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Last Time: electron-muon scattering 
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Last time we looked at low-energy scattering of an electron off a muon at 
rest (in the limit where we ignore the recoil of the muon). 

Today, start by looking at high-energy electron-muon scattering. 
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High Energy Electron-Muon Scattering 
We have derived Griffiths 7.129 for electron-muon scattering (in QED) 
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Let’s do problem 7.38 which asks us to start with the above expression and 
derive the differential cross-section for high-energy electron-muon scattering 
in the CM frame. In this limit, we can ignore the mass terms:  
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[since               and              (in this high energy limit where we can ignore the masses)]   E1 = E2  
p f = pi

Griffiths 6.47 tells us: 

2 

[see lecture 12] 
[in this case] 
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Note that this blows up for θ = 0 (which makes sense since this case is 
indistinguishable from the case of no scattering - or scattering via an a 
photon of negligible energy (momentum transfer). 

Can nevertheless calculate the total cross-section for this process 
within some angular region -- e.g. that covered by a detector if you 
are trying to compare with experimental results. 

4 
Detector cannot cover all the way to the beam-line (θ = 0,π)  



Other QED examples from Griffiths 

electron-electron scattering: 
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For M2 q =p1-p4 and p1 couples to p4, p2 to p3, so by inspection 
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p1 − p4( )2 u p4( )γ µu p1( )⎡⎣ ⎤⎦ u p3( )γ µu p2( )⎡⎣ ⎤⎦
where the sign change comes because the 
diagrams differ by the exchange of two outgoing  
electron lines (as discussed in the last lecture) 
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Here      is a polarization vector which satisfies the following properties: 

Compton Scattering: External Photons 
First need to know how to deal with external photons (see § 7.4) for details: 

Feynman rules:      incoming photon: 

                               outgoing photon:   
  ε

µ ( p)

  ε
µ*( p)   

ε(s)
µ   for  s = 1,2{ }

ε µ

  
ε µ pµ = 0          ε(1)

µ*ε(2)µ = 0  (orthogonal)         ε µ*εµ = 1   (normalized)

In the Coloumb gauge:  
   
ε 0 = 0,   


ε ⋅ p = 0   (since  ε µ pµ = 0)

If p is chosen to be along the z direction, one choice is:   ε1 = 1,0,0( )   ε2 = 0,1,0( )

Completeness relation: 
  

ε(s)( )
i

s=1,2
∑ ε(s)( )

j
= δ ij − p̂i p̂ j
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[some details follow on next slides] 



Photons in QED 

Maxwell’s equations:  

∇ ⋅

E = 4πρ
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[Gaussian units] 

In relativistic notation the fields     and     together form an antisymmetric 
second-rank tensor (Field strength tensor) while the sources     and     
form a four-vector: 
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J µ = cρ,


J( )
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Using this notation, the inhomogeneous Maxwell’s equations (e.g. those 
involving sources) can be written as: 

∂µF
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For ν = 1:   ∂µF
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Doing the same for ν = 2,3 gives the corresponding y and z components. 



From the anti-symmetric property                     it follows that: Fµν = −Fνµ

 
∂µJ
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c
∂
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∇ ⋅
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which is the continuity equation for electric charge. 
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∂µF
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c
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∂ν∂µF
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[since          is symmetric under            while        is anti-symmetric]. ∂ν∂µ µ ↔ν Fµν

∂ν∂µF
µν =

4π
c

∂νJ
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Using                  one can write                              where 

For the homogeneous Maxwell equations (i.e. no sources) we have: 
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so we can write                 as the gradient of a scalar. 
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B =

∇ ×

A Fµν = ∂µAν − ∂νAµ

 
Aµ = V ,


A( ).

In term of      the inhomogeneous Maxwell’s equations becomes: Aµ

∂µ∂
µAν − ∂ν ∂µA

µ( ) = 4πc Jν

The potential formulation automatically takes care of the homogeneous 
Maxwell equations: 

 
recall 


∇ ⋅

∇ ×

F( ) = 0 for all 


F,  so 


∇ ⋅

B = 0 is guarateed

10 



The “defect” with the potential formulation is that the potentials are not 
uniquely defined: 

               so adding a constant to the potential does not change anything.  

E = −


∇V

Here (current case)                                  works just as well in the 
expression (above) for       .  ′Aµ → Aµ + ∂µλ

x,t( )
Fµν

A change of potential that does not affect the fields is called a gauge 
transformation (this turns out to be a fundamental concept in the theoretical 
description of all interactions – this is discussed in chapter 11 of the text). 

Can exploit this freedom to define                . This additional constraint 
on       is referred to as the Lorentz condition. 

