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Solutions to the Dirac Equation

We had (ih}/“au — mc)l// =0: v,
v,

here the y matrices are 4x4 and y is a 4-component Dirac spinor ¥ = v
3

Still need to discuss the form of the spinor : v,

Consider first the case in which v is stationary (independent of position)

al/j — 81// — al/j = (0 e.g astatewith p=0 since p, — ihid —zh[—a2 —?j
ox dy Oz ¢ o

In this case, the Dirac equation reduces to ﬁy 09V _ mcy =0 which we
can write as: of

oy , /ot 2
I O ] v, — mc¢ v, with v, = v, W, = v,
0 -1 al//B / Ot h l//B lljz l//4

]
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dy /ot 2
( 1 0 ] v, _ iﬁ v, with v, = v, v, = v,
0 -1 dy, / ot ooy, v, v,

four components two components each
al//A = —7 mcz l// _ al//B = — l mcz l//
ot hot ot ot

These equations have straightforward solutions:

—i(mc2 /h)t

v, (t)=e v, (0)  w,(1)=e

Basic quantum mechanics tells us that characteristic time evolution of a
quantum state of energy £ is given by o Eth.

. Here E=mc?for the time
dependence of v, However, for i/, we have

v (t) _ e+i(mcz/h)’w (0) Interpret these “negative energy” solutions as being
B B positive energy solutions for anti-particles.



So, v, describes electrons and v/, describes positrons: each has two spin

states:
2
—iﬂt
y,=e '
2
+i
y,=e

S OO =

S = O O

electron with spin up

positron with spin up

,m02
+i—t

y,=e

S O = O

—_0 O O

electron with spin down

positron with spin down

Now, consider general state (non-stationary): plane wave solutions of form

l//(?,t) =qe "

l

i(Et— :

normalization factor: ignore for now



y(F)=ae ™ u(Ep) = w(x)=ae” x'p)u(p) [in 4v notation ]

oY= —épﬂae_h(x'p)u(p) so the Dirac equation (z‘hy“au - mc)l// =0 becomes

—L(x-p) ~L(xp)

Y'pae” u—mcae ™ u=0 or, more compactly, (7/“]9# —mc)u =0 .

This is referred to as the Dirac equation in momentum space. Note that
this is purely algebraic (i.e. it contains no derivatives). If u satisfies this
equation then y satisfies the Dirac equation.

Expand this and then write in 2x2 matrix form: v'p,=v'p,~7 P

5 E —p-O . 0 o
_Ef 10 5. Oq G |_ /f po Y R P
cl 0 -1 -6 0 p-6 —-E/c -0, 0



(Vupu—mc)u=0 = e [MA ]=0

C . .
= =0 e.g.two equations in u, and u,.
Lo E
(5 a)uA_(Tmc]uB
E—mc qu(f)-&)uB = u,= _C 2(13 6‘)uB
C E—mc




uA:E—Cmc (p.a)E:mcz (p-a)quE2 _szc4 (5:6)u,  Look at factor (p-6)
N O 0 —i 1 o0 | | P PP
Z a—px( - ]+py[ 0 j+pz[ 0 1 ]—[ ptio, b, ]
p+(p. -, ) p,+ip,) p.(p.—ip,)-p.(p,+ip,)
(p-3) =
p.(p.+ip,)-p.(p.-ip,) (p.+ip,)(p,—ip,)+ P’
| i E 0 i (e el )
= 0 pj-l-pi-i-pzz =P L |Pl L0
MA:Ez ¢ . 4‘[3‘21/1/1 = requiresEz=mzc4+‘f9rc2 Ezzi\/mzc4+‘j9‘2c2
—mc



p. p.—ip
E + mc px + lpy —pz

o EP=+ym’c? +‘f?‘2 c’

;B = —«[mzc“ +‘f9‘2 c’

Need energy as stated to avoid blow-up of denominator at E=mc-.



Normalization is u'u = 2|E|/c (recall that we discussed Lorentz invariant
wavefunction normalizations a few lectures ago).

c(px—ipy)

E + mc?

<r)

E + mc?

(p,~ipr,)

2
E —mc

(-r.)

E—mc

E* =+m’c* +‘f)‘2 c’

E* = —«/mzc4 +‘f9‘2 ¢’



u;ul—z\ﬂ[l , <) C(px—ipy)J (r.)

E+mc®  E+mc’ E +mc”
c(px+ipy)
E + mc’
= E?
—
2 (E+mc2)2+cz‘]3‘2 A2 E2+2Emcz+mzc4+c2‘f9‘2
(E+mcz)2 (E+mc2)2

ufu1=2‘E‘/c requires N=\/(‘E‘+mcz)/c

Pl

(need |E| for u;, u,)



Spin Matrices for Dirac Spinors

§=2s 5[ G0
2 0 o

u, looks like it might represent a spin-up electron, but it does not. u, is NOT
an eigenvector of S, unless we make a specific choice for the direction of
the z axis by choosing it along p.

In this case, p, = p, = 0 and all four spinors represent states of definite helicity.

For example:
1
0 1 1 1
(n) 0 1 0 0 0 0 0
=N - SN epl | = oza=l O T YNl =N B
u = E + mc> C‘p M= 00 1 0 C‘p = C‘p
2 2 2
C(px + ipy) E +0mc 0 0 0 -1 E +Omc E +0mc
E +mc’
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1
0
Xu=N c‘f)‘ =\/(‘E‘+mcz)/c
E + mc’
0
since Ei‘],jc W]+ me

V(£ me) e

0

‘p‘ \/‘E‘+mc
E + mc?

\/ ‘p \/‘E‘+mc /c

E - mzc4)\/(‘E‘+ mcz)/c

E + mc?

E + mc?

I ) G | e g e
Al - [E=ne);

u, and u; are spin-up

u, and u, are spin-down

V(£l+me) e

\/(\E\—mcz)/c

To represent positron solutions in terms of the physical energy and
momentum of the positron, we flip the signs of £ and p for u; and u,:

t/f(F,t)z
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c(px — ipy)

2
E—mc

c(-p.)

2
E—mc

c(—px + ipy)

—E —mc’
c(+p,)

2
—F —mc

c(px —ipy)

E + mc?

c(-p.)

E + mc?
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The convention is to write positron states (spinors) as » and to forget about
u; and uy;

(p.~ip,) (r.)
E + mc’ E+mc®
o(E.p)=u,(-E~p)=N| <[=P.) 0,(E.p)= u(-E.~p)=-N (r, “P;)
E + mc* E+mc
0 1
1 0

: : 2
where in each case the energyis E= +\/m2c4 +|p| ¢

u solutions (representing electrons) satisfy (7/”pu - mc)u =0

v solutions (representing positrons) satisfy (7”1@ + mc)v =0

We will talk more about the properties of these spinors. Most important is that we
know what they are, because the Feynman rules we will learn for QED associate
a spinor with each external fermion line. Generally we average over spin states,
so whether something is spin-up or spin-down is often not so critical.

We will mostly use the spinor in abstract rather than component form, but it is
useful to have explicit forms for derivation of their properties.



Quantum Electrodynamics

Follow Griffiths sections 7.5-7.7 + example 7.7 from section 7.8, using
the e-u > e scattering as an example.

» Feynman rules for Quantum Electrodynamics

» e =2 e scattering

» Spin-averaging of amplitudes (next time)

» Scattering of an electron from a heavy spin-1/2 particle (next time).
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Feynman Rules for Quantum Electrodynamics

1. Notation: label incoming and outgoing four-momenta & corresponding

spins; label the internal four momenta; assign arrows to lines as follows:

 Arrows on external lines indicate whether they represent particles or anti-
particles (the latter flow backwards in time).
e Arrows on external photon lines point forwards.

e Arrows on internal lines are in the direction that preserves the “direction of
flow”: each vertex must have at least one arrow entering and one arrow

leaving.
EXAMPLE: e =2 e scattering (in QED ! No weak interaction contribution)
o /
Vo
e.g. at low energies, where the weak
I m n n interaction contribution is negligible
Py S, Do Sy (suppressed by the high mass of the
weak gauge bosons) e.g.
Y /13y Lo !
qz qz — M3
Pr S P3 S3
e e e e for the propagator.
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Feynman Rules for QED cont’d

2. External Lines: contribute factors to M as follows:

e electrons incoming
e.g. fermions outgoing

u

u

e positrons  incoming v
Z

8“1

et

.I.
u'y’
Z/T,}/O

e.g. anti-fermions outgoing

e photons incoming

} polarization vectors: see § 7.4. We will
outgoing

discuss this in an upcoming lecture.

