PHY489 Lecture 12



Fermi's Golden Rule for Transitions

/\—V Density of final states

» . 2r 2
transition prObablllty W= 7‘%;“ pf (E) available for energy E.

. 2 2 Matrix element contains the
matrix element ‘Mf‘ = K(//f ‘V/f ‘ 1//i>‘ fundamental physics (e.g. the
dynamics).

There are cases where M, = constant, in which case the reaction is
entirely governed by the kinematics, described by p;(E). Need this to be
Lorentz invariant (we will see that ‘M is always a Lorentz scalar).

Reminder: (v,|H,|v,) for H;or = HytH, , with H, , << H, treated with
perturbation theory, starting with free particle wave-functions (plane-wave

solutions). Conventional wave-function normalization is such that

1 —i(p-F—Et) *
= —e d :1
Y =— [w'war

e.g. normalize to a particle density of 71/V.



Lorentz Invariant Wave-function Normalization °

Consider a particle in an interaction to be at rest w.r.t. a box of volume V
containing it and only it. Now consider this system viewed in a reference
frame S’ in which the box is moving with relative velocity v. In this frame
(in which we want to calculate W) the volume V is Lorentz contracted by a
factor of y = E/mc? (assuming the particle has mass).
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="V [y'wdr’=—5 (i)
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e.g. the particle density has increased by a factor of y. To ensure a reference-
frame independent particle density normalization need to incorporate a factor

of +2E in the wave-function normalization:

2F

o {(PT=ED)

W:V

This wave-function normalization is Lorentz invariant.



Density of States
The state of a single-particle with momentum between 0 and p, confined to a
volume V;, is specified by a point in 6D phase space (x,y,Z,p,,p,,P,)

The extent to which spatial and momentum coordinates along each axis can
be simultaneously specified is limited by the uncertainty principle, to h, so the
“elemental volume” of phase space is h°.

The number of states available to a single particle is thus

(27n)

_ total phase space available 1 J- drdvdedn dv di —
elemental volume (27th 3 Y azap, ap, ap.

Ja'p

For a system of n particles, the number of available final states is the
product of the individual factors for each particle:

N =|—2 J’ n[ d’p,
n (277:;_1)3 o i




4
Phase space factor defined as the number of states / unit energy / unit volume

dN
p(E) =— ” H [ ignore factors of V for now ]
dE (Zﬂh) dE

Note that not all momenta are independent (conservation of momentum).
Could integrate over n-1 momenta, but simpler to use Dirac d-function to
impose the constraint:

K—~> Total three momentum of final state
PShe0 = jd3p5[ 3 pJ

=1

o(E)= e J T 99( P25

(27rh

Energy conservation gives us a further constraint (ElEj—



and thus JdEcS[ E E]—l so that we can write
i=1

Using the relation c;iEjf(E)dE:f(E) this becomes:

p(E)=

(2n ) Hd3p5£ Zp] (ZE_E)

d’p
(27th)

so each particle has a phase space factor (before integration) of

3

Unfortunately, this is NOT Lorentz invariant. Note that the factors of V
(which we've been ignoring) will cancel with factors from the wave-function
normalization in the matrix element.



Lorentz Invariance of Phase Space Factor

For Lorentz invariance now need additional factors of 2E from the Lorentz
invariant wave-function normalization. The phase space factor of the form d”p,

is Lorentz invariant. Show this: L
, E E’ E , ,
p.=v(p,-B—) —=v(—=-PBp) p,=p, P.=pD.
c c c
dp’ d E dE
- = Y(p,—B—) |= l—ﬁ—
dp. dp. c cdp.
dE_d 2 2 241/2_ 2 1 2.2 24_1/2_px2
E—a(pc +mc) —(2pxc )(El(pc +mc) _EC
' Bp | p. ((E/c) Bp. ) (E’/c) E’
L=yl l-="2c" |=y|1-B—=c|=7y|1-p = =
dp. c E (E/c) (E/c) (E/c) E
d ’ ’ d ’ d 3=y 3~
p. _E _ . _ 9, |dp_dp




Golden Rule for Decays

Consider decays of the form 1=>» 2+3+ ........ + N

3= 3= 3
ar = | M =3 cd p, «dpy | . cd’p, o) 8 (p. - p. = —
| ‘2hml {[(27:)32152 (27) 2, (27 2E, <(27) (.- )

(note that some the factors of 7 have vanished.....)

