
PHY489 Lecture 15 



Solutions to the Dirac Equation 

We had                                :     

here the γ matrices are 4x4 and ψ is a 4-component Dirac spinor 
   
iγ µ∂µ − mc( )ψ = 0

 

ψ =

ψ 1

ψ 2

ψ 3

ψ 4

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

Consider first the case in which ψ is stationary (independent of position) 

  

∂ψ
∂x

=
∂ψ
∂y

=
∂ψ
∂z

= 0 e.g. a state with        since      
   

p = 0              pµ → i∂µ ≡ i 1
c
∂
∂t

,−

∇

⎛
⎝⎜

⎞
⎠⎟

In this case, the Dirac equation reduces to                                 which we 
can write as:    

i
c
γ 0 ∂ψ

∂t
− mcψ = 0

   

1 0
0 −1

⎛

⎝⎜
⎞

⎠⎟
∂ψ A / ∂t

∂ψ B / ∂t

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

  = − i mc2



ψ A

ψ B

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

      with      ψ A =
ψ 1

ψ 2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

   ψ B =
ψ 3

ψ 4

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

Still need to discuss the form of the spinor ψ:  
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1 0
0 −1

⎛

⎝⎜
⎞

⎠⎟
∂ψ A / ∂t

∂ψ B / ∂t

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

  = − i mc2



ψ A

ψ B

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

      with      ψ A =
ψ 1

ψ 2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

   ψ B =
ψ 3

ψ 4

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

four components                                                  two components each 

   

∂ψ A

∂t
  = − i mc2


ψ A              −

∂ψ B

∂t
  = − i mc2


ψ B

 These equations have straightforward solutions: 

   
ψ A t( ) = e

− i mc2 /( )tψ A 0( )           ψ B t( ) = e
+ i mc2 /( )tψ B 0( )     

Basic quantum mechanics tells us that characteristic time evolution of a 
quantum state of energy E is given by           :  Here E=mc2 for the time 
dependence of ψA. However, for ψB we have  

   e− iEt /

   
ψ B t( ) = e

+ i mc2 /( )tψ B 0( )     Interpret these “negative energy” solutions as being 
positive energy solutions for anti-particles. 
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So, ψA describes electrons and ψB describes positrons: each has two spin 
states: 

   

ψ 1 = e
− i mc2


t

1
0
0
0

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

                                           ψ 2 = e
− i mc2


t

0
1
0
0

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

ψ 3 = e
+ i mc2


t

0
0
1
0

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

                                           ψ 4 = e
+ i mc2


t

0
0
0
1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

electron with spin up electron with spin down 

positron with spin down positron with spin up 

Now, consider general state (non-stationary): plane wave solutions of form 

   
ψ r ,t( ) = ae

−
i


Et− p⋅r( )
u E, p( )     

normalization factor: ignore for now 
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ψ r ,t( ) = ae

−
i


Et− p⋅r( )
u E, p( )      ⇒      ψ x( ) = ae

−
i


x ⋅ p( )
u p( ) [ in 4v notation ] 

   
γ µ pµae

−
i


x ⋅ p( )
u − mcae

−
i


x ⋅ p( )
u = 0 or, more compactly,                          .   

  
γ µ pµ − mc( )u = 0

This is referred to as the Dirac equation in momentum space. Note that 
this is purely algebraic (i.e. it contains no derivatives). If u satisfies this 
equation then ψ  satisfies the Dirac equation. 

 Expand this and then write in 2x2 matrix form:     
γ µ pµ = γ 0 p0 −


γ ⋅ p

   
=

E
c

1 0
0 −1

⎛

⎝⎜
⎞

⎠⎟
− p ⋅ 0


σ

−

σ 0

⎛

⎝⎜
⎞

⎠⎟
=

E / c − p ⋅

σ

p ⋅

σ −E / c

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

   

γ i =
0


σ i

−

σ i 0

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

   i = 1,2,3
⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

  
∂µψ = −

i


pµae
−

i


x ⋅ p( )
u p( ) so the Dirac equation                                becomes 

   
iγ µ∂µ − mc( )ψ = 0
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γ µ pµ − mc( )u = 0   ⇒    

E
c
− mc − p ⋅


σ

p ⋅

σ −

E
c
− mc

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

uA

uB

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
= 0

   

⇒    

E
c
− mc

⎛
⎝⎜

⎞
⎠⎟

uA −
p ⋅

σ( )uB

p ⋅

σ( )uA −

E
c
+ mc

⎛
⎝⎜

⎞
⎠⎟

uB

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

= 0 e.g. two equations in uA and uB. 

