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Neutral Weak Interactions 

Fundamental neutral weak interaction vertex: 

Unification of the electromagnetic and weak interactions (Glashow, Weinberg, Salam) is 
discussed in §9.7. We will cover some of this, but only briefly…… 

Discussion (to follow) of the neutral weak interaction is based on the predictions of the GWS 
theory in a more detailed way than for the charged weak interaction [ for which we previously 
had the Fermi theory that worked well at low energies ]. 

 f

 f

  Z 0

[ Same fermion species in/out: No FCNC !! ] 

The “GIM-mechanism” suppresses FCNC due to second-order processes [ see §10.5 
and notes from Lecture 9 ]. 
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Unification of Electromagnetic and Weak Interactions 

 First observed in ν-scattering experiments at CERN:  
νµ + e− → νµ + e−

This scattering process has no charged current (CC) final state 
contributions at lowest order, and of course has no EM contribution.  

Experimentally, one sees the recoiling electron produced by a      beam 
directed onto some target.  

νµ

Need neutrino scattering for investigation of weak neutral currents (NC) 
since other neutral processes are swamped by EM contributions.  e

νµ

  Z 0

νµ

 e

Also observe              interactions with quarks with cross-sections about 1/3 the size of 
those for the corresponding charged current processes:  

νµ ,  νµ

The size of the cross-section indicates a new interaction, not some higher order effect 
(which would be suppressed by powers of the effective weak coupling). 

GWS model for electroweak unification requires the existence of a “neutral current” weak 
interaction (which had not been previously observed). [we will see this in a future lecture] 

 

νµ + N →νµ + X

νµ + N →νµ + X  

νµ + N → µ+ + X

νµ + N → µ− + X
NC  CC 



Neutral Current Interactions 

3 
The First Experimentally Observed NC Event (CERN, Gargamelle, 1972) 



Gargamelle Experiment (CERN) 

4 
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Feynman Rules for the Neutral Weak Interaction 

The only difference relative to the charged weak interaction is in the form of the vertex factors: 

Charged weak interaction vertex factor: 
  
−

igw

2 2
γ µ 1− γ 5( )

  
−

igw

2 2
γ µ 1− γ 5( )Vq ′q

⎡

⎣
⎢

⎤

⎦
⎥

Neutral weak interaction vertex factor: 
  
−

igz

2
γ µ cV

f − cA
fγ 5( )

Note that the couplings are different for charged and neutral 
leptons, and up type and down type quarks. 

The neutrino couplings are derived in §9.7.3. We will derive the 
charged lepton couplings in an upcoming  lecture (see problem 9.28).  

The couplings are a function of the weak mixing angle θw which we      
will discuss later on but which satisfies the relations below: 

  
gw =

ge

sinθw

          gz =
ge

sinθw cosθw

        MW = MZ cosθw   
θw = 28.7o      sin2θw ≈ 0.23⎡⎣ ⎤⎦

measured values 
  
                            

Note that these are predictions of the GSW theory (which were quickly verified experimentally) 

  

f cV cA

νe ,νµ ,ντ

1
2

  
1
2

e− ,µ− ,τ − −
1
2
+ 2sin2θw −

1
2

u,c,t 1
2
−

4
3

sin2θw   
1
2

d ,s,b −
1
2
+

2
3

sin2θw   
1
2
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The Z0 propagator is  
  
−

i
q2 − MZ

2c2 gµν −
qµqν

MZ
2c2

⎛

⎝
⎜

⎞

⎠
⎟

  
=   

igµν

MZ
2c2     for  q2 << MZ

2c2

Look at                        (we have already looked at the charged current process                       )  
νµe− → νµe−

 
νµe− → µ−νe

 e

νµ

  Z 0

νµ

 e

p1, s1 

p2, s2 

p3, s3 

p4, s4 

   
−iM = u 3( ) −

igz

2
⎛

⎝⎜
⎞

⎠⎟
γ µ 1

2
−

1
2
γ 5⎛

⎝⎜
⎞
⎠⎟

u 1( )⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

igµν

MZ
2c2

⎛

⎝
⎜

⎞

⎠
⎟ u 4( ) −

igz

2
⎛

⎝⎜
⎞

⎠⎟
γ ν cV

e − cA
eγ 5( )u 2( )⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

                   
  
neutrino coupling 

  
                     

electron coupling 

   

M =
gz

2

8 Mzc( )2 u 3( )γ µ 1− γ 5( )u 1( )⎡
⎣

⎤
⎦ u 4( )γ µ cV

e − cA
eγ 5( )u 2( )⎡

⎣
⎤
⎦

   
M

2
= 2

gz

4Mzc
⎛

⎝⎜
⎞

⎠⎟

4

Tr γ µ 1− γ 5( ) /p1γ
ν 1− γ 5( ) /p3

⎡
⎣

⎤
⎦Tr γ µ cV

e − cA
eγ 5( ) /p2 + mc( )γ ν cV

e − cA
eγ 5( ) /p4 + mc( )⎡

⎣
⎤
⎦

  
=

1
2

gz

Mzc
⎛

⎝⎜
⎞

⎠⎟

4

cV
e + cA

e( )2
p1 ⋅ p2( ) p3 ⋅ p4( ) + cV

e − cA
e( )2

p1 ⋅ p4( ) p2 ⋅ p3( ) − mc( )2
cV

e( )2
− cA

e( )2( ) p1 ⋅ p3( )⎡
⎣⎢

⎤
⎦⎥

includes a factor of 1/2 from the 
average over initial spin states 
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M

2
=

1
2

gz

Mzc
⎛

⎝⎜
⎞

⎠⎟

4

cV
e + cA

e( )2
p1 ⋅ p2( ) p3 ⋅ p4( ) + cV

e − cA
e( )2

p1 ⋅ p4( ) p2 ⋅ p3( ) − mc( )2
cV

e( )2
− cA

e( )2( ) p1 ⋅ p3( )⎡
⎣⎢

⎤
⎦⎥

Evaluate this in the CM frame, neglecting the electron mass. 

   

p1 =
E
c

, p
⎛
⎝⎜

⎞
⎠⎟

      p2 =
E
c

,− p
⎛
⎝⎜

⎞
⎠⎟

p3 =
E
c

,

k

⎛
⎝⎜

⎞
⎠⎟

      p4 =
E
c

,−

k

⎛
⎝⎜

⎞
⎠⎟

  
p

2
= k

2
≡ p2

  
p1 ⋅ p2( ) = p3 ⋅ p4( ) = 2

E2

c2   
p1 ⋅ p4( ) = p2 ⋅ p3( ) = E2

c2 + p2 cosθ =
E2

c2 1+ cosθ( )Need                                       and 

   

M
2

=
1
2

gz

Mzc
⎛

⎝⎜
⎞

⎠⎟

4

cV
e + cA

e( )2 2E2

c2

⎛

⎝⎜
⎞

⎠⎟

2

+ cV
e − cA

e( )2 E2

c2 1+ cosθ( )⎛

⎝⎜
⎞

⎠⎟

2⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

  
=

1
2

gz

Mzc
⎛

⎝⎜
⎞

⎠⎟

4

cV
e + cA

e( )2 4E4

c4

⎛

⎝⎜
⎞

⎠⎟
+ cV

e − cA
e( )2 E4

c4

⎛

⎝⎜
⎞

⎠⎟
1+ cosθ( )2⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥



8 

  
=

4
2

gz

4Mzc
⎛

⎝⎜
⎞

⎠⎟

4
E4

c4

⎛

⎝⎜
⎞

⎠⎟
cV

e + cA
e( )2

+ cV
e − cA

e( )2
cos4 θ / 2( )⎡

⎣⎢
⎤
⎦⎥  

1+ cosθ = 2cos θ / 2( )[ using                                   ] 

  
= 2

gz E
Mzc

2

⎛

⎝
⎜

⎞

⎠
⎟

4

cV
e + cA

e( )2
+ cV

e − cA
e( )2

cos4 θ / 2( )⎡
⎣⎢

⎤
⎦⎥ [ Griffiths 9.98 ] 

    

dσ
dΩ

=
c
8π

⎛
⎝⎜

⎞
⎠⎟

2 M
2

2E( )2

p f
pi

[ Griffiths 6.47 for 2 body scattering in CM frame ] 
this ratio is 1 for this elastic scattering process 

   

dσ
dΩ

= 2
c
π

⎛
⎝⎜

⎞
⎠⎟

2 gz

4Mzc
2

⎛

⎝
⎜

⎞

⎠
⎟

4

E2 cV
e + cA

e( )2
+ cV

e − cA
e( )2

cos4 θ / 2( )⎡
⎣⎢

⎤
⎦⎥ [ Griffiths 9.99 ] 