O-function ensures overall energy and momentum conservation. This is
the differential decay rate for the case in which the momentum of final
state particle i lies in the range d3131. about p, for all /.

Need to integrate over all outgoing momenta. Decaying particle is at rest.
For the two-body decay 1= 2+3

S 1| o
o h—ml(ij 5 E2E3 > (pl e p3)d3p2d3p3

In general the amplitude /M can depend on both p,and p,, so it cannot be
pulled out of the integration. For two body decays, the integration can be done.



Two Body Decay to Massless Particles
spinless
Consider the decay of a massive ~ particle (mass m,=m) into a final state
consisting of two massless particles (m,=m;=0) so E, = ‘132‘6 and E, = ‘133‘0

Start with assumption that M = M (p,,p,) and find I':

It should be clear from the start that p, =—p, so that what we really have
here is M = M(p,). One can also note that in the absence of spin, there

is no direction against which to measure components of D,, so expect
that M = M(|,|).

Rewrite the 8-function in terms of E, =mc’, p, =0, E, = ‘132 ¢, E, = ‘[73‘0
54(],1_pz_p3):5[mc—E7—E7)53( 132_133)
s 1Y | L é
o ) A ol -1a) )5t



Now integrate over P, using 53(—132 - 153)

= S J‘M‘z 5(mc—2‘ﬁ ‘)aﬁﬁ Mzﬂ(‘ﬁ ‘)
2(4x) m” || R ’

NB. d3ﬁ2:‘ﬁ2‘2d‘pz‘sm9d9d¢ jsin9d9d¢=4n 5 (k) = ‘k‘B(x)

LBt L M A R e A

8mwhm 7

where M is evaluated at ‘]32 = % [E E = ‘Pz‘ _ ‘Ps‘ _ n;c

We have not discussed S yet, but it is a statistical factor related to the
identity of the final state particles. If they are different, then S=1; if they
are identical, then S=1/2 (we will see why later).



See §6.2.1.1 for the general case with arbitrary m,, m,.

S‘ ‘ Where M is again evaluated at the
I'= ‘M‘ momentum dictated by conservation of
8rwhm energy and momentum (here p).

N.B. for m,= m4,= 0 (as before)

_ s
E :% = 1= 16nn;ifc‘m

as we just saw.
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2
So for 1 = 2 + 3, we have for the general case that I = ‘

Where f? is the momentum dictated by the conservation of energy and
momentum and the matrix element ‘M is evaluated at that momentum.

Note the “phase space factor” ‘ 13‘ . This is (for the case of two body decays)
the origin of the “rule of thumb” stating that, for a given system, the decay
with the largest energy release will proceed more rapidly (e.g. has a larger
width I).

But again, this does not typically trump dynamical effects. For instance, we
have seen that I'(D° —» K™n*)>T (D’ — 7 7") because the effect of the
CKM matrix elements dominates:

s » 927 e.g. kinematic enhancement factor
cd |2 )2 ZE2 is 1.07 but dynamical suppression
2

v\ p. 861 factor is A2 ~ .05.

(D’ —>nr")
(D’ — K n")
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Golden Rule for Scattering

Forthe process1+2=>3+4+ ....+N

dg:‘j\/[‘z FjS 5 H Cdzﬁ3 }[ cd2ﬁ4 } ........ [ Cdzﬁ” Hx(27r)454(p1+p2— ..... —pn)
4\/( P, p,) —(m1m2c2) (27) 2E, )| (27) 2E, (27) 2E,

Kinematic term in front of phase space factor now contains p, and p, . [Was the mass of the
decaying particle in the case of the GR for decays.] Phase space factors look the same.

This describes the differential cross-section for the process in which the
momentum of the " final state particle is in the range d313,- about p_for all /.

Typically, one might measure only a single quantity, such as the angle at which
particle 3 emerges from the scattering. Need to integrate over everything else.

We will only deal with the case of two body scattering 1 + 2 = 3 + 4.
Consider this process in the CM frame where

~ ~ EE, | _)
P, =P, P P,= 2 +‘p1‘
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Two Body Scattering in the CM frame

One part of problem 6.7 (may be on your next assignment) asks you to
show that, for 2-body scattering in the CM frame,

J(pl p,) = (mme) =(E,+E)|p|/ ¢

In this case we have

Rewrite the &-function using P, =D, This will enforce p, = =P, in the final state.

