
Phy489 Lecture 19 
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Charged Weak Interactions 
Fundamental charged weak interaction leptonic vertex: 
Here, a lepton emits (absorbs) a W- (W+) and transforms into neutrino 
of the same lepton species.  
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Here, a neutrino absorbs (emits) a W- (W+) and transforms into lepton 
of the same lepton species.  

Here, a lepton and a lepton anti-neutrino annihilate to produce a W-. 

Here, a W- decays into lepton and a lepton anti-neutrino. 
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As discussed earlier, these vertices represent the same fundamental interaction (vertex).  

  
−

igw

2 2
γ µ 1− γ 5( )Weak interaction (GWS): 

  4παw

convention 

Recall that γµ gives a  vector coupling. γµγ5 gives an axial vector coupling. 

See Griffiths 7.68:               is a vector,                is an axial vector. ψγ µψ  ψγ
µγ 5ψ

Parity is thus MAXIMALLY violated: i.e. the two couplings are of equal strength, rather than 
there being (for example) just a small contribution from the parity violating part, e.g.                  .                      

γ µ 1− εγ 5( )
This is sometimes referred to as V-A coupling. Since only the charged weak interaction is 
responsible for weak decays of hadrons, this is the relevant interaction. (We will see that the 
coupling to the Z0 is different). 

In QED:  igeγ
µWhat about the vertex factor? 

The charged weak interaction propagator is:  
  
−

i
q2 − MW

2 c2 gµν −
qµqν

MW
2 c2

⎛

⎝
⎜

⎞

⎠
⎟ =

igµν

MW
2 c2   for  q2 << MW

2 c2

This is known as the reduced propagator 
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Charged Weak Interactions (Quarks) 
Fundamental charged weak interaction vertex for quarks: 

Here, a (up or down-type) quark (flavour q) emits (absorbs) a W- (W+) 
and transforms into down or up-type quark, q’ (not necessarily of the 
same generation – quark mixing Is allowed – probabilities determined 
by the CKM matrix elements): 

q ′q

W 
Vq ′q

tb

W 

cb

W 

ub

W 

Vq ′q = Vtb Vq ′q = VubVq ′q = Vcb

Same discussion of time orderings (as for leptonic vertices) applies. 

  
−

igw

2 2
Vtbγ

µ 1− γ 5( )
  
−

igw

2 2
Vcbγ

µ 1− γ 5( )
  
−

igw

2 2
Vubγ

µ 1− γ 5( )vertex factor: 
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Inverse Muon Decay 
Look at so-called “inverse muon decay process”:  

e−νµ → µ−νe

[instead of                       for which we we would need three body kinematics]  
µ− → e−νµνe

Assume that                   so that we can use the so-called “reduced propagator”:   q
2 << MW

2 c2

 e

νµ

 νe

µ

 W

p1, s1 

p2, s2 

p3, s3 

p4, s4 

q 

[don’t need to specify W+ or W- until we pick the 
direction of q. The result is independent of the choice]  

   
−iM = u 3( ) −

ig
2 2

⎛
⎝⎜

⎞
⎠⎟
γ µ 1− γ 5( )u 1( )⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

igµν

MW
2 c2

⎛

⎝
⎜

⎞

⎠
⎟ u 4( ) −

ig
2 2

⎛
⎝⎜

⎞
⎠⎟
γ ν 1− γ 5( )u 2( )⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

  
                           

  
                           

electron line muon line 

   
M =

g 2

8MW
2 c2 u 3( )γ µ 1− γ 5( )u 1( )⎡

⎣
⎤
⎦ u 4( )γ µ 1− γ 5( )u 2( )⎡
⎣

⎤
⎦

Procedure for summing over initial and final state spins is the same as before: 

  

For the time being
set g = gw
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  all spins
∑ u a( )Γ1u b( )⎡⎣ ⎤⎦ u a( )Γ2u b( )⎡⎣ ⎤⎦

*
= Tr Γ1 /pb + mbc( )Γ2 /pa + mac( )( )Recall that we had                                                                                                  with   Γ2 ≡ γ 0Γ2

✝γ 0

So (using mν=0) we get  

   
M

2

spins
∑ =

g 2

8MW
2 c2

⎛

⎝
⎜

⎞

⎠
⎟

2

Tr γ µ 1− γ 5( ) /p1 + mec( )γ ν 1− γ 5( ) /p3( )⎡
⎣

⎤
⎦Tr γ µ 1− γ 5( ) /p2( )γ ν 1− γ 5( ) /p4 + mµc( )⎡

⎣
⎤
⎦

Evaluating these traces is about 1 page of algebra each, requiring traces rules 13 and 16 as 
well as knowledge of the commutation properties of γ5: 

