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The Dirac Equation 
First a reminder (hopefully) from non-relativistic quantum mechanics: 

   
E =

p
2

2m
+V

To express this in the form of a wave equation we make the operator 
substitutions 

   
p → −i


∇        E → i ∂

∂t

and allow these to act on a wavefunction ψ 

   
−
2

2m
∇2ψ +Vψ = i ∂

∂t
ψ (Schrödinger equation) 

One can do the same thing for the relativistic case, starting with the usual 
relationship between the relativistic energy and momentum: 

   
E2 = p

2
c2 + m2c4

  
pµ pµ − m2c2 = 0 or                              (in relativistic notation)  
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Starting with this, we make the operator substitution                 with 
   
pµ → i∂µ            ∂µ ≡

∂
∂xµ

and allow the resulting expression to act on a wavefunction ψ : 

   
−2∂µ∂µψ − m2c2ψ = 0   ⇒   −

1
c2

∂2ψ
∂t2 +∇2ψ =

mc


⎛
⎝⎜

⎞
⎠⎟

2

ψ (Klein-Gordon equation) 

   

xµ = ct, x, y, z( )       xµ = gµνxν = ct, −x, − y, −z( )

∂
∂xµ = 1

c
∂
∂t

,
∂
∂x

,
∂
∂y

,
∂
∂z

⎛

⎝
⎜

⎞

⎠
⎟      =    

1
c
∂
∂t

,

∇

⎛

⎝
⎜

⎞

⎠
⎟

∂
∂xµ

= 1
c
∂
∂t

, −
∂
∂x

, −
∂
∂y

, −
∂
∂z

⎛

⎝
⎜

⎞

⎠
⎟      =    1

c
∂
∂t

, −

∇

⎛

⎝
⎜

⎞

⎠
⎟

∂µ∂
µ = ∂µ∂µ =

1
c2

∂2

∂t2 − ∇
2 ≡    2
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This equation describes free particles without spin (e.g. spin 0). We didn’t 
need it for the ABC model because we had the Feynman rules. 

For historical reasons (see pg 227… or other texts) Dirac was looking for 
a relativistic wave equation that was linear in the time derivative (like the 
Schrödinger equation). His strategy was to try to factorize the expression 
for the energy/momentum relation that we began with:   

pµ pµ − m2c2 = 0

To see how this might work, consider first the simple case of a particle 
at rest:  

   
pµ = p0 ,


0( )

This equation is easily satisfied by    p
0 = ±mc

  
pµ pµ − m2c2 = 0  ⇒   p0( )2

− m2c2 = 0  ⇒   p0 + m( ) p0 − m( ) = 0
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For           the factorization is less straightforward. Can try something like    
p ≠ 0

  
pµ pµ − m2c2( ) = βκ pκ + mc( ) γ λ pλ − mc( )

Since there are no terms linear in p (or m) we require that γk =βk, so we get 

 
pµ pµ = γ κγ λ pκ pλ

  
βκγ λ pκ pλ − m2c2 − mc βκ pκ − γ

λ pλ( )
  
                          

  

p0( )2
− p1( )2

− p2( )2
− p3( )2

= γ 0( )2
p0( )2

+ γ 1( )2
p1( )2

+ γ 2( )2
p2( )2

+ γ 3( )2
p3( )2

                                              + γ 0γ 1 + γ 1γ 0( ) p0 p1( )
                                              + γ 0γ 2 + γ 2γ 0( ) p0 p2( )
                                              + γ 0γ 3 + γ 3γ 0( ) p0 p3( )
                                              +............

or, more explicitly: 
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The Gamma Matrices 

Could chose γ0=1, γ1= γ2 =γ3=i  but that leaves cross-terms that do NOT 
vanish if γi is simply a number. What we need is for the γi factors to anti-
commute, e.g.  

 

γ 0( )2
= 1      γ 1( )2

= γ 2( )2
= γ 3( )2

= −1

γ µγ ν + γ νγ µ = 0    for   µ ≠ ν

⎫
⎬
⎪

⎭⎪
  
γ µ ,γ ν{ } = 2gµν

Can’t do this with numbers since they commute (AB=BA always) but we can 
do it with matrices (which do not, in general, commute).  

The smallest matrices that will work are 4x4. There are various conventions: 
we will follow that of the text (which follows the text by Bjorken & Drell). 