   

E
c
− mc

⎛
⎝⎜

⎞
⎠⎟

uA = p ⋅

σ( )uB     ⇒    uA =

c
E − mc2

p ⋅

σ( )uB

p ⋅

σ( )uA =

E
c
+ mc

⎛
⎝⎜

⎞
⎠⎟

uB     ⇒    uB =
c

E + mc2

p ⋅

σ( )uA

uA =
c

E − mc2

p ⋅

σ( ) c

E + mc2

p ⋅

σ( )uA =

c2

E2 − m2c4

p ⋅

σ( )2

uA
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uA =

c
E − mc2

p ⋅

σ( ) c

E + mc2

p ⋅

σ( )uA =

c2

E2 − m2c4

p ⋅

σ( )2

uA
  
p ⋅

σ( )Look at factor 

   

p ⋅

σ = px

0 1
1 0

⎛

⎝⎜
⎞

⎠⎟
+ py

0 −i
i 0

⎛

⎝⎜
⎞

⎠⎟
+ pz

1 0
0 −1

⎛

⎝⎜
⎞

⎠⎟
=

pz px − ipy

px + ipy − pz

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

   

p ⋅

σ( )2

=

pz
2 + px − ipy( ) px + ipy( ) pz px − ipy( ) − pz px + ipy( )

pz px + ipy( ) − pz px − ipy( ) px + ipy( ) px − ipy( ) + pz
2

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

   

=
px

2 + py
2 + pz

2 0

0 px
2 + py

2 + pz
2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
= p

2
   e.g. p

2
 I2x2( )

   
uA =

c2

E2 − m2c4

p
2
uA     ⇒    requires E2 = m2c4 + p

2
c2

   
E2 = ± m2c4 + p

2
c2
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uA = 1
0

⎛

⎝⎜
⎞

⎠⎟
⇒ uB =

c
E + mc2

p ⋅

σ( ) 1

0

⎛

⎝⎜
⎞

⎠⎟
=

c
E + mc2

pz

px + ipy

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

uA = 0
1

⎛

⎝⎜
⎞

⎠⎟
⇒ uB =

c
E + mc2

p ⋅

σ( ) 0

1

⎛

⎝⎜
⎞

⎠⎟
=

c
E + mc2

px − ipy

− pz

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

uB = 1
0

⎛

⎝⎜
⎞

⎠⎟
⇒ uA =

c
E − mc2

p ⋅

σ( ) 1

0

⎛

⎝⎜
⎞

⎠⎟
=

c
E − mc2

pz

px + ipy

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

uB = 0
1

⎛

⎝⎜
⎞

⎠⎟
⇒ uA =

c
E − mc2

p ⋅

σ( ) 0

1

⎛

⎝⎜
⎞

⎠⎟
=

c
E − mc2

px − ipy

− pz

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

   
uA =

c
E − mc2

p ⋅

σ( )uB          uB =

c
E + mc2

p ⋅

σ( )uAWe had 

Need energy as stated to avoid blow-up of denominator at E=mc2. 

   
E2 = + m2c4 + p

2
c2

⎫

⎬
⎪⎪

⎭
⎪
⎪

   
E2 = − m2c4 + p

2
c2

⎫

⎬
⎪⎪

⎭
⎪
⎪

  

p ⋅

σ =

pz px − ipy

px + ipy − pz

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

7 



  

u1 = N

1
0

c pz( )
E + mc2

c px + ipy( )
E + mc2

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

                  u2 = N

0
1

c px − ipy( )
E + mc2

c − pz( )
E + mc2

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

u3 = N

c pz( )
E − mc2

c px + ipy( )
E − mc2

1
0

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

                  u4 = N

c px − ipy( )
E − mc2

c − pz( )
E − mc2

0
1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

   
E2 = − m2c4 + p

2
c2

   
E2 = + m2c4 + p

2
c2

Normalization is  u✝u = 2|E|/c  (recall that we discussed Lorentz invariant 
wavefunction normalizations a few lectures ago). 
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u1
✝u1 = N 2

1 0
c pz( )

E + mc2

c px − ipy( )
E + mc2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

1
0

c pz( )
E + mc2

c px + ipy( )
E + mc2

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

= N 2 1+
c2 pz

2

E + mc2( )2 +
c2 px

2 + py
2( )

E + mc2( )2

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

   

N 2
E + mc2( )2

+ c2 p
2

E + mc2( )2

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
= N 2

E2 + 2Emc2 + m2c4 + c2 p
2

E + mc2( )2

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
= N 2

2E E + mc2( )
E + mc2( )2

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
= N 2 2E

E + mc2

⎛
⎝⎜

⎞
⎠⎟

   
u1
✝u1 = 2 E / c     requires    N = E + mc2( ) / c (need |E| for u3, u4) 

            
= E

2
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Spin Matrices for Dirac Spinors 

   


S =

2

Σ     

Σ =


σ 0
0

σ

⎛

⎝⎜
⎞

⎠⎟

 u1 looks like it might represent a spin-up electron, but it does not. u1 is NOT 
an eigenvector of Sz, unless we make a specific choice for the direction of 
the z axis by choosing it along    .   p̂

 In this case, px = py = 0 and all four spinors represent states of definite helicity.  

