞ !!!

y = sin θ / 2( ) dy = 1
2
cos θ / 2( )dθ sinθdθ = 2sin θ / 2( )cos θ / 2( )dθ = 4ydy

1
sin4 θ / 2( )0

π

∫ sinθdθ =
4y
y40

1

∫ dy = 4
y30

1

∫ dy = −
2
y2 0

1

= ∞

The infinite (total) cross-section is related to the infinite range of the EM force. 
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e.g.                                                (more on this later in the course). 

Resonances in Scattering Processes 

We saw in an earlier lecture that scattering through a 
resonance can enhance the cross-section for a given 
scattering process.  The example we used was        
scattering through the                  . 

� 

π +p
Δ++ (1232)

Specifically, we looked at the process                    
which gets a contribution from                                 
when         

π + p→π + p
π + p→ Δ++ →π + p

s ≈ M Δ++( ).

In principle, we could also get                              
contributions to the process                   where 
XY  is any final state to which the        decays. 

π + p→ Δ++ → XY
π + p→ XY

Δ++
in this particular example, there are 
actually no other options for XY. 

Another example (which we have also already seen) is scattering via the Z 
boson. This is a fundamental particle, but like the        it has a mass and so 
scattering of two particles which couple to the Z is enhanced at  

Δ++

s ≈ M Z( ).

e+e− → Z→ qq → hadrons
11 
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⎬
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where M is the mass of the decaying particle and W is the invariant mass of the 
decay products (e.g. the final state). This is called a Breit-Wigner distribution. 

Resonant Scattering Cont’d 

Γ = Γ i
i
∑We had that, for an unstable state:  

The energy distribution of an unstable state 
decaying to a final state f  is given by 

N f W( )∝ Γ f

W − M( )2 c4 + Γ2 4

For an unstable particle produced in a scattering process, the enhancement in 
the scattering cross-section follows the same Breit-Wigner form 

σ fi ∝
Γ iΓ f

E − Mc2( )2 + Γ2 4

Where E is the total energy of the system. We will see where this comes 
from when we calculate the cross-section for                         .  e+e− → Z→ f f 12 



Collider Physics Terminology 
We won’t do too much experimental stuff in the course, but it is useful to know a few 
more basic terms from collider physics. The LUMINOSITY of a collider 

 
L ≈ N1N2

f
A

The cross-section σ for a given process (say e+e-  W+W-) is proportional to the square 
of the quantum mechanical amplitude, |M|2  and has units of [length]2 (e.g. cm2). 

N1, N2 are numbers of particles / bunch in each colliding beam   
f is the bunch-crossing frequency                                                    
A is something like the cross-sectional size of the beams. 

The amplitude M is the sum of all 
contributing processes: 
[Note that this cross-section calculation will contain 
a lot of interference terms.] 

The instantaneous rate for a given process is given by              (units of s-1).  N = Lσ

N.B. σ typically depends on the energy……and of course need to have enough 
energy to produce the final state of interest….e.g.                  For the above process.  s > 2MW

is a measure of the intensity of the colliding beams. It has units cm-2s-1. 
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Sensitivity to New Particle Production 

Experimental sensitivity to rare processes (e.g. low σ) determined by the luminosity L 
and how long the experiment is run: 

 
NTOT = σ Ldt∫

 
                 

integrated luminosity 

Energy or mass reach for new particle production is determined by the beam energies 
(as we have seen when discussing thresholds). For example, in the CM frame the 
process 

e+e− → XX

proceeds only if MX <= Ebeam  ( = ECM/2). 

LLHC=(1033 - 1034) cm-2s-1 

Situation is a bit more complicated at a hadron collider where the effective (parton-
parton) CM energy varies from event to event (as we have briefly discussed). 
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and       cross-sections as a function of  spp         pp
Units:  1 barn (b) = 10-28 m2 

mb = 10-3   barn 
µb =  10-6   barn 
nb =  10-9   barn 
pb =  10-12 barn 
fb  =  10-15 barn 

LLHC=(1033-1034) cm-2s-1 
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