PHY489 Lecture 17



Last Time: electron-muon scattering
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Last time we looked at low-energy scattering of an electron off a muon at
rest (in the limit where we ignore the recoil of the muon).

Today, start by looking at high-energy electron-muon scattering.



High Energy Electron-Muon Scattering

We have derived Griffiths 7.129 for electron-muon scattering (in QED)
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Let’'s do problem 7.38 which asks us to start with the above expression and
derive the differential cross-section for high-energy electron-muon scattering
in the CM frame. In this limit, we can ignore the mass terms:
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[since |p,|=|5,|and E, = E, (in this high energy limit where we can ignore the masses)]
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Note that this blows up for 6 = 0 (which makes sense since this case is
indistinguishable from the case of no scattering - or scattering via an a
photon of negligible energy (momentum transfer).

Can nevertheless calculate the total cross-section for this process
within some angular region -- e.g. that covered by a detector if you
are trying to compare with experimental results.

Detector cannot cover all the way to the beam-line (6 = 0,7)



Other QED examples from Griffiths

electron-electron scattering:
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For m, g =p,-p, and p, couples to p,, p, to p;, SO by inspection

g2 _ # _ where the sign change comes because the
Wz = 2 |:” (p4)7’ u(pl)][u (p3)7/uu(p2)] diagrams differ by the exchange of two outgoing
(pl — p4) electron lines (as discussed in the last lecture)




Compton Scattering: External Photons

First need to know how to deal with external photons (see § 7.4) for detalils:

Feynman rules:  incoming photon: €“(p)

{8(‘;) for s = 1,2}

outgoing photon: €' (p)
Here &"is a polarization vector which satisfies the following properties:
e'p, =0 e =0 (orthogonal) ee, =1 (normalized)

(D~ (2)u

In the Coloumb gauge: &"=0, € p=0 (since &"p, =0)

If p is chosen to be along the z direction, one choice is: & =(1.0.0) & =(0,1,0)

Completeness relation: 2(%),.(%) =0, = PP, [some details follow on next slides]

s=1,2 J



Photons in QED

Maxwell’s equations: V-E=4mp V.B=0
[Gaussian units]
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In relativistic notation the fields E and B together form an antisymmetric
second-rank tensor (Field strength tensor) while the sources p and J
form a four-vector:
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Using this notation, the inhomogeneous Maxwell’s equations (e.g. those
involving sources) can be written as:
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Doing the same for v = 2,3 gives the corresponding y and z components.
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From the anti-symmetric property F*" = —F™ it follows that: 9,9, F* = 0

[since 9,9, is symmetric under u <> v while F*" is anti-symmetric].
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which is the continuity equation for electric charge.



For the homogeneous Maxwell equations (i.e. no sources) we have:
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so we can write E + l%—A as the gradient of a scalar.
c ot

Using B=Vx A one can write F*' =09"A"-9"A" where A" =(V,A).

In term of A* the inhomogeneous Maxwell’'s equations becomes:

2,04" =" (9,4") = 221"

The potential formulation automatically takes care of the homogeneous
Maxwell equations:

recall ?(?xﬁ) = (0 for all 17“, soV-B=0is guarateed
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The “defect” with the potential formulation is that the potentials are not
uniquely defined:

E = -VV so adding a constant to the potential does not change anything.

Here (current case) A, — A, +9,A(X,r) works just as well in the
expression (above) for F*".

eg. 9,A"-0"(,A%)=0,4"-0"(0,4")
A change of potential that does not affect the fields is called a gauge

transformation (this turns out to be a fundamental concept in the theoretical
description of all interactions — this is discussed in chapter 11 of the text).

Can exploit this freedom to define aHA“ = (. This additional constraint
on A* is referred to as the Lorentz condition.
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The Lorentz condition does not uniquely specify A" since we can write a
gauge transformation that leaves d,A" =0 unaffected.

One can choose to live with this indeterminacy or impose additional

constraints: this spoils Lorentz invariance, but is nevertheless a common
approach.

In empty space (J“ = O) we define A’ =0 (known as the Coulomb gauge).

[ —

The Lorentz condition 8MA“ =0 then becomes V-A=0.

In QED, A" represents the photon wavefunction. A free photon satisfes:

d,0"A" =0  Klein-Gordon Eqn. for massless particles (e.g. in the
absence of sources).
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E
Plane-wave solutions with four-momentum p = (—,ﬁ) are of the form:

C

A* (x) —qge " gt (p)

l

Normalization factor Polarization vector
(don'’t care here) characterizing the
photon spin-state.

0,0"'A"=0 — p p"=0 or E=|p|c (correct for massless particle).
u u P

The polarization vector £ nominally has four components, but the
Lorentz condition:

,A“=0 — p,e"=0

removes one degree of freedom.
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The Coulomb gauge corresponds to the choice: € =0 = £&-p=0

so the polarization vector is perpendicular to the photon three-momentum p.

i i
_7p.-x

For solutions A*(x)=ae " ¢(p) we then have A’(x)=ae " &°(p)=0

A free photon is said to be transversely polarized. There are two linearly
independent three vectors perpendicular to p (here along z)

gV =(1,0,0) &% =(0,1,0)

instead of the four one might have expected. There is no longitudinal
polarization state for a massless particle.
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Polarization vectors: completeness relation

Completeness relation: Y. (s, ) (e.) =8,- 55,

s=1,2 J

For example, in the case where pis along z, p = ‘13 z

0O 0 O 1 0 O 0O 0 O 1 0 0
0 0 1 0 0 1 0 0 1 0 0 0
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Feynman Rules for External Photons

Feynman rules:  incoming photon: €“(p)

{S(‘i) for s = 1,2}

outgoing photon: €' (p)
Here £" is the polarization vector which satisfies the following properties:

e'p,=0 e(ﬁ;ke(z)u =0 (orthogonal) 8“*£u =1 (normalized)

In the Coloumb gauge: &"=0, € - p=0 (since &'p, =0)

If p is chosen to be along the z direction, one choice is: ¢ =(1,0,0) &, =(0,1,0)

The completeness relation is: Y, (e, (e, ) =8,- 5,5,
s=1,2 ! J
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Compton Scattering

e v For @
Pr S D3 S3
q
— + write down contribution from fermion line:
P» S PS4 Write down factors for two external photons

(coupled to the correct vertex - e.g. with the
correct u or v index)

Integrate over all internal momenta
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