∂µA
µ = 0

Aµ

∂µ∂
µAν − ∂ν ∂µA

µ( ) = 4πc Jν →     ∂µ∂
µAν =

4π
c
Jν

11 

∂µ ′A ν − ∂ν ∂µ ′A µ( ) = ∂µA
ν − ∂ν ∂µA

µ( )e.g. 



The Lorentz condition does not uniquely specify      since we can write a 
gauge transformation that leaves                 unaffected.  

Aµ

∂µA
µ = 0

One can choose to live with this indeterminacy or impose additional 
constraints: this spoils Lorentz invariance, but is nevertheless a common 
approach. 

In empty space                we define            (known as the Coulomb gauge).   J µ = 0( ) A0 = 0

The Lorentz condition                 then becomes               . ∂µA
µ = 0  


∇ ⋅

A = 0

In QED,       represents the photon wavefunction. A free photon satisfes:  Aµ

∂µ∂
µAν = 0 Klein-Gordon Eqn. for massless particles (e.g. in the 

absence of sources). 

12 



Plane-wave solutions with four-momentum                     are of the form: 
 
p = E

c
, p⎛

⎝⎜
⎞
⎠⎟

 A
µ x( ) = ae−

i

p⋅x
ε µ p( )

Normalization factor 
(don’t care here) 

Polarization vector 
characterizing the 
photon spin-state. 

 ∂µ∂
µAν = 0  →   pµ p

µ = 0  or  E = p c  (correct for massless particle).

The polarization vector       nominally has four components, but the 
Lorentz condition: 

∂µA
µ = 0  →   pµε

µ = 0

ε µ

removes one degree of freedom. 
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The Coulomb gauge corresponds to the choice:              ε
0 = 0   ⇒    ε ⋅ p = 0

A free photon is said to be transversely polarized. There are two linearly 
independent three vectors perpendicular to    (here along    ) p̂

 

ε 1( ) = 1,0,0( )       ε 2( ) = 0,1,0( )

ẑ

instead of the four one might have expected. There is no longitudinal  
polarization state for a massless particle. 
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For solutions                                we then have  A
µ x( ) = ae−

i

p⋅x
ε µ p( )  A

0 x( ) = ae−
i

p⋅x
ε 0 p( ) = 0

so the polarization vector is perpendicular to the photon three-momentum    
p.



Polarization vectors: completeness relation 

Completeness relation: 
  

ε(s)( )
i

s=1,2
∑ ε(s)( )

j
= δ ij − p̂i p̂ j

For example, in the case where p is along z,             
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⎜
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⎠
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⎜
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Here     is the polarization vector which satisfies the following properties: 

Feynman Rules for External Photons 

Feynman rules:      incoming photon: 

                               outgoing photon:   
  ε

µ ( p)

  ε
µ*( p)   

ε(s)
µ   for  s = 1,2{ }

ε µ

  
ε µ pµ = 0          ε(1)

µ*ε(2)µ = 0  (orthogonal)         ε µ*εµ = 1   (normalized)

In the Coloumb gauge:  
   
ε 0 = 0,   


ε ⋅ p = 0   (since  ε µ pµ = 0)

If p is chosen to be along the z direction, one choice is:   ε1 = 1,0,0( )   ε2 = 0,1,0( )

The completeness relation is: 
  

ε(s)( )
i

s=1,2
∑ ε(s)( )

j
= δ ij − p̂i p̂ j .
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Compton Scattering 

1 2 

For 1 

p2, s2 

p1, s1 p3, s3 

p4, s4 p1, s1 

p2, s2 p4, s4 

p3, s3 

  

εµ
* 3( )∫ u 4( )  igγ µ  

i /q + mc( )
q2 − m2c2 igγ νu 1( )

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
εν 2( ) 2π( )4

δ 4 p1 + p2 − q( ) 2π( )4
δ 4 q − p3 − p4( ) d 4q

2π( )4

write down contribution from fermion line: 

Write down factors for two external photons 
(coupled to the correct vertex - e.g. with the 
correct µ or ν index) 

Integrate over all internal momenta 

   

M1 = −
g 2

p1 + p2( )2
− m2c2

u 4( ) /ε* 3( ) /p1 + /p2 + mc( ) /ε 2( )u 1( )⎡⎣ ⎤⎦

   

M2 = −
g 2

p1 − p3( )2
− m2c2

u 4( ) /ε 2( ) /p1 − /p3 + mc( ) /ε* 3( )u 1( )⎡⎣ ⎤⎦

By inspection M2=M1 with q=p1-p3, ε(2) couples to p4 and ε(3)* couples to p1 

and  M = M2+M1. 
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