  

γ 0 = 1 0
0 −1

⎛

⎝⎜
⎞

⎠⎟
        γ i =

0 σ i

−σ i 0

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

   

⎫
⎬
⎪

⎭⎪

Here, by convention, each element is  
a 2x2 matrix, and the σi’s are the Pauli 
spin matrices.  
NB: these four objects are NOT the 
elements of a four-vector 5 



  
pµ pµ − m2c2 = γ κ pκ + mc( ) γ λ pλ − mc( ) = 0Now we have                                                                   as desired. 

Can choose either factor to define the Dirac equation.  

By convention                        .   
γ µ pµ − mc = 0

Making the usual operator substitution                  and allowing the 
resulting expression to operate on the (now necessarily four component) 
wavefunction ψ yields the Dirac equation: 

  
pµ → i∂µ

   
iγ µ∂µψ − mcψ = 0

 

ψ =

ψ 0

ψ 1

ψ 2

ψ 3

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

is called a Dirac spinor (more on this later) 

It is important to note that while the Dirac spinor ψ is a four component 
object, is it NOT a four-vector. It’s transformation properties are important 
however, and we will discuss these later on.  
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iγ µ∂µ − mc( )ψ = 0

 So we have what we wanted: a relativistic wave equation linear in  

Where ψ is a four component object  called a Dirac spinor. 

∂
∂t
:
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Transformation Properties of Dirac Spinor ψ 
We will state the transformation properties without proof. Under a Lorentz 
transformation (along x) we have: 

  

ψ → ′ψ = Sψ            S =
a+   a−σ1

a−σ1   a+

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

Note that this is a 4x4 matrix. 
The σi are the 2x2 Pauli spin 
matrices (here we use σ1  for the 
case of a boost along x).  

  
a± = ± γ ±1( ) / 2               γ = 1− β 2( )−1/2

 with                            and                  

Note that the wavefunction ψ is not an observable. What we want to 
construct (from this) are quantities that do have well defined  
transformation properties. For example, try to form a Lorentz scalar: 

  

ψ ✝ψ = ψ 1
∗ ψ 2

∗ ψ 3
∗ ψ 4

∗( )
ψ 1

ψ 2

ψ 3

ψ 4

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

= ψ 1

2
+ ψ 2

2
+ ψ 3

2
+ ψ 4

2
This is more or less the same 
thing we tried when we tried 
to define an invariant based 
on the four-vector     . xµ

8 
Actually, didn’t do this this year, but you 
can try it and see that it doesn’t work 



   

S ✝S =

a+ 0 0 a−

0 a+ a− 0

0 a− a+ 0

a− 0 0 a+

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

a+ 0 0 a−

0 a+ a− 0

0 a− a+ 0

a− 0 0 a+

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

=

a+
2 + a−

2 0 0 2a+a−

0 a+
2 + a−

2 2a+a− 0

0 2a+a− a+
2 + a−

2 0

2a+a− 0 0 a+
2 + a−

2

⎛

⎝

⎜
⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟⎟

Transformation Properties of ψ✝ψ 
How does ψ✝ψ  transform under a Lorentz transformation (again along x)? 

   
ψ ✝ψ( )→ ψ ✝ψ( )′ = ′ψ( )✝ ′ψ =ψ ✝S ✝Sψ    ≠    ψ ✝ψ    since  S ✝S ≠ 1

  

=
a+

2 + a−
2 2a−a+σ1

2a−a+σ1 a+
2 + a−

2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
= γ

1 −βσ1

−βσ1 1

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

[e.g. in 2x2 form] 

  

a+
2 + a−

2 =
1
2
γ +1( ) + 1

2
γ −1( ) = γ

2a+a− = − γ −1 γ +1 = − γ 2 −1 = −
1

1− β 2 −1 = −
1−1+ β 2

1− β 2 = − β 2γ 2 = −βγ

since 

⎧

⎨
⎪⎪

⎩
⎪
⎪
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Transformation Properties ψ✝ψ 
So ψ✝ψ  does not form an invariant (under Lorentz transformations). 

  a+
2 + a−

2     or    2a+a−  (from a+a− + a−a+ )

[Just as the sum of the squares of the components of a four vector did not, when we were 
looking at four-vector invariants. In that case, needed a relative negative sign on the spatial 
components, for which we introduced the covariant four vector to define the invariant aµ

 aµ.] 