/

EFE+EFE —-FE —F
54(]91'1‘]?2—]93—]94):5( T 2C 3 4]53(_1—9»3_134)
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- 2 - 2 . —
Use E, = c\/m3202 +|p,| and E, = c\/mjc2 +|p,| and integrate over d°p,.

E,+E
) ATEETE)
do = 1
87 ) (E,+E,)|p)| \/m +|By \/m

At this stage when we discussed decays we concluded that M = W(‘f%‘)
but in this case we can have dependence also on the direction of 2, since
the trajectory of the incoming particles defines an axis against which we
can measure this (i.e. instead of having only one scalarﬁ?g‘ we also have
the scalar 2, - P;). So we cannot perform the angular integration (at least
not over 8), so defining d’p, = p’dpdQ p=|p|

87T

E +FE
2 o
da_[h] Se T

aQ (E,+E,)|5|1 e + p*mic + p?
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To do the integration, use E = c[(m§c2 +p? )1/2 N (mjc2 ' p? )1/2}

(this is the total energy of the final state or the initial state)

1 -1/2 1 ~1/2
dE = C{E(micz +p’) T (2p)+ E(mjcz +p’) " (2p) +}dp

22+21/2+ 22_|_21/2
dE=cp 2 2 : 2\"/? " 2 2 1 ,\l/2 dp=cp (m3cz 2 - )2 1/2 (’271420 ;01/)2 dp
(m3c tp ) (m4c +p ) (m3c +p ) (m4c +p )
Ep dE pdp
dE = d @ _
(m C2+p )1/2 (m 02+p2 Lap = E (m32€2+p2)1/2(mjcz+p2)1/2
do [;—lJz Se J W‘zp BB E) .
dQ 87 ) (E +E)|B|, 5 cc
%r# \ g y
p from 0 fo « Overall conservation of energy

implies E from
(mg+m,)c? to = 05(E1 +E, - E)
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2
do h Sc? 2 P, Magnitude of final state momentum
= = ‘M‘ pO = dictated by conservation of energy and
dQ 8w ) (E, + EZ)‘pl‘ E + E, momentum

2 -
do [ he 2 S‘M‘ ‘Pf‘ where p,and p,are the initial and final
dQ 87 ) (E,+E,) |p| state momenta (e.g. p and p,).

Now look at Griffiths Problem 6.8: Elastic scattering of the form A+B=>A+B in
the lab frame. This is like 1+2=»3+4 with m,=m;=m,, m,=m,=mg
(with particle 2 initially at rest)

Consider the case where mgzc?>>E, so that we can neglect the recoil
momentum of particle B.

The general case is problem 6.10 which may be on your next assignment.
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M rS AD | AP\ (22)' 5 (py- b=y
NVRIPIE PR P T

4\/( b 1) —(mme) 2n) 2E, || (27) 2E,

Note that this is Lorentz invariant. Now choose a particular reference frame:

Evaluate \/(pl p,) ~(mm,¢*) in the lab frame:

This may be on your next assignment........

= \/(pl'pZ)Z_(mlmzc)z - mzc‘ﬁl‘

2 Mz 4’5 4’5
dG:(hc] M [Epgj[ Ep4)><54(PI+P2—P3—P4)

81 ch‘pl‘ 3 4

Rewrite the o-function .........



54(p1+p2—p3—p4):5(%+m36—%—m30)53(f91+(3—133—134)=c5(E1—E3)53(131—133—[94)

Integrate over d3fy4. In this case the integration doesn’t do anything since we
are ignoring p, but the 63(131 - P, —p4) disappears with the integration.

wo- (2] L {22 wa g

= MgC? in the limit in which we are working

2
Now integrate over d’p, :  d’p, =|p,| d|p,|dQ [again, can'do the angular part]

2 - 12
t0 (e Lo 2L o - )

Write this in terms of E, so that we can integrate using the d-function:

E2

E dE,
‘p3‘ ———m ¢’

3

Al

=‘133‘2c2+m3204 2EdE,=2|p,|cd|p| = d|p|=
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2 2 2 1/2 1 3
dQ 87 ) myc ‘pl e c°E, c( 32—m3204)
1/2
2 2 2 4

he) 1 (E1 —mc ) 2

= 7T 2.2 —»‘ 3 ‘M‘
m,c D,|¢
h i 2 (E2 —mzc“)l/2 ‘p ‘202

— ‘j\/l‘ since L =X -]

8mrm ¢ Pl‘c Pl‘c

As before |/M|? must be evaluated at the value of the final state momentum
that is dictated by the conservation of energy and momentum,