   
σ = ∫

dσ
dΩ

dΩ = 2
c
π

⎛
⎝⎜

⎞
⎠⎟

2 gz

4Mzc
2

⎛

⎝
⎜

⎞

⎠
⎟

4

E2 2π
0

π

∫ cV
e + cA

e( )2
+ cV

e − cA
e( )2

cos4 θ / 2( )⎡
⎣⎢

⎤
⎦⎥
sinθdθ
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σ = ∫

dσ
dΩ

dΩ = 2
c
π

⎛
⎝⎜

⎞
⎠⎟

2 gz

4Mzc
2

⎛

⎝
⎜

⎞

⎠
⎟

4

E2 2π
0

π

∫ cV
e + cA

e( )2
+ cV

e − cA
e( )2

cos4 θ / 2( )⎡
⎣⎢

⎤
⎦⎥
sinθdθ

  0

π

∫ cV
e + cA

e( )2
sinθdθ = cV

e + cA
e( )2

0

π

∫ sinθdθ = 2 cV
e + cA

e( )2

  0

π

∫ cV
e − cA

e( )2
cos4 θ / 2( )sinθdθ = cV

e − cA
e( )2

0

π

∫ cos4 θ / 2( )sinθdθ = cV
e − cA

e( )2

0

π

∫
1+ cos2θ

2
⎛

⎝⎜
⎞

⎠⎟

2

sinθdθ

  
= cV

e − cA
e( )2 1

4 0

π

∫ 1+ 2cosθ + cos2θ( )sinθdθ = cV
e − cA

e( )2 1
4 0

π

∫ 1+ cos2θ( )sinθdθ =
2
3

cV
e − cA

e( )2

   
σ = 2

c
π

⎛
⎝⎜

⎞
⎠⎟

2 gz

4Mzc
2

⎛

⎝
⎜

⎞

⎠
⎟

4

E2 2π 2 cV
e + cA

e( )2
+

2
3

cV
e − cA

e( )2⎡

⎣
⎢

⎤

⎦
⎥

   
σ = 2

c
π

⎛
⎝⎜

⎞
⎠⎟

2 gz

4Mzc
2

⎛

⎝
⎜

⎞

⎠
⎟

4

E2 16
3
π cV

e( )2
+ cA

e( )2
+ cV

e cA
e⎡

⎣⎢
⎤
⎦⎥

   
σ =

2
3π
c( )2 gz

2Mzc
2

⎛

⎝
⎜

⎞

⎠
⎟

4

E2 cV
e( )2

+ cA
e( )2

+ cV
e cA

e⎡
⎣⎢

⎤
⎦⎥

Compare this to the cross-section for the 
charged-current process                                 
(which we did earlier)  

 
σ νµe− → µ−νe( )

Note that 
  
gz =

gw

cosθw

    Mz =
Mw

cosθw

   ⇒    
gz

Mz

=
gw

Mw
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σ νµe− → νµe−( ) = 2

3π
c( )2 gz

2Mzc
2

⎛

⎝
⎜

⎞

⎠
⎟

4

E2 cV
e( )2

+ cA
e( )2

+ cV
e cA

e⎡
⎣⎢

⎤
⎦⎥

   

=
2

3π
c( )2 gz

2Mzc
2

⎛

⎝
⎜

⎞

⎠
⎟

4

E2 −
1
2
+ 2sin2θw

⎛
⎝⎜

⎞
⎠⎟

2

+ −
1
2

⎛
⎝⎜

⎞
⎠⎟

2

+ −
1
2
+ 2sin2θw

⎛
⎝⎜

⎞
⎠⎟

−
1
2

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

   
=

2
3π
c( )2 gz

2Mzc
2

⎛

⎝
⎜

⎞

⎠
⎟

4

E2 1
2

⎛
⎝⎜

⎞
⎠⎟

2

−1+ 4sin2θw( )2
+ −1( )2

+ −1+ 4sin2θw( ) −1( )⎡
⎣⎢

⎤
⎦⎥

   
=

2
3π
c( )2 gz

2Mzc
2

⎛

⎝
⎜

⎞

⎠
⎟

4

E2 1
2

⎛
⎝⎜

⎞
⎠⎟

2

1− 8sin2θw +16sin4θw +1+1− 4sin2θw
⎡⎣ ⎤⎦

   
=

2
3π
c( )2 gz

2Mzc
2

⎛

⎝
⎜

⎞

⎠
⎟

4

E2 1
2

⎛
⎝⎜

⎞
⎠⎟

2

3−12sin2θw +16sin4θw
⎡⎣ ⎤⎦

   

