
PHY489 Lecture 18 



Electrodynamics of Quarks and Hadrons 

  

1
q2     vs.     

1
q2 − M 2c2

Again, at low energies, the weak  interaction 
contribution is negligible (suppressed by the 
high mass of the weak gauge bosons) e.g. 

dependence of  the propagator. 

Here we won’t discuss contribution from the weak interaction (yet). Note that QED 
describes the interaction of the photon with charged spin-1/2 fermions. We just discussed 
electron-muon scattering. Can also discuss the process e+e-µ+µ- (which we will do here). 
Note however, that this process (when mediated by photon exchange) has the same 
structure regardless of what fermion anti-fermion pair is in the final state (excluding 
electrons, since in that case there are additional diagrams) 

e 

e 

µ 

µ 
γ 

g g 

e 

e 

f 

f 
γ 

Qg g 

Here Q is the electric charge of 
the fermion f ( ≠ 1 for quarks!) 

additional factor of Q2 in |M|2 
 

Here f = u,d,s,c,b,t, µ,τ (also e, but for that there are other diagrams). No coupling to neutrinos. 
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N.B. Arrows need fixing on some diagrams 

1 



Quark Confinement 
Quarks (which are coloured) cannot exist freely. They therefore “hadronize” 
to produce “jets” of particles in the final state. This is a complication, but we 
can still calculate the amplitude for e+e-   hadrons if we assume that the hard 
(e.g. high q2) scattering process decouples from the hadronization process 
which takes place at a very different energy scale, in which case: 

  
σ e+e− → hadrons( ) = σ e+e− → qq( )

q=u,d ,s,c,b,t
∑

Note that in the above expression the sum is over all quark flavours that 
are kinematically accessible at the specified centre-of-mass energy:      
σ = σ(E) (of course). Recall that, in CM frame: 

    

dσ
dΩ

=
c
8π

⎛
⎝⎜

⎞
⎠⎟

2 S M
2

E1 + E2( )2

p f
pi

For m1 = m2 this is proportional to E-2. 
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Two jet final state in e+e- collisions  

3 



   
∫ v 2( )  igγ µ  u 1( ) 2π( )4

δ 4 p1 + p2 − q( )⎡
⎣⎢

⎤
⎦⎥
−igµν

q2 u 3( )  igγ ν  v 4( ) 2π( )4
δ 4 q − p3 − p4( )⎡

⎣⎢
⎤
⎦⎥

d 4q

2π( )4

Amplitude M  for the process e+e-µ+µ- 

e 

e 

µ 

µ 
γ 

p1, s1 

p2, s2 p3, s3 

p4, s4 q 
Here we need antiparticle spinors for the first time. 

  
                                     

  
                                     

electron line muon line 

    
M = −

g 2

p1 + p2( )2 v 2( )γ µu 1( )⎡⎣ ⎤⎦ u 3( )γ µv 4( )⎡⎣ ⎤⎦
   

M
2
=

g 2

p1 + p2( )2

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

2

v 2( )γ µu 1( )⎡⎣ ⎤⎦ u 3( )γ µv 4( )⎡⎣ ⎤⎦ v 2( )γ νu 1( )⎡⎣ ⎤⎦
*

u 3( )γ νv 4( )⎡⎣ ⎤⎦
*

  all spins
∑ u a( )Γ1u b( )⎡⎣ ⎤⎦ u a( )Γ2u b( )⎡⎣ ⎤⎦

*
= Tr Γ1 /pb + mbc( )Γ2 /pa + mac( )( )Recall that we had                                                                                                  with   Γ2 ≡ γ 0Γ2

✝γ 0

and that the sign of the mass term changes in the case of anti-particle spinors. 

    all spins
∑ u 3( )γ µv 4( )⎡⎣ ⎤⎦ u 3( )γ νu 4( )⎡⎣ ⎤⎦

*
= Tr γ µ /p4 − Mc( )γ 0γ v

✝γ 0 /p3 + Mc( )( ) = Tr γ µ /p4 − Mc( )γ v /p3 + Mc( )( )

   all spins
∑ v 2( )γ µu 1( )⎡⎣ ⎤⎦ v 2( )γ νu 1( )⎡⎣ ⎤⎦

*
= Tr γ µ /p1 + mc( )γ ν /p2 − mc( )( ) where  m=me, M=mµ 

Should be anti-particle spinor 
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Remember, we average over incoming spins and sum over outgoing spins: 

   

