
PHY489 Lecture 13 



Feynman Rules for Fundamental Processes 

So far we have learned about: 

  particle content 

  interactions (allowed vertices) 

  conservation laws 

  relativistic kinematics 

  Fermi’s golden rule for scattering and decays 

  Two-body decay rates, differential scattering cross-sections 

  Lorentz invariant form 

  CM, lab (fixed target) reference frames. 
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A comment on reference frames….. 
Note that these are just the two most typical experimental scenarios, but there are 
also others. HERA, for instance, was an ep collider which collided 30 GeV electrons 
(or positrons) with 820 GeV protons. This clearly produces collisions which are NOT in 
the CM frame or in a frame in which either of the initial state particles is at rest. Other 
examples include the B-factories which produced collisions of the form                           
but did so using unequal beam energies such that                but with a final state that 
is not at rest (e.g. the final state particles are Lorentz boosted in the direction of the 
more energetic beam). These experiments are designed to make precision 
measurements of CP violation in the b-quark system, which rely on the ability to 
resolve the decay vertices of the B mesons. This is easier if they are boosted (and 
thus have longer decay lengths in the lab frame). 

Note that pp or pp collisions are also not typically in the CM frame, or rather, the 
fundamental parton-parton collision is not typically in it’s CM frame since the two 
interacting partons in general carry different fractions of the total proton momentum. 

  
e+e− → ϒ 4s( )→ BB

  
s = M

ϒ 4s( )

HERA experiments: ZEUS, H1 

B-factory experiments: Belle, Babar 
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Calculating Amplitudes 
So far, we have done only the kinematics associated with two body scattering 
or decays. 

The amplitude M is calculated using the “Feynman rules” of the theory, which 
assign mathematical factors to elements of the Feynman diagrams, such as 
external lines, internal lines, vertices, etc. 

These rules come from the Lagrangian of the theory (which displays the full 
particle content of the theory and the allowed interactions). 

  
LQED =ψ i /D − m( )ψ −

1
4

Fµν F µν          /D ≡ γ µDµ          Dµ = ∂µ + iAµ

We will take the Feynman rules as given, and learn how to apply them.  

Following the text, to avoid the complications due to spin, look 
first at a toy model with three scalar (e.g. spin 0) particles A, B 
and C which are their own antiparticles and which interact via 
a single fundamental vertex coupling them all together 
(strength g): 
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The ABC Model 

The vertex we just wrote down assumes no particular direction of time. 

If we assume that MA>MB+MC then the lowest 
order process in the theory is the decay of A: 
[Don’t need arrows on lines here since                              ]  A=A    B=B    C=C

You should be able to draw the diagrams for higher-order corrections, but 
we will not calculate them in this course. They are, however, very important, 
so please read §6.3.3 (we will not cover this in class). 
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There are also higher-order contributions: 

Note that if you try to draw other versions of the vertex correction diagram, you end up with the same one 



The Feynman Rules for the ABC Model 
1.  Notation: Label the incoming and outgoing four-momenta p1, p2,…pn. Label the internal 

momenta q1,q2,….. Put an arrow on each line to keep track of the direction of “positive” 
momentum flow (this is arbitrary for internal line, but you need to keep track of it). 

2.  Coupling constant (vertex factor): For each vertex write a factor of -ig, where g is the 
coupling constant specifying the strength of the interaction. 

3.  Propagator: For each internal line write a factor of 

4.  Conservation of energy and momentum:  for each vertex write a factor of                  
where the k’s are the four-momenta coming into the vertex (so use a minus sign for any 
that flow out of the vertex). 

5.  Integration over internal momenta: for each internal line write a factor of             and 
integrate over all internal momenta. 

6.  Cancel the remaining delta function: step 5 will leave an expression that includes a delta 
function expressing overall conservation of energy and momentum. Canceling this factor 
leaves you with -iM. 

  

i
q j

2 − mj
2c2

  
q j

2 ≠ mj
2c2

where qj is the four-momentum of the (jth) internal line and mj is the mass of the particle 
that this line represents (note that                for a virtual particle) 

  
2π( )4

δ 4 k1 + k2 + k3( )

d 4qj
2π( )4
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What is the lifetime of A ? 
 The first (and simplest) question we can address is: what is the lifetime of A? 