σ e−νµ → µ−νe( ) = 1
8π

gw

MW c2

⎛

⎝
⎜

⎞

⎠
⎟

2

cE
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

2

   
=

1
8π
c( )2 gw

MW c2

⎛

⎝
⎜

⎞

⎠
⎟

4

E2
[ neglecting the muon mass ] 

   
=

1
8π
c( )2 gz

Mzc
2

⎛

⎝
⎜

⎞

⎠
⎟

4

E2 1
4
− sin2θw +

4
3

sin4θw

⎡

⎣
⎢

⎤

⎦
⎥

  

σ νµe− → νµe−( )
σ e−νµ → µ−νe( ) =

1
4
− sin2θw +

4
3

sin4θw

⎡

⎣
⎢

⎤

⎦
⎥ ≈ 0.09 Experimentally this ratio is about 0.11 

with roughly 10% uncertainty. 

N.B.   gw
MW

=
ge

sinθW cosθWMZ

=
gz
Mz



11 

 e

 e

 f

 f

Next look at fermion pair production in electron-positron collisions near the Z0 pole: 

p1, s1 

p2, s2 

p3, s3 
p4, s4 q Here we need the full Z0 propagator: 

  
−

i
q2 − MZ

2c2 gµν −
qµqν

MZ
2c2

⎛

⎝
⎜

⎞

⎠
⎟

    
M = −

gz
2

4 q2 − MZ
2c2( ) u 4( )γ µ cV

f − cA
fγ 5( )v 3( )⎡

⎣
⎤
⎦ gµν −

qµqν

MZ
2c2

⎛

⎝
⎜

⎞

⎠
⎟ v 2( )γ ν cV

e − cA
eγ 5( )u 1( )⎡

⎣
⎤
⎦

where f represents any fundamental fermion (except an electron, for the usual reason). 

  
q = p1 + p2 = p3 + p4⎡⎣ ⎤⎦

The second term in the propagator does not contribute (in the limit where we ignore mf): 

Fermion Pair Production at the Z0 Pole 

    
⇒   M = −

gz
2

4 q2 − MZ
2c2( ) u 4( )γ µ cV

f − cA
fγ 5( )v 3( )⎡

⎣
⎤
⎦ v 2( )γ µ cV

e − cA
eγ 5( )u 1( )⎡

⎣
⎤
⎦

   u 4( )γ µqµ cV
f − cA

f( )v 3( ) = u 4( ) /q cV
f − cA

f( )v 3( )

  /q = /p3 + /p4   
u 4( ) /p4 = 0 This is the Dirac equation for an adjoint spinor for a 

massless particle (we are ignoring fermion masses): 
  
e.g.   u γ µ pµ − mc( ) = 0

   /p3 cV
f − cA

fγ 5( )v 3( ) = cV
f + cA

fγ 5( ) /p3v 3( ) = 0 for the same reason. 
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M = −

gz
2

4 q2 − MZ
2c2( ) u 4( )γ µ cV

f − cA
fγ 5( )v 3( )⎡

⎣
⎤
⎦ v 2( )γ µ cV

e − cA
eγ 5( )u 1( )⎡

⎣
⎤
⎦

   

M
2

=
gz

2

8 q2 − MZ
2c2( )

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

2

Tr γ µ cV
f − cA

fγ 5( ) /p3γ
ν cV

f − cA
fγ 5( ) /p4

⎡
⎣

⎤
⎦Tr γ µ cV

f − cA
fγ 5( ) /p1γ ν cV

f − cA
fγ 5( ) /p2

⎡
⎣

⎤
⎦

and we’ll skip the trace calculation…………(it’s outlined in the text and  on your assignment) 

   

M
2

=
1
2

gz
2

q2 − MZ
2c2

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

2

cV
f( )2

+ cA
f( )2⎡

⎣⎢
⎤
⎦⎥

cV
e( )2

+ cA
e( )2⎡

⎣⎢
⎤
⎦⎥

p1 ⋅ p3( ) p2 ⋅ p4( ) + p1 ⋅ p4( ) p2 ⋅ p3( )⎡⎣ ⎤⎦{
                                                                       + 4cV

f cA
f cV

e cA
e p1 ⋅ p3( ) p2 ⋅ p4( ) − p1 ⋅ p4( ) p2 ⋅ p3( )⎡⎣ ⎤⎦}

Look at this in the CM frame: 

