
PHY489 Lecture 12 



Fermi’s Golden Rule for Transitions 

There are cases where Mif = constant, in which case the reaction is 
entirely governed by the kinematics, described by ρf (E). Need this to be 
Lorentz invariant (we will see that M is always a Lorentz scalar). 

Reminder:                     for HTOT = H0+Hint with Hint << H0 treated with 
perturbation theory, starting with free particle wave-functions (plane-wave 
solutions). Conventional wave-function normalization is such that  

  
ψ f Hint ψ i

   
ψ =

1
V

e− i( p⋅r −Et )          ψ *ψ dV = 1∫

e.g. normalize to a particle density of 1/V. 

    
W =

2π


Mif

2
ρf E( )transition probability 

   
Mif

2
= ψ f Vif ψ i

2 Matrix element contains the 
fundamental physics (e.g. the 
dynamics). 

matrix element 

Density of final states 
available for energy E. 
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Lorentz Invariant Wave-function Normalization 
Consider a particle in an interaction to be at rest w.r.t. a box of volume V 
containing it and only it. Now consider this system viewed in a reference 
frame S/  in which the box is moving with relative velocity v. In this frame 
(in which we want to calculate W) the volume V is Lorentz contracted by a 
factor of γ = E/mc2 (assuming the particle has mass). 

  
′V =

mc2

E
V        ψ *ψ d ′V =

E
mc2∫      (in ′S )

e.g. the particle density has increased by a factor of γ. To ensure a reference-
frame independent particle density normalization need to incorporate a factor 
of         in the wave-function normalization:     2E

   
ψ =

2E
V

e− i( p⋅r −Et )          

  This wave-function normalization is Lorentz invariant. 
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Density of States 
The state of a single-particle with momentum between 0 and p, confined to a 
volume V, is specified by a point in 6D phase space (x,y,z,px,py,pz) 

The extent to which spatial and momentum coordinates along each axis can   
be simultaneously specified is limited by the uncertainty principle, to h, so the 
“elemental volume” of phase space is h3. 

The number of states available to a single particle is thus 

   

N =
total phase space available

elemental volume
=

1

2π( )3 dx dy dz dpx dpy dpz∫ =
V

2π( )3 d 3 p∫

For a system of n particles, the number of available final states is the 
product of the individual factors for each particle: 

   

Nn =
V

2π( )3

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

n

i=1

n

∏ d 3 pi∫
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 Phase space factor defined as the number of states / unit energy / unit volume 

   

ρ E( ) = dNn

dE
=

1

2π( )3n

d
dE i=1

n

∏ d 3 pi∫ [ ignore factors of V for now ] 

Note that not all momenta are independent (conservation of momentum). 
Could integrate over n-1 momenta, but simpler to use Dirac δ-function to 
impose the constraint: 

   


P − pi

i=1

n

∑ = 0        ⇒         d 3 pδ

P − pi

i=1

n

∑⎛
⎝⎜

⎞
⎠⎟∫   =  1

   

ρ E( ) = 1

2π( )3n

d
dE i=1

n

∏ d 3 piδ

P − pi∑⎛

⎝⎜
⎞
⎠⎟∫

Energy conservation gives us a further constraint                      
  

Ei
i=1

n

∑⎛⎝⎜
⎞
⎠⎟
− E = 0

Total three momentum of final state 
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and thus                                 so that we can write  
  

dEδ Ei
i=1

n

∑ − E
⎛
⎝⎜

⎞
⎠⎟∫ = 1

   

ρ E( ) = 1

2π( )3n

d
dE i=1

n

∏ d 3 pi dEδ

P − pi

i=1

n

∑⎛
⎝⎜

⎞
⎠⎟∫ δ Ei

i=1

n

∑ − E
⎛
⎝⎜

⎞
⎠⎟

Using the relation                                  this becomes: 
  

d
dE

f (E) dE = f (E)∫

   

ρ E( ) = 1

2π( )3n
i=1

n

∏ d 3 pi δ

P − pi

i=1

n

∑⎛
⎝⎜

⎞
⎠⎟∫ δ Ei

i=1

n

∑ − E
⎛
⎝⎜

⎞
⎠⎟

so each particle has a phase space factor (before integration) of  
   

d 3 p

2π( )3

Unfortunately, this is NOT Lorentz invariant. Note that the factors of V 
(which we’ve been ignoring) will cancel with factors from the wave-function 
normalization in the matrix element.  
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Lorentz Invariance of Phase Space Factor 
For Lorentz invariance now need additional factors of 2E from the Lorentz 
invariant wave-function normalization. The phase space factor of the form        
is Lorentz invariant.  Show this:    

d 3 pi

E

  
′px = γ ( px − β E

c
)      ′E

c
= γ (

E
c
− β px )    ′py = py     ′pz = pz

  

d ′px

dpx

=
d

dpx

γ ( px − β E
c

)
⎛
⎝⎜

⎞
⎠⎟
= γ 1−

β
c

dE
dpx

⎛

⎝⎜
⎞

⎠⎟

  

dE
dpx

=
d

dpx

p2c2 + m2c4( )1/2
= 2 pxc

2( ) 1
2

⎛
⎝⎜

⎞
⎠⎟

p2c2 + m2c4( )−1/2
=

px

E
c2

  

d ′px

dpx

= γ 1−
β
c

px

E
c2⎛

⎝⎜
⎞

⎠⎟
= γ 1− β

px

E
c

⎛

⎝⎜
⎞

⎠⎟
= γ 1− β

px

E / c( )
⎛

⎝
⎜

⎞

⎠
⎟ =

γ E / c( ) − β px( )
E / c( ) =

′E / c( )
E / c( ) = ′E

E

   

d ′px

dpx

= ′E
E

    ⇒    
d ′px

′E
=  

dpx

E
   or   

d 3  ′p
′E
=  

d 3 p
E
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Golden Rule for Decays 
 Consider decays of the form 1 2+3+ ……..+ N 

    

dΓ = M
2 S

2m1

cd 3 p2

2π( )3
2E2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

cd 3 p3

2π( )3
2E3

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

........
cd 3 pn

2π( )3
2En

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
× 2π( )4

δ 4 p1 − p2 − .....− pn( )

δ-function ensures overall energy and momentum conservation. This is 
the differential decay rate for the case in which the momentum of final 
state particle i lies in the range         about      for all i.     d

3 pi   
pi

Need to integrate over all outgoing momenta. Decaying particle is at rest. 
For the two-body decay 1 2+3 

    
Γ =

S
m1

c
4π

⎛
⎝⎜

⎞
⎠⎟

2
1
2 ∫ M

2

E2 E3

δ 4 p1 − p2 − p3( )d 3 p2d
3 p3

In general the amplitude M can depend on both      and     , so it cannot be 
pulled out of the integration. For two body decays, the integration can be done.   

   
p2    

p3

(note that some the factors of    have vanished…..)  
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Two Body Decay to Massless Particles 
Consider the decay of a massive    particle (mass m1=m) into a final state 
consisting of two massless particles (m2=m3=0) so                   and    

E2 =
p2 c

   
E3 =

p3 c.

Start with assumption that                          and find Γ:     M = M ( p2 , p3)

It should be clear from the start that                so that what we really have 
here is                      One can also note that in the absence of spin, there 
is no direction against which to measure components of     , so expect 
that     

   
p2 = − p3

    M = M ( p2 ).
   
p2

    
M = M ( p2 ).

Rewrite the δ-function in terms of     
E1 = mc2 , p1 = 0, E2 =

p2 c, E3 =
p3 c

   
δ 4 p1 − p2 − p3( ) = δ mc −

E2

c
−

E3

c
⎛

⎝⎜
⎞

⎠⎟
δ 3 − p2 −

p3( )

    
Γ =

S
m

1
4π

⎛
⎝⎜

⎞
⎠⎟

2
1
2

M
2

p2

p3

δ mc − p2 − p3( )δ 3 − p2 −
p3( )d 3 p2d

3 p3∫
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 Now integrate over      using      
p3    

δ 3 − p2 −
p3( )

    

Γ =
S

2 4π( )2
m

M
2

p2

2 δ mc − 2 p2( )d 3 p2∫     
M = M ( p2 ).