 We have done the kinematics already: 
    
  Γ =

S p
8πmA

2c
M

2

Applying the Feynman rules to the calculation of M in this case, trivially 
yields the results M = g. 

Here S =1 (since B and C are distinct)  and     is determined by the masses 
of the three particles. (We have also done the kinematics for this). 

  
p

We know that                                 .      Units are 
  
τ A =

1
Γ A    

τ A =
8πmA

2c
g 2 p   

MeV ⋅ s⎡⎣ ⎤⎦ MeV 2 / c4⎡⎣ ⎤⎦c

g 2 MeV / c⎡⎣ ⎤⎦
=

MeV 2 / c2

g 2 s

Which is OK since (for this toy model) g has units of MeV/c. 

Lifetime larger for lower mass difference MA-MB-MC (less phase space leading 
to smaller     ) and longer for weaker coupling g (as g 0, τ∞).  

p
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Here the second diagram is necessary since one cannot tell which outgoing 
particle connects to which vertex (so we need to consider both possibilities). 
There will be a factor of 1/2 in the expression for the differential cross-   
section coming from the statistical factor S, to account for this, e.g. in the CM 
frame: 

Two-body scattering 
Consider the case of two-body scattering (we’ve also done the kinematics for 
this already). Look at  AABB. Diagrams at lowest-order are: 

Let’s calculate the amplitude for this….. 

    

dσ
dΩ

=
c
8π

⎛
⎝⎜

⎞
⎠⎟

2 S M
2

(E1 + E2 )2

p f
pi
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Amplitude for AABB  
Step 1: draw and label the contributing Feynman diagrams: 

1 2 Note that the arrows are for 
momentum flow only. 

Look first at M1 (go through the remaining steps) 

  

−ig( )2 i
q2 − mC

2 c2

⎛

⎝
⎜

⎞

⎠
⎟ 2π( )4

δ 4 p1 − q − p3( ) 2π( )4
δ 4 p2 + q − p4( ) d 4q

2π( )4∫
two vertex 
factors 

propagator 
  
                  

  
                  

  
                  

δ-function for 1st vertex δ-function for 2nd vertex 

integrate over internal momenta 

step:                     2             3                  4                         4                                  5   

  

= −
ig 2

p1 − p3( )2
− mC

2 c2
2π( )4

δ 4 p1 + p2 − p3 − p4( )    ⇒−iM1

   

M1 =
g 2

p1 − p3( )2
− mC

2 c2
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Amplitude for AABB  

1 2 
Now look  at M2  

   

M2 =
g 2

p1 − p4( )2
− mC

2 c2

Calculation of this amplitude is exactly 
the same, except for the p3 , p4 swap 
which means the integration picks out  
q = p1 - p4. This means that 

   

M = M1 + M2 =
g 2

p1 − p3( )2
− mC

2 c2
+

g 2

p1 − p4( )2
− mC

2 c2

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
and thus  

Note that this amplitude is frame-independent. Lorentz invariance of M is 
enforced by the Feynman rules.  

If we want (for example) dσ/dΩ in the CM frame, need to specify the four 
vectors in that reference frame and work through the resulting amplitude.  
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dσ/dΩ  for AABB in CM frame 

Consider the case for which  
mA = mB = m, mC = 0: 

  
p1 − p3( )2

= p1
2 + p3

2 − 2 p1 ⋅ p3

   
=

E2

c2 − p
2
+

E2

c2 − p
2
− 2

E
c

, p1

⎛
⎝⎜

⎞
⎠⎟
⋅

E
c

, p3

⎛
⎝⎜

⎞
⎠⎟

   
= 2

E2

c2 − 2 p
2
− 2

E
c

⎛
⎝⎜

⎞
⎠⎟

2

− 2 p1 ⋅
p3 = −2 p

2
− 2 p

2
cosθ = −2 p

2
1+ cosθ( )

   
p1 − p4( )2

= p1
2 + p4

2 − 2 p1 ⋅ p4 = −2 p
2

1− cosθ( )

Similarly, we have: 

   

M = M1 + M2 =
g 2

p1 − p3( )2 +
g 2

p1 − p4( )2

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

   

M = M1 + M2 =
g 2

p1 − p3( )2
− mC

2 c2
+

g 2

p1 − p4( )2
− mC

2 c2

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
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dσ/dΩ  AABB in CM frame 

    