   

p1 =
E
c

, p
⎛
⎝⎜

⎞
⎠⎟

      p2 =
E
c

,− p
⎛
⎝⎜

⎞
⎠⎟

p3 =
E
c

,

k

⎛
⎝⎜

⎞
⎠⎟

      p4 =
E
c

,−

k

⎛
⎝⎜

⎞
⎠⎟

  
p

2
= k

2
≡ p2     for   me ,mf → 0

(probably) 
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p1 ⋅ p4( ) = p2 ⋅ p3( ) = E2

c2 + p2 cosθ =
E2

c2 1+ cosθ( )
  

p1 ⋅ p3( ) = p2 ⋅ p4( ) = E2

c2 − p2 cosθ =
E2

c2 1− cosθ( )

  
q2 = p1 + p2( )2

=
2E
c

⎛
⎝⎜

⎞
⎠⎟

2

   

M
2

=
gz

2 E2

2E( )2
− MZc2( )2

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

2

cV
f( )2

+ cA
f( )2⎡

⎣⎢
⎤
⎦⎥

cV
e( )2

+ cA
e( )2⎡

⎣⎢
⎤
⎦⎥

1+ cos2θ⎡⎣ ⎤⎦ − 8cV
f cA

f cV
e cA

e cosθ{ }

   

M
2

=
1
2

gz
2

q2 − MZ
2c2

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

2

cV
f( )2

+ cA
f( )2⎡

⎣⎢
⎤
⎦⎥

cV
e( )2

+ cA
e( )2⎡

⎣⎢
⎤
⎦⎥

p1 ⋅ p3( ) p2 ⋅ p4( ) + p1 ⋅ p4( ) p2 ⋅ p3( )⎡⎣ ⎤⎦{
                                                                       + 4cV

f cA
f cV

e cA
e p1 ⋅ p3( ) p2 ⋅ p4( ) − p1 ⋅ p4( ) p2 ⋅ p3( )⎡⎣ ⎤⎦}

  
p1 ⋅ p3( ) p2 ⋅ p4( ) + p1 ⋅ p4( ) p2 ⋅ p3( ) = E2

c2 1− cosθ( ) ⋅ E2

c2 1− cosθ( ) + E2

c2 1+ cosθ( ) ⋅ E2

c2 1+ cosθ( )

  
=

E4

c4 1− 2cosθ + cos2θ( ) + E4

c4 1+ 2cosθ + cos2θ( ) = 2
E4

c4 1+ cos2θ( )

  
p1 ⋅ p3( ) p2 ⋅ p4( ) − p1 ⋅ p4( ) p2 ⋅ p3( ) = E2

c2 1− cosθ( ) ⋅ E2

c2 1− cosθ( ) − E2

c2 1+ cosθ( ) ⋅ E2

c2 1+ cosθ( )

  
=

E4

c4 1− 2cosθ + cos2θ( ) − E4

c4 1+ 2cosθ + cos2θ( ) = −4
E4

c4 cosθ
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dσ
dΩ

=
c
8π

⎛
⎝⎜

⎞
⎠⎟

2
1

4E2 M 2 =
cgz

2 E

16π 2E( )2
− MZc2( )2⎡

⎣⎢
⎤
⎦⎥

⎧

⎨
⎪

⎩
⎪

⎫

⎬
⎪

⎭
⎪

2

cV
f( )2

+ cA
f( )2⎡

⎣⎢
⎤
⎦⎥

cV
e( )2

+ cA
e( )2⎡

⎣⎢
⎤
⎦⎥

1+ cos2θ⎡⎣ ⎤⎦ − 8cV
f cA

f cV
e cA

e cosθ{ }
  
                        

For σ this term integrates to 0 

   

σ =
1

3π
cgz

2 E

4 2E( )2
− MZc2( )2⎡

⎣⎢
⎤
⎦⎥

⎧

⎨
⎪

⎩
⎪

⎫

⎬
⎪

⎭
⎪

2

cV
f( )2

+ cA
f( )2⎡

⎣⎢
⎤
⎦⎥

cV
e( )2

+ cA
e( )2⎡

⎣⎢
⎤
⎦⎥

Note that this expression “blows up” at the Z0 pole (                   ). However, since the Z0   
is not a stable particle, its mass cannot be precisely defined. So this turns out not to be a 
problem. 

  2E = MZc2

   

M
2

=
gz

2 E2

2E( )2
− MZc2( )2

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

2

cV
f( )2

+ cA
f( )2⎡

⎣⎢
⎤
⎦⎥

cV
e( )2

+ cA
e( )2⎡

⎣⎢
⎤
⎦⎥

1+ cos2θ⎡⎣ ⎤⎦ − 8cV
f cA

f cV
e cA

e cosθ{ }
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i
q2 − MZ

2c2 →
i

q2 − MZc( )2
+ iMZΓZ

Need to modify the propagator to account for the finite width: 

   

σ ⇒
cgz

2 E( )2

48π

cV
f( )2

+ cA
f( )2⎡

⎣⎢
⎤
⎦⎥

cV
e( )2

+ cA
e( )2⎡

⎣⎢
⎤
⎦⎥

2E( )2
− MZc2( )2⎡

⎣⎢
⎤
⎦⎥

2

+ MZc2ΓZ
⎡⎣ ⎤⎦

2

Since                         this term is negligible except near the Z0 pole (where it softens the spike)    ΓZ << MZc2

In a recent lectures (Griffiths Ch. 8) we calculated the cross-section for fermion pair-production 
in electron-positron collisions in QED ( i.e. interaction mediated by a virtual photon ): 

   
σ =

cge
2( )2

48π
Qf

2

E2

Take the ratio of the neutral weak interaction and QED cross-sections (using                        ) 
  
gz =

ge

sinθw cosθw

   

σ e+e− → Z 0 → µ+µ−( )
σ e+e− → γ → µ+µ−( ) =

1
2
− 2sin2θw + 4sin4θw

⎡

⎣
⎢

⎤

⎦
⎥

2

sinθw cosθw⎡⎣ ⎤⎦
4 ×

E4

2E( )2
− MZc2( )2⎡

⎣⎢
⎤
⎦⎥

2

+ Γ z Mzc
2⎡⎣ ⎤⎦

2

Consider this ratio at energies well below the Z0 pole and near the Z0 pole: 
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σ e+e− → Z 0 → µ+µ−( )
σ e+e− → γ → µ+µ−( ) =

1
2
− 2sin2θw + 4sin4θw

⎡

⎣
⎢

⎤

⎦
⎥

2

sinθw cosθw⎡⎣ ⎤⎦
4 ×

E4

2E( )2
− MZc2( )2⎡

⎣⎢
⎤
⎦⎥

2

+ Γ z Mzc
2⎡⎣ ⎤⎦

2

  
                           

 ≈  2

Well below the Z0 pole: 
  

σ e+e− → Z 0 → µ+µ−( )
σ e+e− → γ → µ+µ−( )   ≈   2

E
MZc2

⎛

⎝
⎜

⎞

⎠
⎟

4

Near the Z0 pole: 
   

σ e+e− → Z 0 → µ+µ−( )
σ e+e− → γ → µ+µ−( ) ≈ 2

Mzc
2 / 2⎡⎣ ⎤⎦

4

Γ z Mzc
2⎡⎣ ⎤⎦

2 =
1
8

Mzc
2

Γ z

⎛

⎝
⎜

⎞

⎠
⎟

2

≈ 200    
ΓZ ~ 2.5 GeV⎡⎣ ⎤⎦

It is important to note that elsewhere, the interference effects are important: 

   
M tot

2 e+e− → µ+µ−( ) = M Z
2 + Mγ

2 + M Z
*Mγ + M ZMγ

*

  
                           

Each has a product of the 
photon and Z0 propagators 

Has  γ propagator squared 
Has  Z0 propagator squared 

Note in particular that for energies                 all these terms are of similar magnitude.   >> MZc2
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Peak means Ecm = MZc2=91.2 GeV 

P±2 means Peak ± 2 GeV 



for  R =
σ e+e− → hadrons( )
σ e+e− → µ+µ−( ) s ≤ 209GeV

18 



Blowup of high     region 

19 

s

At high centre of mass 
energies new processes start 
to turn on (e.g. one reaches 
the threshold energy). 

What does this look like if we 
sketch it to higher energies? 

What causes slow turn-on? 
Why isn’t there an abrupt 
increase as one reaches 
the threshold energy? 



The number of light neutrino generations  

20 

Measurements of                                  in the region of ECM ~ MZ tell us about the number 
of neutrino generations (at least those with masses < MZ / 2).   

σ e+e− → hadrons( )

Why is this the case? 
How does this work? 