M
2

=
1
4

g 4

p1 + p2( )4 Tr γ µ /p1 + mc( )γ ν /p2 − mc( )( )Tr γ µ /p4 − Mc( )γ ν /p3 + Mc( )( )
  
                                     

Look at 
trace part:   

= Tr γ µ /p1γ
ν /p2( ) − mc( )2

Tr γ µγ ν( )⎡
⎣⎢

⎤
⎦⎥

Tr γ µ /p4γ ν /p3( ) − Mc( )2
Tr γ µγ ν( )⎡

⎣⎢
⎤
⎦⎥

since terms with three γ matrices have Trace = 0 [Rule 10] and Tr(γµγν)=4gµν 

  
= p1λ p2σTr γ µγ λγ νγ σ( ) − 4 mc( )2

gµν⎡
⎣⎢

⎤
⎦⎥

p4λ p3σTr γ µγ λγ νγ σ( ) − 4 Mc( )2
gµν

⎡
⎣⎢

⎤
⎦⎥

  
                                     

  
                                     

rule 13 rule 13 

  
= 4 p1λ p2σ gµλgνσ − gµνgλσ + gµσ gλν( ) − 4 mc( )2

gµν⎡
⎣⎢

⎤
⎦⎥

4 p4λ p3σ gµλgνσ − gµνgλσ + gµσ gλν( ) − 4 Mc( )2
gµν

⎡
⎣⎢

⎤
⎦⎥

  
= 16 p1

µ p2
ν − p1 ⋅ p2( )gµν + p2

µ p1
ν − mc( )2

gµν⎡
⎣⎢

⎤
⎦⎥

p4µ p3ν − p4 ⋅ p3( )gµν + p3µ p4ν − Mc( )2
gµν

⎡
⎣⎢

⎤
⎦⎥

p1 = p1λγ
λ      p2 = p1σγ

σ  p4 = p4λγ
λ      p3 = p3σγ

σ  
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16 p1

µ p2
ν − p1 ⋅ p2( )gµν + p2

µ p1
ν − mc( )2

gµν⎡
⎣⎢

⎤
⎦⎥

p4µ p3ν − p4 ⋅ p3( )gµν + p3µ p4ν − Mc( )2
gµν

⎡
⎣⎢

⎤
⎦⎥

  

= 16     p1 ⋅ p4( ) p2 ⋅ p3( ) − p1 ⋅ p2( ) p4 ⋅ p3( ) + p1 ⋅ p3( ) p2 ⋅ p4( ) − p1 ⋅ p2( ) Mc( )2⎡
⎣⎢

          − p1 ⋅ p2( ) p3 ⋅ p4( ) + 4 p1 ⋅ p2( ) p4 ⋅ p3( ) − p1 ⋅ p2( ) p3 ⋅ p4( ) + 4 p1 ⋅ p2( ) Mc( )2

           + p2 ⋅ p4( ) p1 ⋅ p3( ) − p1 ⋅ p2( ) p4 ⋅ p3( ) + p2 ⋅ p3( ) p1 ⋅ p4( ) − p1 ⋅ p2( ) Mc( )2

          − mc( )2
p4 ⋅ p3( ) + 4 mc( )2

p4 ⋅ p3( ) − mc( )2
p3 ⋅ p4( ) + 4 mc( )2

Mc( )2
   ⎤
⎦⎥

  
= 16 2 p1 ⋅ p3( ) p2 ⋅ p4( ) + 2 p1 ⋅ p4( ) p2 ⋅ p3( ) + 2 Mc( )2

p1 ⋅ p2( ) + 2 mc( )2
p3 ⋅ p4( ) + 4 mc( )2

Mc( )2⎡
⎣⎢

⎤
⎦⎥

  
= 32 p1 ⋅ p3( ) p2 ⋅ p4( ) + p1 ⋅ p4( ) p2 ⋅ p3( ) + Mc( )2

p1 ⋅ p2( ) + mc( )2
p3 ⋅ p4( ) + 2 mc( )2

Mc( )2⎡
⎣⎢

⎤
⎦⎥

   

M
2

=
32
4

g 4

p1 + p2( )4 p1 ⋅ p3( ) p2 ⋅ p4( ) + p1 ⋅ p4( ) p2 ⋅ p3( ) + Mc( )2
p1 ⋅ p2( ) + mc( )2

p3 ⋅ p4( ) + 2 mc( )2
Mc( )2⎡

⎣⎢
⎤
⎦⎥

   

M
2

= 8
g 2

p1 + p2( )2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

2

p1 ⋅ p3( ) p2 ⋅ p4( ) + p1 ⋅ p4( ) p2 ⋅ p3( ) + Mc( )2
p1 ⋅ p2( ) + mc( )2

p3 ⋅ p4( ) + 2 mc( )2
Mc( )2⎡

⎣⎢
⎤
⎦⎥

Compare eqn. 7.129 for e-µ-  e-µ- with q2=(p1+p2)2 and p2  swapped with p3.  
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M
2

= 8
g 2

p1 + p2( )2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

2

p1 ⋅ p3( ) p2 ⋅ p4( ) + p1 ⋅ p4( ) p2 ⋅ p3( ) + Mc( )2
p1 ⋅ p2( ) + mc( )2

p3 ⋅ p4( ) + 2 mc( )2
Mc( )2⎡

⎣⎢
⎤
⎦⎥

Look at e+e-µ+µ- in the CM Frame 

   

Note that p ≠

k ;  this is not elastic

scattering. However, Ee = Eµ ≡ E.

   
p1 ⋅ p2( ) = E

c
, p

⎛
⎝⎜

⎞
⎠⎟
⋅

E
c

,− p
⎛
⎝⎜

⎞
⎠⎟
=

E2

c2 + p2     with p2 ≡ p
2⎡

⎣⎢
⎤
⎦⎥

   
p3 ⋅ p4( ) = E

c
,

k

⎛
⎝⎜

⎞
⎠⎟
⋅

E
c

,−

k

⎛
⎝⎜

⎞
⎠⎟
=

E2

c2 + k 2     with k2 ≡

k

2⎡
⎣⎢

⎤
⎦⎥

   
p1 ⋅ p4( ) = E

c
, p

⎛
⎝⎜

⎞
⎠⎟
⋅

E
c

,−

k

⎛
⎝⎜

⎞
⎠⎟
=

E2

c2 + p ⋅

k =

E2

c2 + pk cosθ
   

p2 ⋅ p3( ) = E
c

,− p
⎛
⎝⎜

⎞
⎠⎟
⋅

E
c

,

k

⎛
⎝⎜

⎞
⎠⎟
=

E2

c2 + p ⋅

k =

E2

c2 + pk cosθ

   
p1 + p2( )2

=
E
c

, p
⎛
⎝⎜

⎞
⎠⎟
+

E
c

,− p
⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥

2

=
2E
c

⎛
⎝⎜

⎞
⎠⎟

2

=
4E2

c2

   
p1 ⋅ p3( ) = E

c
, p

⎛
⎝⎜

⎞
⎠⎟
⋅

E
c

,

k

⎛
⎝⎜

⎞
⎠⎟
=

E2

c2 − pk cosθ
   

p2 ⋅ p4( ) = E
c

,− p
⎛
⎝⎜

⎞
⎠⎟
⋅

E
c

,−

k

⎛
⎝⎜

⎞
⎠⎟
=

E2

c2 − pk cosθ
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M
2

= 8
g 2

p1 + p2( )2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

2

p1 ⋅ p3( ) p2 ⋅ p4( ) + p1 ⋅ p4( ) p2 ⋅ p3( ) + Mc( )2
p1 ⋅ p2( ) + mc( )2

p3 ⋅ p4( ) + 2 mc( )2
Mc( )2⎡

⎣⎢
⎤
⎦⎥

  

= 8
g 4c4

16E4

E2

c2 − pk cosθ
⎛

⎝⎜
⎞

⎠⎟

2

+
E2

c2 + pk cosθ
⎛

⎝⎜
⎞

⎠⎟

2

+ mc( )2 E2

c2 + k 2⎛

⎝⎜
⎞

⎠⎟
+ Mc( )2 E2

c2 + p2⎛

⎝⎜
⎞

⎠⎟
+ 2 mc( )2

Mc( )2
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

  

=
1
2

g 4

E / c( )4

2E4

c4 + 2 p2k 2 cos2θ + mc( )2 E2

c2 + mc( )2
k 2 + Mc( )2 E2

c2 + Mc( )2
p2 + 2 mc( )2

Mc( )2⎡

⎣
⎢

⎤

⎦
⎥

  