 For example: 

   

u1 = N

1
0

c pz( )
E + mc2

c px + ipy( )
E + mc2

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

  ⇒ N

1
0

c p
E + mc2

0

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟

 ⇒     Σ zu1 =

1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

N

1
0

c p
E + mc2

0

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟

= N

1
0

c p
E + mc2

0

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
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Σ zu1 = N

1
0

c p
E + mc2

0

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟

= E + mc2( ) / c

1
0

c p
E + mc2

0

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟

=

E + mc2( ) / c

0
c p

E + mc2 E + mc2( ) / c

0

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

=

E + mc2( ) / c

0

E − mc2( ) / c

0

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟

   

c p
E + mc2 E + mc2( ) / c =

c2 p
2

E + mc2( ) / c

E + mc2 =
E2 − m2c4( ) E + mc2( ) / c

E + mc2

                                        =
E − mc2( ) E + mc2( ) E + mc2( ) / c

E + mc2 = E − mc2( ) / c

since 

u1 and u3 are spin-up             u2 and u4 are spin-down 

To represent positron solutions in terms of the physical energy and 
momentum of the positron, we flip the signs of     and    for u3 and u4 :    E          p

   
ψ r ,t( ) = ae

−
i


Et− p⋅r( )
u −E,− p( )     
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u4 = N

c px − ipy( )
E − mc2

c − pz( )
E − mc2

0
1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

      ⇒       u4 −E,− p( ) = N

c − px + ipy( )
−E − mc2

c + pz( )
−E − mc2

0
1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

  =   N

c px − ipy( )
E + mc2

c − pz( )
E + mc2

0
1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
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The convention is to write positron states (spinors) as v and to forget about 
u3 and u4;  

    

v1 E, p( ) = u4 −E,− p( ) = N

c px − ipy( )
E + mc2

c − pz( )
E + mc2

0
1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

   
E = + m2c4 + p

2
c2where in each case the energy is 

u solutions (representing electrons) satisfy 

v solutions (representing positrons) satisfy  
  
γ µ pµ − mc( )u = 0

   
γ µ pµ + mc( )v = 0

We will talk more about the properties of these spinors. Most important is that we 
know what they are, because the Feynman rules we will learn for QED associate 
a spinor with each external fermion line. Generally we average over spin states, 
so whether something is spin-up or spin-down is often not so critical.  

We will mostly use the spinor in abstract rather than component form, but it is 
useful to have explicit forms for derivation of their properties.  
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v2 E, p( ) = u3 −E,− p( ) = −N

c pz( )
E + mc2

c px + ipy( )
E + mc2

0
1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

   

u3 −E,− p( ) = −N

c pz( )
E + mc2

c px + ipy( )
E + mc2

1
0

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟



Quantum Electrodynamics 

•  Follow Griffiths sections 7.5-7.7 + example 7.7 from section 7.8, using 
the e-µ- e-µ- scattering as an example. 

  Feynman rules for Quantum Electrodynamics 
   e-µ- e-µ-  scattering 
  Spin-averaging of amplitudes (next time) 
  Scattering of an electron from a heavy spin-1/2 particle (next time). 
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Feynman Rules for Quantum Electrodynamics 

1.  Notation: label incoming and outgoing four-momenta & corresponding 
spins; label the internal four momenta; assign arrows to lines as follows: 
•  Arrows on external lines indicate whether they represent particles or anti-

particles (the latter flow backwards in time). 
•  Arrows on external photon lines point forwards. 
•  Arrows on internal lines are in the direction that preserves the “direction of 

flow”: each vertex must have at least one arrow entering and one arrow 
leaving. 

EXAMPLE:  e-µ-  e-µ- scattering (in QED ! No weak interaction contribution) 

e e 

µ µ 

γ 

e e 

µ µ 

γ 

p1, s1 p3, s3 

p2, s2 p4, s4 

q 

  
                             

  

1
q2     vs.     

1
q2 − M 2c2

e.g. at low energies, where the weak  
interaction contribution is negligible 
(suppressed by the high mass of the 
weak gauge bosons) e.g. 

for the propagator. 
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2.  External Lines: contribute factors to M  as follows: 

•  electrons      incoming    
                          outgoing 
•  positrons      incoming 
                          outgoing 
•  photons       incoming 
                          outgoing 

3.  Vertices: each vertex contributes a factor of         (photon is spin-1). 
      (here my g is Griffiths                                   ). 