  
γ 5,γ µ{ } = 0         i.e.  γ 5γ µ = −γ µγ 5         for all µ = 0,1,2,3        γ 5( )2

= 1  e.g. I4x4( )

  

Tr γ µ 1− γ 5( ) /p1 + mec( )γ ν 1− γ 5( ) /p3( )⎡
⎣

⎤
⎦ = 8 p1

µ p3
ν + p1

ν p3
µ − gµν p1 ⋅ p3( ) − iε µνλσ p1λ p3σ

⎡⎣ ⎤⎦

Tr γ µ 1− γ 5( ) /p2( )γ ν 1− γ 5( ) /p4 + mµc( )⎡
⎣

⎤
⎦ = 8 p2µ p4ν + p2ν p4µ − gµν p2 ⋅ p4( ) − iεµνκτ p2

κ p4
σ⎡⎣ ⎤⎦

You should attempt this calculation (it will probably appear on an assignment). 
 

ε µνλσ =
−1  if  µνλσ    is an even permutation of 0,1,2,3 

 +1  if  µνλσ    is an odd permutation of 0,1,2,3     
        0  if any of the two indices are the same                   

⎧

⎨
⎪

⎩
⎪
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It follows (after a few pages of algebra of the type that we have already seen,and which I 
recommend that you attempt if you need practice with this type of calculation) that: 

   
M

2

spins
∑ = 4

g
MW c

⎛

⎝⎜
⎞

⎠⎟

4

p1 ⋅ p2( ) p3 ⋅ p4( )

Since we average over the initial spin states we have  

   
M

2
= 2

g
MW c

⎛

⎝⎜
⎞

⎠⎟

4

p1 ⋅ p2( ) p3 ⋅ p4( )

Where, in this case, there are only two possible spin configurations in the initial state because 
the neutrino only has 1 spin (helicity) state [ or, at least, only one helicity state that couples to 
the weak interaction ]. 

Look at this process in the CM frame, neglecting the electron mass…. 
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M

2
= 2

g
MW c

⎛

⎝⎜
⎞

⎠⎟

4

p1 ⋅ p2( ) p3 ⋅ p4( )

   
p1 ⋅ p2( ) = E

c
, pe

⎛
⎝⎜

⎞
⎠⎟
⋅

E
c

,− pe

⎛
⎝⎜

⎞
⎠⎟
=

E2

c2 + pe

2
=

E2

c2 +
E2

c2 − me
2c2 = 2

E2

c2

   
p3 ⋅ p4( ) = Eµ

c
, pµ

⎛

⎝
⎜

⎞

⎠
⎟ ⋅

Eν

c
,− pµ

⎛

⎝⎜
⎞

⎠⎟
=

EµEν

c2 + pµ

2

   
= 2

E2

c2 −
pµ

2

2
−
pµ

2

2
−

mµ
2c2

2
+ pµ

2
= 2

E2

c2 −
mµ

2c2

2
= 2

E2

c2 1−
mµ

2c4

4E2

⎛

⎝
⎜

⎞

⎠
⎟

In the CM frame we have: 

  
2E = Eν + Eµ ⇒ 4E2 = Eν

2 + Eµ
2 + 2Eν Eµ ⇒ Eν Eµ =

4E2 − Eν
2 − Eµ

2

2

   
p3 ⋅ p4( ) = 4E2 − Eν

2 − Eµ
2

2c2 + pµ

2
     =     2

E2

c2 −
pµ

2

2
−
pµ

2
c2 + mµ

2c4

2c2 + pµ

2

   
M

2
= 2

g
MW c

⎛

⎝⎜
⎞

⎠⎟

4
2E2

c2

⎛

⎝⎜
⎞

⎠⎟
2E2

c2 1−
mµ

2c4

4E2

⎛

⎝
⎜

⎞

⎠
⎟

   

⇒    M
2

= 8
gE

MW c2

⎛

⎝
⎜

⎞

⎠
⎟

4

1−
mµc2

2E

⎛

⎝
⎜

⎞

⎠
⎟

2⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
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Using Griffiths 6.47 for the kinematics, we get, for the differential cross-section in the CM frame: 