=
1
2

g 4

E / c( )4

2E4

c4 + 2
E2

c2 − m2c2⎛

⎝⎜
⎞

⎠⎟
E2

c2 − M 2c2⎛

⎝⎜
⎞

⎠⎟
cos2θ + mc( )2 E2

c2 + mc( )2 E2

c2 − M 2c2⎛

⎝⎜
⎞

⎠⎟
⎡

⎣
⎢
⎢

                       + Mc( )2 E2

c2 + Mc( )2 E2

c2 − m2c2⎛

⎝⎜
⎞

⎠⎟
+ 2 mc( )2

Mc( )2 ⎤

⎦
⎥
⎥

  

=
1
2

g 4

E / c( )4

2E4

c4 + 2
E4

c4 −
E2

c2 m2c2 −
E2

c2 M 2c2 + mc( )2
Mc( )2⎛

⎝⎜
⎞

⎠⎟
cos2θ

⎡

⎣
⎢
⎢

                       + mc( )2 E2

c2 + mc( )2 E2

c2 − mc( )2
Mc( )2

+ Mc( )2 E2

c2

                       + Mc( )2 E2

c2 − mc( )2
Mc( )2

+ 2 mc( )2
Mc( )2 ⎤

⎦
⎥
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M
2

= g 4 1+ cos2θ −
mc( )2

cos2θ

E / c( )2 −
Mc( )2

cos2θ

E / c( )2 +
mc( )2

Mc( )2

E / c( )4 +
mc( )2

E / c( )2 +
Mc( )2

E / c( )2

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

  

= g 4 1+
mc2( )2

E2 +
Mc2( )2

E2 + 1−
mc2( )2

E2 −
Mc2( )2

E2 +
mc2( )2

Mc2( )2

E4

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
cos2θ

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

  

= g 4 1+
mc2( )2

E2 +
Mc2( )2

E2 + 1−
mc2

E
⎛

⎝⎜
⎞

⎠⎟

2⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1−
Mc2

E
⎛

⎝⎜
⎞

⎠⎟

2⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
cos2θ

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
[Griffiths 8.4] 

    

dσ
dΩ

=
c
8π

⎛
⎝⎜

⎞
⎠⎟

2 M
2

2E( )2

p f
pi

   

p f
pi

=
1− Mc2 / E( )2

1− mc2 / E( )2
Using                                           [Griffiths 6.42] and                                      [basic kinematics]  

yields the differential cross-section. For the total cross-section, need to integrate over θ, φ.  

  

= 2πg 4∫ 1+
mc2( )2

E2 +
Mc2( )2

E2 + 1−
mc2

E
⎛

⎝⎜
⎞

⎠⎟

2⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1−
Mc2

E
⎛

⎝⎜
⎞

⎠⎟

2⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
cos2θ

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
sinθdθ

  
M

2Integrate         (from above) since that contains all the angular dependence: 

try it 
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= 2πg 4 1+
mc2( )2

E2 +
Mc2( )2

E2

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟ ∫ sinθdθ + 1−

mc2

E
⎛

⎝⎜
⎞

⎠⎟

2⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1−
Mc2

E
⎛

⎝⎜
⎞

⎠⎟

2⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥ ∫ cos2θ sinθdθ

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

  
                                     

 
= −

cos3θ
3

0

π

=
2
3

  

= 2πg 4 2 1+
mc2( )2

E2 +
Mc2( )2

E2

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
+

2
3

1−
mc2

E
⎛

⎝⎜
⎞

⎠⎟

2⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1−
Mc2

E
⎛

⎝⎜
⎞

⎠⎟

2⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

  

= 4πg 4 1+
mc2( )2

E2 +
Mc2( )2

E2

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
+

1
3

1−
mc2

E
⎛

⎝⎜
⎞

⎠⎟

2⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1−
Mc2

E
⎛

⎝⎜
⎞

⎠⎟

2⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

   

σ =
c
8π

⎛
⎝⎜

⎞
⎠⎟

2
1

4E2 4πg 4 1+
mc2( )2

E2 +
Mc2( )2

E2

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
+

1
3

1−
mc2

E
⎛

⎝⎜
⎞

⎠⎟

2⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1−
Mc2

E
⎛

⎝⎜
⎞

⎠⎟

2⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

p f
pi

   

=
c
8π

⎛
⎝⎜

⎞
⎠⎟

2
π

3E2 g 4 3+ 3
mc2( )2

E2 + 3
Mc2( )2

E2

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
+ 1−

mc2

E
⎛

⎝⎜
⎞

⎠⎟

2⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1−
Mc2

E
⎛

⎝⎜
⎞

⎠⎟

2⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

1− Mc2 / E( )2

1− mc2 / E( )2
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=
c
8π

⎛
⎝⎜

⎞
⎠⎟

2
π

3E2 g 4 3+ 3
mc2( )2

E2 + 3
Mc2( )2

E2

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
+ 1−

mc2

E
⎛

⎝⎜
⎞

⎠⎟

2⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1−
Mc2

E
⎛

⎝⎜
⎞

⎠⎟

2⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

1− Mc2 / E( )2

1− mc2 / E( )2

   