4.  Propagators: each internal line contributes a factor of: 

•  electrons and positrons   

•  photons 

Feynman Rules for QED cont’d 

 u
   u ≡ u✝γ 0

 v
   v ≡ v ✝γ 0

ε µ

 ε
µ*

⎫
⎬
⎭

polarization vectors: see § 7.4. We will 
discuss this in an upcoming lecture.  

 igγ
µ

   ge ≡ e 4π / c = 4πα

  

i γ µqµ + mc( )
q2 − m2c2

  
−i

gµν

q2

[ e.g. internal fermion line ] 

e.g. fermions 

e.g. anti-fermions 
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Feynman Rules for QED cont’s 
5.  Conservation of energy and momentum: for each vertex write a factor 

     enforcing overall energy and momentum conservation at that vertex. 
     (here each k represents a 4 momentum; incoming four momenta are  

positive and outgoing are negative). 

6.  Integrate over all internal momenta: for each internal momentum q write 
a factor of                and integrate. 

7.  Cancelling the remaining δ-function (expressing overall energy and 
momentum conservation) leaves you with -iM. 

8.  Anti-symmetrization: include a relative minus sign between diagrams 
differing only by the exchange of two incoming (or outgoing) electrons (or 
positrons) or of and incoming electron with an outgoing positron (or vice 
versa) [ see next slide ].  

  
2π( )4

δ 4 k1 + k2 + k3( )

  
2π( )−4

d 4q

17 



Anti-symmetrization of QED diagrams  
Recall the ABC model scattering process AABB. There are two 
diagrams that contribute at lowest order: 

We summed the amplitudes for these 
two diagrams to get the total amplitude 
(so, with a relative positive sign). 

For fermions the relative sign between 
such diagrams is negative.  p1, s1 

p2, s2 p3, s3 

p4, s4 p1, s1 

p2, s2 p3, s3 

p4, s4 
_ 

Here for  e−e− → e−e−

18 



More on anti-symmetrization of QED diagrams  

p1, s1 

p2, s2 p3, s3 

p4, s4 p1, s1 

p2, s2 p3, s3 

p4, s4 

_ 

Consider electron positron scattering:                      (Bhabha scattering)  e+e− → e+e−

Relative negative sign since diagrams differ by exchange of incoming 
positron and outgoing electron: 

= 
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Electron-Muon Scattering in QED 

Now back to                    scattering in QED:  e
−µ− → e−µ−

We had:                                Now apply Feynman rules to obtain M. 

e e 

µ µ 

γ 

p1, s1 p3, s3 

p2, s2 p4, s4 

q 

Procedure is to write down terms working backwards in time along 
each fermion line: 

electron line: 
  
u s3( ) p3( )  igγ

µ

  
u s1( ) p1( )   

2π( )4
δ 4 p1 − p3 − q( )

outgoing 
electron 
spinor 

vertex 
coupling  

incoming 
electron 
spinor 

δ-function for conservation of energy 
and momentum at electron vertex. 

muon line:   
u s4( ) p4( )  igγ ν  u s2( ) p2( ) 2π( )4

δ 4 p2 + q − p4( )
20 



Electron-Muon Scattering cont’d 

e e 

µ µ 

γ 

p1, s1 p3, s3 

p2, s2 p4, s4 

q 

  
∫ u p3( )  igγ µ  u p1( ) 2π( )4

δ 4 p1 − p3 − q( )⎡
⎣⎢

⎤
⎦⎥
−igµν

q2 u p4( )  igγ ν  u p2( ) 2π( )4
δ 4 p2 + q − p4( )⎡

⎣⎢
⎤
⎦⎥

d 4q

2π( )4

Propogator is         . Applying the Feynman rules we obtain 
  

−igµν

q2

[ spin indices have been suppressed ] 

Use first δ-function for integration over d4q. This leaves:   

  

−ig 2

p1 − p3( )2 u p3( )γ µu p1( )⎡⎣ ⎤⎦ u p4( )γ µu p2( )⎡⎣ ⎤⎦ 2π( )4
δ 4 p1 + p2 − p3 − p4( )

Canceling the overall δ-function leaves us with -iM:  

   

M =
g 2

p1 − p3( )2 u p3( )γ µu p1( )⎡⎣ ⎤⎦ u p4( )γ µu p2( )⎡⎣ ⎤⎦
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Electron-Muon Scattering cont’d 

e e 

µ µ 

γ 

p1, s1 p3, s3 

p2, s2 p4, s4 

q 
   

M =
g 2

p1 − p3( )2 u p3( )γ µu p1( )⎡⎣ ⎤⎦ u p4( )γ µu p2( )⎡⎣ ⎤⎦

  
                  

  
                  

Each of component of each of these factors has the form: 

( )
⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

1 x 4 4 x 4 
4 
x 
1 

This is just a number, so the above expression is just a 
number (e.g. a scalar quantity), which we will learn to 
calculate. 

But first, we need to learn how to deal with spin. 
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