N.B.  
   
d 3 p2 =

p2

2
d p2 sinθdθdφ           sin∫ θdθdφ = 4π        δ kx( ) = 1

k
δ (x)

    
Γ =

S
8πm

M
2 1

2
δ p2 −

mc
2

⎛
⎝⎜

⎞
⎠⎟

d p2
0

∞

∫
    
⇒      Γ =

S
16πm

M
2

 where M is evaluated at                  
   
p2 =

mc
2    

E2 = E3 =
mc2

2
⇒ p2 = p3 =

mc
2

⎡

⎣
⎢

⎤

⎦
⎥

We have not discussed S yet, but it is a statistical factor related to the 
identity of the final state particles. If they are different, then S=1; if they 
are identical, then S=1/2 (we will see why later). 
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See  §6.2.1.1 for the general case with arbitrary m2, m3. 

    
  Γ =

S p
8πm1

2c
M

2
Where M is again evaluated at the  
momentum dictated by conservation of 
energy and momentum (here    ).   

p

N.B. for m2 = m3 = 0 (as before)   

    

p =
m1c
2

   ⇒     Γ =
Sm1c

16πm1
2c

M
2

   ⇒     Γ =
S

16πm1

M
2

as we just saw. 
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So for 1  2 + 3, we have for the general case that 
    
  Γ =

S p
8πm1

2c
M

2

Where      is the momentum dictated by the conservation of energy and 
momentum and the matrix element M is evaluated at that momentum. 

  
p

Note the “phase space factor”      . This is (for the case of two body decays) 
the origin of the “rule of thumb” stating that, for a given system, the decay 
with the largest energy release will proceed more rapidly (e.g. has a larger 
width Γ). 

  
p

But again, this does not typically trump dynamical effects. For instance, we 
have seen that                                                   because the effect of the 
CKM matrix elements dominates: 

  Γ(D0 → K −π + ) > Γ(D0 →π−π + )

  

Γ(D0 →π−π + )
Γ(D0 → K −π + )

=
Vcd

2

Vcs

2

p
π−

p
K −

⎛

⎝
⎜

⎞

⎠
⎟ ≈ λ2 922

861
⎛
⎝⎜

⎞
⎠⎟

e.g. kinematic enhancement factor 
is 1.07 but dynamical suppression 
factor is λ2 ~ .05. 
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Golden Rule for Scattering 
 For the process 1 + 2  3 + 4 + …. + N  

    

dσ = M
2 2S

4 p1 ⋅ p2( )2
− m1m2c

2( )2

cd 3 p3

2π( )3
2E3

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

cd 3 p4

2π( )3
2E4

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

........
cd 3 pn

2π( )3
2En

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
× 2π( )4

δ 4 p1 + p2 − .....− pn( )

Kinematic term in front of phase space factor now contains     and      . [Was the mass of the 
decaying particle in the case of the GR for decays.] Phase space factors look the same.   p1   p2

This describes the differential cross-section for the process in which the 
momentum of the ith final state particle is in the range         about     for all i.     d

3 pi            
pi

Typically, one might measure only a single quantity, such as the angle at which 
particle 3 emerges from the scattering. Need to integrate over everything else.  

We will only deal with the case of two body scattering 1 + 2  3 + 4.            
Consider this process in the CM frame where   

   
p1 = − p2          p1 ⋅ p2 =

E1E2

c2 + p1

2
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Two Body Scattering in the CM frame 
One part of problem 6.7 (may be on your next assignment) asks you to 
show that, for 2-body scattering in the CM frame,  

   
p1 ⋅ p2( )2

− m1m2c
2( )2

= E1 + E2( ) p1 / c

In this case we have 

    
dσ =


8π

⎛
⎝⎜

⎞
⎠⎟

2 S M
2
c

(E1 + E2 ) p1

d 3 p3

E3

d 3 p4

E4

× δ 4 p1 + p2 − p3 − p4( )

 

1
4

1

2π( )3 ⋅
1
2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

1

2π( )3 ⋅
1
2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

2π( )4
=

1
16

2π( )4

2π( )6 =
1

64π 2 =
1

8π( )2

Rewrite the δ-function using     
p1 = − p2

   
δ 4 p1 + p2 − p3 − p4( ) = δ E1 + E2 − E3 − E4

c
⎛

⎝⎜
⎞

⎠⎟
δ 3 − p3 −

p4( )

This will enforce              in the final state.     
p3 = − p4
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E3 = c m3

2c2 + p3

2
         E4 = c m4

2c2 + p4

2
Use                              and                               and integrate over    d

3 p4.

    

dσ =


8π
⎛
⎝⎜

⎞
⎠⎟

2 S M
2
c

(E1 + E2 ) p1

×
δ

E1 + E2
c

− m3
2c2 + p3

2
− m4

2c2 + p3
2⎛

⎝⎜
⎞

⎠⎟

m3
2c2 + p3

2
m4

2c2 + p3

2
d 3 p3

At this stage when we discussed decays we concluded that                      
but in this case we can have dependence also on the direction of      since 
the trajectory of the incoming particles defines an axis against which we 
can measure this (i.e. instead of having only one scalar       we also have 
the scalar          ). So we cannot perform the angular integration (at least 
not over θ), so defining      

    
M = M ( p3 )

   
p3

   
p3

   
p1 ⋅
p3

   
d 3 p3 = ρ2dρdΩ   ρ ≡ p3

    

dσ
dΩ

=


8π
⎛
⎝⎜

⎞
⎠⎟

2
Sc

(E1 + E2 ) p1

M
2

0

∞

∫
δ

E1 + E2
c

− m3
2c2 + ρ2 − m4

2c2 + ρ2⎛

⎝⎜
⎞

⎠⎟

m3
2c2 + ρ2 m4

2c2 + ρ2
ρ2dρ
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 To do the integration, use  
  
E = c m3

2c2 + ρ2( )1/ 2
+ m4

2c2 + ρ2( )1/ 2⎡
⎣⎢

⎤
⎦⎥

(this is the total energy of the final state or the initial state) 

  
dE = c 1

2
m3

2c2 + ρ2( )−1/ 2
(2ρ) +

1
2

m4
2c2 + ρ2( )−1/ 2

(2ρ) +
⎧
⎨
⎩

⎫
⎬
⎭

dρ

  

dE = cρ 1

m3
2c2 + ρ2( )1/ 2 +

1

m4
2c2 + ρ2( )1/ 2

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
dρ = cρ

m3
2c2 + ρ2( )1/ 2

+  m4
2c2 + ρ2( )1/ 2

m3
2c2 + ρ2( )1/ 2

m4
2c2 + ρ2( )1/ 2

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
dρ

  

dE =
Eρ

m3
2c2 + ρ2( )1/ 2

m4
2c2 + ρ2( )1/ 2 dρ    ⇒     

dE
E

=
ρdρ

m3
2c2 + ρ2( )1/ 2

m4
2c2 + ρ2( )1/ 2

    

dσ
dΩ

=


8π
⎛
⎝⎜

⎞
⎠⎟

2
Sc

(E1 + E2 ) p1

M
2

m3 +m4( )c2

∞

∫
ρ
E
δ

E1 + E2
c

−
E
c

⎛

⎝⎜
⎞

⎠⎟
dE

Overall conservation of energy   
                  

  
= cδ E1 + E2 − E( )

  
                  

p from 0 to ∞ 
implies E from 
(m3+m4)c2 to ∞  
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dσ
dΩ

=


8π
⎛
⎝⎜

⎞
⎠⎟

2
Sc2

(E1 + E2 ) p1

M
2 ρ0

E1 + E2

⎛

⎝⎜
⎞

⎠⎟
      ρ0 ≡

⎧
⎨
⎩

Magnitude of final state momentum 
dictated by conservation of energy and 
momentum 

    

dσ
dΩ

=
c
8π

⎛
⎝⎜

⎞
⎠⎟

2 S M
2

(E1 + E2 )2

p f
pi

where     and     are the initial and final 
state momenta (e.g.      and      ).    

pi               

p f

Now look at Griffiths Problem 6.8: Elastic scattering of the form A+BA+B in 
the lab frame. This is like 1+23+4 with m1=m3=mA, m2=m4=mB                 
(with particle 2 initially at rest) 

Consider the case where mBc2>>EA so that we can neglect the recoil 
momentum of particle B. 

The general case is problem 6.10 which may be on your next assignment. 

   
p1    

p3
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dσ = M
2 2S

4 p1 ⋅ p2( )2
− m1m2c

2( )2

cd 3 p3

2π( )3
2E3

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

cd 3 p4

2π( )3
2E4

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
× 2π( )4

δ 4 p1 − p2 − p3 − p4( )

Note that this is Lorentz invariant. Now choose a particular reference frame: 

  
p1 ⋅ p2( )2

− m1m2c
2( )2Evaluate                            in the lab frame: 

   
p1 =

E1

c
, p1

⎛

⎝⎜
⎞

⎠⎟
    p2 = m2c,


0( )

   
p1 ⋅ p2( ) = E1m2 = m2c m1

2c2 + p1

2

   
p1 ⋅ p2( )2

= m2
2c2 m1

2c2 + p1

2( ) = m1
2m2

2c2 + m2
2c2 p1

2

   
p1 ⋅ p2( )2

− m1m2c( )2
= m2

2c2 p1

2
  ⇒    p1 ⋅ p2( )2

− m1m2c( )2
 =  m2c

p1

    
dσ =

c
8π

⎛
⎝⎜

⎞
⎠⎟

2 M
2

mBc p1

d 3 p3

E3

⎛

⎝
⎜

⎞

⎠
⎟

d 3 p4

E4

⎛

⎝
⎜

⎞

⎠
⎟ × δ

4 p1 + p2 − p3 − p4( )

Rewrite the δ-function ……… 

This may be on your next assignment…….. 
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δ 4 p1 + p2 − p3 − p4( ) = δ E1

c
+ mBc −

E3

c
− mBc

⎛

⎝⎜
⎞

⎠⎟
δ 3 p1 +


0 − p3 −

p4( ) = cδ E1 − E3( )δ 3 p1 −
p3 −
p4( )  

Integrate over        . In this case the integration doesn’t do anything since we 
are ignoring      but  the                        disappears with the integration.     d

3 p4

   
p4    

δ 3 p1 − p3 − p4( )  

Now integrate over         :     d
3 p3    

d 3 p3 =
p3

2
d p3 dΩ [ again, can’t do the angular part ] 

    

dσ
dΩ

=
c
8π

⎛
⎝⎜

⎞
⎠⎟

2
1

mB
2c2 p1

M
2

0

∞

∫
p3

2
d p3

E3

× δ E1 − E3( )

    
dσ =

c
8π

⎛
⎝⎜

⎞
⎠⎟

2 M
2

mBc p1

d 3 p3

E3

⎛

⎝
⎜

⎞

⎠
⎟

1
E4

⎛

⎝⎜
⎞

⎠⎟
× cδ E1 − E3( )

=  mBc2 

Write this in terms of E3 so that we can integrate using the δ-function: 

   
E3

2 = p3

2
c2 + m3

2c4         2E3dE3 = 2 p3 c2d p3      ⇒      d p3 =
E3dE3p3 c2

   p3

2
=

E3
2

c2 − m3
2c2
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in the limit in which we are working 



    

⇒    
dσ
dΩ

=
c
8π

⎛
⎝⎜

⎞
⎠⎟

2
1

mB
2c2 p1

M
2

mAc2

∞

∫
E3

2 − m3
2c4( )

c2 E3

E3dE3

c E3
2 − m3

2c4( )1/ 2 × δ E1 − E3( )

    
=
c
8π

⎛
⎝⎜

⎞
⎠⎟

2
1

mB
2c2

E1
2 − mA

2c4( )1/ 2

p1 c3
M

2

    
=


8πmBc

⎛

⎝⎜
⎞

⎠⎟

2

M
2

   

E1
2 − mA

2c4( )1/ 2

p1 c
=
p1

2
c2

p1 c
= 1since 

 As before |M|2 must be evaluated at the value of the final state momentum 
that is dictated by the conservation of energy and momentum, 
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