3. Vertices: each vertex contributes a factor of igy" (photon is spin-1).
(here my g is Griffiths g = ev4rn / hc =V4rmo ).

4. Propagators: each internal line contributes a factor of:

 electrons and positrons i(’””qu +mc) [ e.g. internal fermion line ]
C[2 — 2>
Euy
 photons — 7
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Feynman Rules for QED cont’s

5. Conservation of energy and momentum: for each vertex write a factor
(27) 6 (K, + k, +&,)

enforcing overall energy and momentum conservation at that vertex.

(here each k represents a 4 momentum; incoming four momenta are
positive and outgoing are negative).

6. Integrate over all internal momenta: for each internal momentum ¢ write
—4 .
a factor of (2z) d'q and integrate.

/. Cancelling the remaining &-function (expressing overall energy and
momentum conservation) leaves you with -igu.

8. Anti-symmetrization: include a relative minus sign between diagrams
differing only by the exchange of two incoming (or outgoing) electrons (or
positrons) or of and incoming electron with an outgoing positron (or vice

versa) [ see next slide ].
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Anti-symmetrization of QED diagrams

Recall the ABC model scattering process 44 -2>BB. There are two
diagrams that contribute at lowest order:

A B A
8 We summed the amplitudes for these
C two diagrams to get the total amplitude
(so, with a relative positive sign).
B
A B A

For fermions the relative sign between
such diagrams is negative.

Herefore e — e e
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More on anti-symmetrization of QED diagrams

Consider electron positron scattering: e’e¢” — e'e” (Bhabha scattering)

Relative negative sign since diagrams differ by exchange of incoming
positron and outgoing electron:

O
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Electron-Muon Scattering in QED

Now back to e u~ — e u scattering in QED:

M M
P S Py Sy
We had: ﬂ Y Now apply Feynman rules to obtain .
Pr S P33
e e

Procedure is to write down terms working backwards in time along
each fermion line:

electron line:  @"!(p,) igy* u™(p,) (27)' &*(p, - p,—4)

outgoing vertex incoming o-function for conservation of energy
electron coupling  electron and momentum at electron vertex.
spinor spinor

muon line: 5(84)(194) igy" u(SZ)(pz)(Zﬂ)4 5*(p, +q-p,)
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Electron-Muon Scattering cont’'d

M M

P» S Py Sy
q I Y _

Pr S P3 S3

e e [ spin indices have been suppressed ]

_ ) 4 4 lg . d4q
J [u(]%) igy" u(pl)(27r) 0 (pl—p3—Q)} 7 [ (p4) igy"’ u(pz)(Zn) 0 (p2+q p4)}(2 )4
T

Use first 6-function for integration over d*q. This leaves:

(p—_ig; 7 [ (p,)r u(p) [a(p.)r,u(p,) |eeys*{prrpr—rrri)

Canceling the overall d-function leaves us with -iou:

2

wy=—2 - [ﬁ(p3)7“u(pl)}[b7(194)Vy”(pz)}

(P~ 1)
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Electron-Muon Scattering cont’'d

n M
D> S, Py 84 2
w=—E—[a(p)rulp) (o)1, 0(p.)]
qx Y (P=p) < ~ - ~ g
Py S P3» S;3
e e

Each of component of each of these factors has the form:

X number (e.g. a scalar quantity), which we will learn to
1 calculate.

( 1x4 ){ 4x4

{4} This is just a number, so the above expression is just a

But first, we need to learn how to deal with spin.
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