Need to do something similar here. Note that the elements of S✝S are either 

If the sign were reversed in each case, we would get 

  
a+

2 − a−
2 =

1
2
γ +1( ) − 1

2
γ −1( ) = 1               a+a− −  a−a+ = 0

So we can get what we need if we introduce a matrix that effects the 
required change of sign: (γ0 will do the trick). 
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The Adjoint Spinor  

Define the adjoint spinor as    ψ ≡ψ ✝γ 0

 

ψ 1
∗ ψ 2

∗ ψ 3
∗ ψ 4

∗( )
1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

= ψ 1
∗ ψ 2

∗ −ψ 3
∗ −ψ 4

∗( )e.g. 

The quantity                        is a Lorentz invariant scalar quantity, since    ψψ =ψ ✝γ 0ψ

   
ψψ( )→ ψψ( )′ = ψ ✝( )′ γ 0 ′ψ =ψ ✝S ✝γ 0Sψ    =   ψψ    

   

S ✝γ 0S  =

1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

= γ 0

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

So we know that this quantity is a Lorentz scalar. We can also ask whether 
is it a regular scalar or a pseudoscalar. That is, how does it transform under 
parity? 
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To determine how the quantity        behaves under parity, first need to 
know how ψ transforms:  

ψψ

Quote without proof: under parity we have 

  ψγ
5ψ          γ 5 ≡ iγ 0γ 1γ 2γ 3

  
ψψ( )→ ψψ( )′ = ψ ✝( )′ γ 0 ′ψ =ψ ✝ γ 0( )✝ γ 0γ 0ψ    =  ψ ✝γ 0ψ =  ψψ    

 ψ → ′ψ = γ 0ψ

since   
γ 0✝ = γ 0         γ 0( )2

= 1 [e.g. the 4x4 identity matrix] 

Can also make a pseudoscalar combination:            with  

 
γ 5 = 0 1

1 0

⎛

⎝⎜
⎞

⎠⎟
in the usual 2x2 form 
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Under parity, we have  

  
ψγ 5ψ( )→ ψγ 5ψ( )′ = ψ ✝( )′ γ 0γ 5 ′ψ =ψ ✝γ 0γ 0γ 5γ 0ψ    =  ψ ✝γ 5γ 0ψ  

since  γ
0γ 5 = −γ 5γ 0

 Parity Transformation of          ψγ
5ψ

  = −ψ ✝γ 0γ 5ψ = −ψγ 5ψ    

γ0 anti-commutes with γ1, γ2, γ3 and commutes with itself, so 

  
γ 5γ 0 = iγ 0γ 1γ 2γ 3γ 0 = −1( )3

γ 0iγ 0γ 1γ 2γ 3 = −γ 0γ 5

γ5 anti-commutes with all other γ  matrices 

  
γ µ ,γ 5{ } = 0          γ 5( )2

= 1          γ 5( )✝ = γ 5

Can also show that            is Lorentz invariant  (Problem 7.12)  ψγ
5ψ
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Under Lorentz transformation, we have  

   
ψγ 5ψ( )→ ψγ 5ψ( )′ = ψ ✝( )′ γ 0γ 5 ′ψ =ψ ✝S ✝γ 0γ 5Sψ  

 Lorentz Invariance of          ψγ
5ψ

Can show that S, γ 5 commute: 

  

Sγ 5 =
a+   a−σ1

a−σ1   a+

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

0 1
1 0

⎛

⎝⎜
⎞

⎠⎟
=

a−σ1   a+

a+   a−σ1

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

  

γ 5S = 0 1
1 0

⎛

⎝⎜
⎞

⎠⎟
a+   a−σ1

a−σ1   a+

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
=

a−σ1   a+

a+   a−σ1

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

So     ψ
✝S ✝γ 0γ 5Sψ  =ψ ✝S ✝γ 0Sγ 5ψ =ψ ✝γ 0γ 5ψ =ψγ 5ψ

Reminder: the form of S used is for a Lorentz transformation along x. 
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Quantity Components Parity
Scalar ψψ 1 +

Pseudoscalar ψγ 5ψ 1 −

Vector ψγ µψ 4 spatial −
Pseudovector ψγ 5γ µψ 4 spatial +

Tensor ψσ µνψ 6

 

 Other Lorentz Invariant Quantities        
There are 16 products of the form           . Linear combinations of these 
can be used to form quantities having distinct transformation properties:  

ψ i
∗ψ j

  
σ µν ≡

i
2

γ µ ,γ ν⎡⎣ ⎤⎦ =
i
2
γ µγ ν − γ νγ µ( )

[traceless, antisymmetric, so 6 components] 
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