    

dσ
dΩ

=
c
8π

⎛
⎝⎜

⎞
⎠⎟

2 M
2

2E( )2

pµ
pe

   

pµ
pe

= 1−
mµc2

2E

⎛

⎝
⎜

⎞

⎠
⎟

2⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

   in the limit as me → 0

    

dσ
dΩ

=
c
8π

⎛
⎝⎜

⎞
⎠⎟

2
1

4E2 1−
mµc2

2E

⎛

⎝
⎜

⎞

⎠
⎟

2⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

M
2

   

=
c
8π

⎛
⎝⎜

⎞
⎠⎟

2
1

4E2 1−
mµc2

2E

⎛

⎝
⎜

⎞

⎠
⎟

2⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
8

gE
MW c2

⎛

⎝
⎜

⎞

⎠
⎟

4

1−
mµc2

2E

⎛

⎝
⎜

⎞

⎠
⎟

2⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

   

=
c
8π

⎛
⎝⎜

⎞
⎠⎟

2
8

4E2

gE
MW c2

⎛

⎝
⎜

⎞

⎠
⎟

4

1−
mµc2

2E

⎛

⎝
⎜

⎞

⎠
⎟

2⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

2

   

= 2
cg 2 E

MW c2( )2

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

2

1
8π

⎛
⎝⎜

⎞
⎠⎟

2

1−
mµc2

2E

⎛

⎝
⎜

⎞

⎠
⎟

2⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

2

   

=
1
2

cg 2 E

4π MW c2( )2

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

2

1−
mµc2

2E

⎛

⎝
⎜

⎞

⎠
⎟

2⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

2

For the total cross-section one 
gets an additional factor of 4π. 

[Griffiths 9.13] 

   

M
2

= 8
gE

MW c2

⎛

⎝
⎜

⎞

⎠
⎟

4

1−
mµc2

2E

⎛

⎝
⎜

⎞

⎠
⎟

2⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

So we have                                                          . 

Since there is no angular dependence 
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⇒σ e−νµ → µ−νe( ) = 1
8π

g
MW c2

⎛

⎝
⎜

⎞

⎠
⎟

2

cE
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

2

1−
mµc2

2E

⎛

⎝
⎜

⎞

⎠
⎟

2⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

2

[Griffiths 9.14] 

Muon decay: amplitude is similar, but need three-body kinematics: 

µ νµ

 νe

 e

p1, s1 

p2, s2 

p3, s3 

p4, s4 

    
M =

g 2

8MW
2 c2 u 3( )γ µ 1− γ 5( )u 1( )⎡

⎣
⎤
⎦ u 4( )γ µ 1− γ 5( )v 2( )⎡
⎣

⎤
⎦

now need outgoing 
anti-particle spinor 

   
M

2
= 2

g
MW c

⎛

⎝⎜
⎞

⎠⎟

4

p1 ⋅ p2( ) p3 ⋅ p4( ) as before. 

Calculate the decay rate in the muon rest frame: 
   
pµ = mµc,


0( )

Muon decay rate calculation described in detail in §9.2 (please have a look at this). Need to go 
back to the Golden Rule for decays and do the three-body kinematics from scratch. Momenta 
of individual final-state particles and not “fixed” like in two body decays, so integrations are no 
longer trivial. 
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Γ =
mµgw

MW

⎛

⎝
⎜

⎞

⎠
⎟

4
mµc2

12 8π( )3     ⇒     τ µ =
1
Γ
=

MW

mµgw

⎛

⎝
⎜

⎞

⎠
⎟

4
12 8π( )3

mµc2

Note that gw and MW do not appear separately, only as a ratio. The original β-decay theory of 
Fermi expressed this process as a “contact” interaction with strength: 

   
GF =

2
8

gw

MW c2

⎛

⎝
⎜

⎞

⎠
⎟

2

c( )3

   
τ µ =

192π 37

GF
2 mµ

5c4

µ  e

 νe
νµ

 GF

Putting in the observed muon mass and lifetime  GF = 1.166 x 10-5 GeV-2. 

   
⇒ gw = 0.653    αw =

gw
2

4π
 1

29.5
   >>    1

137
Weakness of the weak interaction is due 
to the mass of the exchanged particles, 
not to a small coupling constant. 

Results of muon decay rate calculation: 
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Neutron decay width calculation is similar to the case of muon decay that we just discussed. 
Need the same three-body kinematics.  

Form Factors 

A big difference is that the decaying muon is a fundamental particle, while the weak decay of 
a neutron (or any other hadron) arises from the the decay of one of it’s constituent quarks. 