=
c
8π

⎛
⎝⎜

⎞
⎠⎟

2
π

3E2 g 4 3+ 3
mc2( )2

E2 + 3
Mc2( )2

E2

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
+1−

mc2

E
⎛

⎝⎜
⎞

⎠⎟

2

−
Mc2

E
⎛

⎝⎜
⎞

⎠⎟

2

+
mc2

E
⎛

⎝⎜
⎞

⎠⎟

2
Mc2

E
⎛

⎝⎜
⎞

⎠⎟

2⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

1− Mc2 / E( )2

1− mc2 / E( )2

   

=
c
8π

⎛
⎝⎜

⎞
⎠⎟

2
π

3E2 g 4 4 + 2
mc2

E
⎛

⎝⎜
⎞

⎠⎟

2

+ 2
Mc2

E
⎛

⎝⎜
⎞

⎠⎟

2

+
mc2

E
⎛

⎝⎜
⎞

⎠⎟

2
Mc2

E
⎛

⎝⎜
⎞

⎠⎟

2⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

1− Mc2 / E( )2

1− mc2 / E( )2

   

=
c
8π

⎛
⎝⎜

⎞
⎠⎟

2
4π
3E2 g 4 1+

1
2

mc2

E
⎛

⎝⎜
⎞

⎠⎟

2

+
1
2

Mc2

E
⎛

⎝⎜
⎞

⎠⎟

2

+
1
4

mc2

E
⎛

⎝⎜
⎞

⎠⎟

2
Mc2

E
⎛

⎝⎜
⎞

⎠⎟

2⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

1− Mc2 / E( )2

1− mc2 / E( )2

   

=
c
8π

⎛
⎝⎜

⎞
⎠⎟

2
4π
3E2 g 4 1+

1
2

mc2

E
⎛

⎝⎜
⎞

⎠⎟

2⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

1+
1
2

Mc2

E
⎛

⎝⎜
⎞

⎠⎟

2⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

1− Mc2 / E( )2

1− mc2 / E( )2
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σ =
c
8π

⎛
⎝⎜

⎞
⎠⎟

2
4π
3E2 g 4 1+

1
2

mc2

E
⎛

⎝⎜
⎞

⎠⎟

2⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

1+
1
2

Mc2

E
⎛

⎝⎜
⎞

⎠⎟

2⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

1− Mc2 / E( )2

1− mc2 / E( )2
Using g2=4πα this becomes 

   

σ =
c
8π

⎛
⎝⎜

⎞
⎠⎟

2
4π
3E2 4πα( )2

1+
1
2

mc2

E
⎛

⎝⎜
⎞

⎠⎟

2⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

1+
1
2

Mc2

E
⎛

⎝⎜
⎞

⎠⎟

2⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

1− Mc2 / E( )2

1− mc2 / E( )2

   

=
1

64π 2

2c2 4π
3E2 4πα( )2

1+
1
2

mc2

E
⎛

⎝⎜
⎞

⎠⎟

2⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

1+
1
2

Mc2

E
⎛

⎝⎜
⎞

⎠⎟

2⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

1− Mc2 / E( )2

1− mc2 / E( )2

   

=
cα

E
⎛
⎝⎜

⎞
⎠⎟

2
π
3

1+
1
2

mc2

E
⎛

⎝⎜
⎞

⎠⎟

2⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

1+
1
2

Mc2

E
⎛

⎝⎜
⎞

⎠⎟

2⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

1− Mc2 / E( )2

1− mc2 / E( )2

Note that for differently charged particles in the final state, instead of g4 (or α2), we have 
Q2g4 where Q is the charge of the particle (e.g. instead of a factor of g from each vertex, 
get a factor of g from the electron vertex and a factor of Qg from the final-state vertex: this 
is squared in the cross-section). 

[like Griffiths 8.5] 

⎫
⎬
⎭

Note that this factor represents 
an energy threshold at E=Mc2. 
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σ e+e− → ff( ) = cQfα
E

⎛

⎝
⎜

⎞

⎠
⎟

2
π
3

1+
1
2

mc2

E
⎛

⎝⎜
⎞

⎠⎟

2⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

1+
1
2

Mc2

E
⎛

⎝⎜
⎞

⎠⎟

2⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

1− Mc2 / E( )2

1− mc2 / E( )2

Consider the high energy limit, E >> Mc2. In that case we obtain 
   
σ e+e− → ff( ) = π

3
cQfα

E

⎛

⎝
⎜

⎞

⎠
⎟

2

.

[as before  f = u,d,s,c,b,t, µ, τ ] 

Now consider the ratio of the cross-section for the production of hadrons in e+e- collisions 
relative to the cross-section for producing a muon pair: 

  
R(E) =

σ e+e− → hadrons( )
σ e+e− → µ+µ−( )

This is a function of energy because the quarks that are kinematically 
accessible (for the process in the numerator) depends on the energy. 
As the energy rises we pass various thresholds for the production of 
new quark-antiquark pairs in the final state. 

  
R(E) = 3 Qf

2

f =u,d ,s,c,b,t
∑ Here we need to sum over all kinematically accessible quark-

antiquark final states. Where does factor of three come from? 
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R = 3 Qf
2

f =u,d ,s
∑ = 3

2
3

⎛
⎝⎜

⎞
⎠⎟

2

+ −
1
3

⎛
⎝⎜

⎞
⎠⎟

2

+ −
1
3

⎛
⎝⎜

⎞
⎠⎟

2⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
= 2

Consider CM energies around 2 GeV where only u,d,s can contribute: 

  

R = 3 Qf
2

f =u,d ,s,c
∑ = 3

2
3

⎛
⎝⎜

⎞
⎠⎟

2

+ −
1
3

⎛
⎝⎜

⎞
⎠⎟

2

+ −
1
3

⎛
⎝⎜

⎞
⎠⎟

2

+
2
3

⎛
⎝⎜

⎞
⎠⎟

2⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
=

10
3

  

R = 3 Qf
2

f =u,d ,s,c
∑ = 3

2
3

⎛
⎝⎜

⎞
⎠⎟

2

+ −
1
3

⎛
⎝⎜

⎞
⎠⎟

2

+ −
1
3

⎛
⎝⎜

⎞
⎠⎟

2

+
2
3

⎛
⎝⎜

⎞
⎠⎟

2

+ −
1
3

⎛
⎝⎜

⎞
⎠⎟

2⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
=

11
3

At CM energies around 10 GeV we are above the threshold for b quark production: 

14 

At CM energies around 4 GeV we are above the threshold for charm quark            production: e.g cc( )
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−i

gµν − qµqν / MZ
2c2( )

q2 − MZ
2c2Z0 propagator is  

For E >> mc2 the denominator (for the Z contribution) begins to look like E2-(MZ )2c2 which 
blows up at E = (MZ )c2. We will see that this “pole” does not cause problems since MZ  has 
a width associated with it. We will see how this is handled. The photon propagator goes like 
~ q-2 so becomes small at very high energies. However, at very very high energies (that is, 
for  q2 >> (MZ )2 ) the contributions from the photon and the Z become similar. 
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Angular Distributions in  e+e− → f f

   

M
2

= g 4 1+
mc2( )2

E2 +
Mc2( )2

E2 + 1−
mc2

E
⎛

⎝⎜
⎞

⎠⎟

2⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1−
Mc2

E
⎛

⎝⎜
⎞

⎠⎟

2⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
cos2θ

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

    

dσ
dΩ

e+e− → f f( ) = c
8π

⎛
⎝⎜

⎞
⎠⎟

2 M
2

2E( )2

p f
pi

   

p f
pi

=
1− Mc2 / E( )2

1− mc2 / E( )2

A few slides back, we had: 

 with                               and 

 
                                                

=1+cos2 θ   in the high-energy limit
  

So the angular distribution of the final state (spin-1/2) fermions should be 
of the form 1+cos2θ at energies well above the relevant fermion mass. 

Measurements of these angular distributions test the predictions of QED. 
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Angular Distributions in  e+e− → f f
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Caveat 
There’s an important caveat here. Experimentally one cannot just 
measure the part of the interaction that is due to QED. As energies 
increase, the weak interaction also contributes: 

This introduces a so-called forward-backward 
asymmetry in the angular distribution. 

Dotted line is pure QED (symmetric). 
Solid line is electroweak theory, for which the 
predicted angular distribution is asymmetric. We 
will see the reason for this when we discuss the 
weak interaction. 
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