M =
g 2

−2 p
2

1− cosθ( )
+

g 2

−2 p
2

1+ cosθ( )
   

=   
g 2 1+ cosθ( ) + g 2 1− cosθ( )
−2 p

2
1− cosθ( ) 1+ cosθ( )

  =   
−2g 2

2 p
2

1− cos2θ( )

    

dσ
dΩ

=
c
8π

⎛
⎝⎜

⎞
⎠⎟

2 S M
2

(E1 + E2 )2

p f
pi     

=   
c
8π

⎛
⎝⎜

⎞
⎠⎟

2 1
2

⎛
⎝⎜

⎞
⎠⎟ M

2

4E2  

two identical particles in final state:  S = 1/2! = 1/2  

initial and final state particle have same masses so 
momenta are the same and this factor is 1.  

Initial state particles have same mass and momentum, so same energy E.  

    

M =
−g 2

p
2
sin2θ

   

=  
c
8π

⎛
⎝⎜

⎞
⎠⎟

2
1
2

⎛
⎝⎜

⎞
⎠⎟

1
4E2

g 4

p
4
sin4θ

 =  
1
2

cg 2

16E p
2
sin2θ

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

2
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AB  AB Scattering 
Now consider ABAB scattering: there are again two diagrams at lowest 
order: 

Labeling these for the amplitude calculation we have 

For M1 we write down 
  

−ig( )2 i
q2 − mC

2 c2

⎛

⎝
⎜

⎞

⎠
⎟ 2π( )4

δ 4 p1 − q − p3( ) 2π( )4
δ 4 p2 + q − p4( ) d 4q

2π( )4∫

1 2 
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−ig( )2 i
q2 − mC

2 c2

⎛

⎝
⎜

⎞

⎠
⎟ 2π( )4

δ 4 p1 − q − p3( ) 2π( )4
δ 4 p2 + q − p4( ) d 4q

2π( )4∫

  

⇒     
−ig 2

p1 − p3( )2
− mC

2 c2
2π( )4

δ 4 p1 + p2 − p3 − p4( )  

   

⇒    M1  = 
g 2

p1 − p3( )2
− mC

2 c2

As in the previous exercise, we can get M2 from M1 simply by substituting 
for the proper form of q ( = p1+p2  for diagram 2). 

   

M2  = 
g 2

p1 + p2( )2
− mC

2 c2

   

M = M1 +M2     ⇒     M  = g2 1

p1 − p3( )2
− mC

2 c2
+

1

p1 + p2( )2
− mC

2 c2

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

Again, this is a Lorentz invariant form for the AB AB scattering amplitude. 

   =  − iM1
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AB  AB Scattering in the Lab Frame 
Find the differential cross-section AB  AB in the lab frame, assuming    
mB >> mA and B remains stationary (e.g. we ignore any recoil momentum). 

We’ve done the kinematics for this already: 
    

dσ
dΩ

=


8πmBc
⎛

⎝⎜
⎞

⎠⎟

2

M
2

Assume mB >> mA, mC, E/c2, e.g. for incoming particle A of energy E. 

  
p1 − p3( )2

= p1
2 + p3

2 − 2 p1 ⋅ p3    ≈    mB
2c2

  mA
2c2

  mB
2c2

   

E2

c2 − p1 ⋅
p3

  
p1 + p2( )2

= p1
2 + p2

2 + 2 p1 ⋅ p2    ≈    mB
2c2

  mA
2c2

  mB
2c2

   

E2

c2 − p1 ⋅
p2

   
M  ≈  g2 1

mB
2c2 +

1
mB

2c2

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
=

2g 2

mB
2c2

   

M  = g2 1

p1 − p3( )2
− mC

2 c2
+

1

p1 + p2( )2
− mC

2 c2

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
   ⇒

   

dσ
dΩ

=


8πmBc
⎛

⎝⎜
⎞

⎠⎟

2
2g 2

mB
2c2

⎛

⎝
⎜

⎞

⎠
⎟

2

=
g 2

4πmB
3 c3

⎛

⎝
⎜

⎞

⎠
⎟

2

   
σ = 4π g 2

4πmB
3 c3

⎛

⎝
⎜

⎞

⎠
⎟

2

=
1

4π
g 2

mB
3 c3

⎛

⎝
⎜

⎞

⎠
⎟

2
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