Please read §9.3 of the text, where this is discussed. That discussion introduces the concept 
of the “form factor” which we can use to parametrize our ignorance of the true (effective) form 
of the coupling.  

Need this also to discuss the case of pion decay, which is a simpler system with which to 
illustrate this. 

n→ pe−νe

π − → µ−νµ
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At some level this looks like      scattering, but actual decay depends upon the quark 
wavefunctions (and their overlap). 

 ud

Charged Pion Decay                          

 u

 d

µ

νµ

µ

νµ

π − → µ−νµ

p2, s2 

p3, s3 

Pπ 

For  π- decay, the incident quarks are in a hadronic bound state (see  also  Ex. 7.8 for                   
in positronium). How this decay proceeds depends on the quark wavefunctions which we don’t 
know (and could calculate only from QCD).  

 e
+e− → γγ

We parametrize this ignorance with a “form factor” F. Think about what form this can take based 
on the structure of the amplitude: it must be a four-vector since it must couple to the leptonic 
part of the amplitude. 

   

M = u 3( ) igw

2 2
γ µ 1− γ 5( )v 2( ) igµν

MW c( )2

igw

2 2
Fν

  

here q2 = mπ
2c2  so we can

use the reduced propagator

By convention we do not include this factor in F. 

⇒

                         
leptonic part  



13 

    
M =

gw
2

8 MW c( )2 u 3( )γ µ 1− γ 5( )v 2( )⎡
⎣

⎤
⎦Fµ

What quantities are available from 
which to form a four vector? 

The pion has 0 spin so the only available four-vector is the pion four-momentum pµ. Thus 
Fµ = fπ pµ  where fπ could in principle depend on the scalar quantity p2, but the pion is real 
(“on it’s mass shell”) so                , so fπ is just a constant (called the pion decay constant).   p

2 = mπ
2c2

    
M

2
=

fπ
8

gw

MW c
⎛

⎝⎜
⎞

⎠⎟

2⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

2

u 3( )γ µ 1− γ 5( )v 2( )⎡
⎣

⎤
⎦

s2,s3
∑ u 3( )γ ν 1− γ 5( )v 2( )⎡

⎣
⎤
⎦

*
pµ pν

   

=
fπ
8

gw

MW c
⎛

⎝⎜
⎞

⎠⎟

2⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

2

Tr γ µ 1− γ 5( ) /p2γ
ν 1− γ 5( ) /p3 + mc( )( ) pµ pν

   

=
fπ
8

gw

MW c
⎛

⎝⎜
⎞

⎠⎟

2⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

2

pµ pν 8 p2
µ p3

ν + p2
ν p3

µ − gµν p2 ⋅ p3( ) − iε µνκτ p2κ p3τ( ){ }

  ε
µνκτ p2κ p3τ : each term appears twice, but with opposite sign, so this term yields 0. 

   

=
fπ
8

gw

MW c
⎛

⎝⎜
⎞

⎠⎟

2⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

2

8 p ⋅ p2( ) p ⋅ p3( ) + p ⋅ p2( ) p ⋅ p3( ) − p2 p2 ⋅ p3( )⎡⎣ ⎤⎦

  
N.B.  m ≡ mµ ,  mν = 0

 [convince yourself] 
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M
2

=
1
8

fπ
gw

MW c
⎛

⎝⎜
⎞

⎠⎟

2⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

2

2 p ⋅ p2( ) p ⋅ p3( ) − p2 p2 ⋅ p3( )⎡⎣ ⎤⎦

Need to evaluate:   p ⋅ p2 ,    p ⋅ p3,    p
2  and   p2 ⋅ p3       (use p = p2 + p3)

  
p ⋅ p2( ) = p2 + p3( ) ⋅ p2 = p2

2 + p2 ⋅ p3 = p2 ⋅ p3       (since p2
2 = mν

2c2 )

  
p ⋅ p3( ) = p2 + p3( ) ⋅ p3 = p3

2 + p2 ⋅ p3 = mµ
2c2 + p2 ⋅ p3

  
p2 = p2 + p3( )2

= mπ
2c2 = p2

2 + p3
2 + 2 p2 ⋅ p3 ⇒ 2 p2 ⋅ p3 = mπ

2 − mµ
2( )c2

   

M
2

=
1
8

fπ
gw

MW c
⎛

⎝⎜
⎞

⎠⎟

2⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

2

2 p ⋅ p2( ) p ⋅ p3( ) − p2 p2 ⋅ p3( )⎡⎣ ⎤⎦

   

M
2

=
1
8

fπ
gw

MW c
⎛

⎝⎜
⎞

⎠⎟

2⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

2

2 p2 ⋅ p3( ) p2 ⋅ p3 + mµ
2c2( ) − p3

2 + 2 p2 ⋅ p3( ) p2 ⋅ p3( )⎡
⎣

⎤
⎦

   

M
2

=
1
8

fπ
gw

MW c
⎛

⎝⎜
⎞

⎠⎟

2⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

2

mπ
2 − mµ

2( )c2 mµ
2c2 +

mπ
2 − mµ

2

2
c2

⎛

⎝
⎜

⎞

⎠
⎟ − mµ

2c2 + mπ
2 − mµ

2( )c2( ) mπ
2 − mµ

2( )c2

2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥
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M
2

=
1
8

fπ
gw

MW c
⎛

⎝⎜
⎞

⎠⎟

2⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

2

mµ
2 mπ

2 − mµ
2( )c4 +

mπ
2 − mµ

2( )2
c4

2
−

mµ
2 mπ

2 − mµ
2( )2

c4

2
−

mπ
2 − mµ

2( )2
c4

2

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

   

=
1
8

fπ
gw

MW c
⎛

⎝⎜
⎞

⎠⎟

2⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

2
mµ

2 mπ
2 − mµ

2( )2
c4

2

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥    

⇒   M
2

=
gw

2MW

⎛

⎝⎜
⎞

⎠⎟

4

fπ
2mµ

2 mπ
2 − mµ

2( )

From Griffiths 6.35 (two-body decay kinematics):  
    
Γ 1→ 2 + 3( ) =

p2

8πmπ
2c

M
2

   

p2 =
c

2mπ

mπ
2 − mµ

2( )Simple relativistic kinematics (see Ex. 3.3) gives: 

   
Γ π − → µ−νµ( ) = fπ

2

πmπ
3

gw

4MW

⎛

⎝⎜
⎞

⎠⎟

4

mµ
2 mπ

2 − mµ
2( )2

   
Γ π − → e−νe( ) = fπ

2

πmπ
3

gw

4MW

⎛

⎝⎜
⎞

⎠⎟

4

me
2 mπ

2 − me
2( )2Similarly, 
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Ratio of branching ratios for the two kinematically accessible final states for charged pion 
decay: 

  

Γ π − → e−νe( )
Γ π − → µ−νµ( ) =

me
2 mπ

2 − me
2( )2

mµ
2 mπ

2 − mµ
2( )2 ≈ 1.3×10−4

Note that, if electrons were massless, instead of just very light, the decay into the electron, 
electron-antineutrino final state would be forbidden. Why is this? 

The pion has spin 0, so the electron and antineutrino must emerge with opposite 
spins (so the same helicity). 

The anti-neutrino is always (only) right-handed, so the electron must be right-handed 
as well. If the electron were massless then, like the neutrino it would exist only as a 
left-handed particle. More precisely, the factor of             in the weak interaction vertex 
factor would couple only to LH electrons (see Prob 9.15). 

 
1− γ 5( )
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Charged Weak Interactions of Quarks 
In the leptonic case, the W coupling stays within generations. 

In the quark sector, we have already seen that inter-generational couplings exist, with 
strengths determined by the elements of the CKM matrix (which are determined empirically). 

   
Γ K − → −ν( ) = fK

2

πmK
3

gw

4MW

⎛

⎝⎜
⎞

⎠⎟

4

m
2 mK

2 − m
2( )2

 π
− → −νThe weak vertex factor in                   contains a factor of        so                : this is absorbed    

Vud         Γ ∝ Vud

2

into the pion decay constant      . Can write this as           .  fπ   cosθc

   
Γ K − → −ν( )∝ Vus

2
which we can write as    sin2θc .

   

Γ K − → −ν( )
Γ π − → −ν( ) =

mπ

mK

⎛

⎝⎜
⎞

⎠⎟

3
mK

2 − m
2

mπ
2 − m

2

⎛

⎝
⎜

⎞

⎠
⎟

2
Vus

Vud

2

 

Consider the leptonic decay of hadrons (we just looked at pions). Compare the two decays      

   π
− → −ν            K

− → −νand                      . 

   

  =    
mπ

mK

⎛

⎝⎜
⎞

⎠⎟

3
mK

2 − m
2

mπ
2 − m

2

⎛

⎝
⎜

⎞

⎠
⎟

2

tan2θc

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥


