Phy489 Lecture 21-22



Chiral Fermion States & Electroweak Unification

Question: how can we contemplate unifying two forces that appear to have couplings
that are very different in form (not just in “apparent magnitudes” since it was already
suspected that the “weakness” of the charged weak interaction could be attributed to

the mass of the exchanged particle)?

Compare the couplings (vertex factors in Feynman rules)

QED ig,y" vector
. g, .
Charged Weak —lﬁw(l— 7’5) pure vector-axial vector (V-A)
Neutral Weak - i%y“(c;’ -cl7’) mix of vector and axial vector

Note that QED is all “neutral current”. We will see that the neutral weak and EM
currents “mix”, hence the ¢/ and ¢/ terms instead of the pure V-A of the charged
weak interaction.



Chiral Fermions

How do we deal with the “structural differences”? (e.g. the different vertex factors)

Difficulty is associated with the factors of (1—7°). This can be dealt with by “absorbing”
a factor of (1—7°)/2 into the definition of the particle spinors:

( )_ 1- }/5 ( ) we call this a left handed spinor, though in
“\P)= 2 U\p general it is not a helicity eigenstate
c(ﬁ : 5) 0
5 E + m02 :

Look at theterm ¥ u(p) = o u(p) [see next slide]

(7-5)

0
E —mc




We had (see Lecture on solutions to the Dirac equation):




So, in the case of a massless particle: }/Su(p) = (f? : i)u(p) where X (6

—

Recall that 52 is the spin matrix for a Dirac particle (see section 7.2), so (f? : i)

represents the helicity, with eigenvalues of 1.

So we have that %(1— }/S)u(p) =0 if u(p) carries helicity +1 (right handed)

= u(p) if u(p) carries helicity -1 (left handed)

Reminder: this is true in the massless limit only; for small masses it is approximate.

Sol

5 (1— ys) acts as a projection operator that picks out the helicity -1 component



If the particle is NOT massless it is only in the ultra-relativistic regime ( E >> mc?) that

vulp) = (p-Z)u(p)

holds approximately, and it is only in this limit that «, carries helicity = -1. However, this
is still generally referred to as a left-handed spinor.

For an anti-particle, a similar exercise yields (again, in the massless limit)

)=o) )= Julo)

The corresponding right handed spinors are:

uR(p)=[1+2y5]u(p) ”R(P):[l_zy ]”(p)




Adjoint Spinors (Chiral Fermions)

Need also to know the expressions for of the corresponding adjoint spinors:
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The Charged Current Weak Interaction

€ 1%
Look now at charged weak interaction vertex: \/

- 1=
The contribution to the amplitude ‘M from this vertex is Ju =V y“[ ] )
where, for the moment, we are using particle species (v, ¢) to label the spinors

rather than u, ,u, (the bar however still denotes an adjoint spinor, not an antiparticle).

5

]on the RHS of each side of this expression

Note that [1_27/5 T _ i(l— 2y +
%{1_2}/5):[”;5 }% Multiply by [
(S H U A e
‘o2 2 ) 42 2 M2

] since ()" =1

)
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_[1+y° -y _
% y e=

2 \ 2 K 2

Since the notation might be
confusing, | remind you that this

represents an adjoint particle
spinor for the neutrino.

So we can write = \7}/“

|
I

And the (charged) weak vertex factor is now purely vectorial, just as for QED, but it couples
only to left-handed electrons and left-handed neutrinos. Similarly, we have

veve

ji=eywVv,  forthe process :
: W



We can also write the electromagnetic “current” in terms of these chiral spinors:

]Zm = —E}/ue = _(EL +ép )Vu (eL + eR) =—e, Yu€r — ex Yiu€r

Where the factor of -1 is conventional, accounting for the charge of the electron.

| have used u=u, + u, (which is easy to show, if it is not obvious to you)

Note that the cross-terms vanish in the expression for j,"

_ _[1+y° 1+ _ (1= ) 1+y
ey ,=¢ > 7. 5 e=ey, > > e=0

This more generally implies that a vector interaction

Since (1 _ YS)(l + ,)ﬁ) —1— (7/5)2 =0 cannot couple a LH particle state to a RH particle state

or a LH particle state to a LH antiparticle state etc.



Isospin in Strong Interactions (Review)

We learned earlier that the strong interactions of nucleons (protons and neutrons) do not
depend on the nucleon species (so pp, np, and nn experience the same strong interactions).

We wrote a two component object, the nucleon as N = [ P ]
n

More formally, we can represent the isospin wavefunction of a nucleon as a linear
combination of the two states:

1 H H o ”
2 :{sz|p> isospin “up

0 o
21y :[1): n) isospin “down”

And we can introduce the isospin operator T which has components

1(0 1 10 —i 1({1 O
T, =— T,=—| . T, =—
2{1 0 2l 0 210 -1

Except for factors of /2 these are the Pauli spin matrices describing spin % particles.



In fact, the Pauli spin matrices describe any system that has two possible states. Note that

L R 1

That is, these are eigenstates of 7, with eigenvalues + 1/2.

Expect eigenvalues of 1> =7-7 tothen be %(%+1) = %. Check this:

1 1 O 3
2y g2y g2 42 =3 2 _ 2
TXYX=T 77,17, |:4(0 1 }:|)C 4)( v

Can make isospin raising or lowering operators 7° =(7,1i7,)

., (01 (0 O
T = T =
0 O 1 O
Applying these operators to the two states, we see

Cp)=0  Tln=lp)  Tlp)=ln) Tlm=0



Back to the weak interaction.......

We we have (so far)

]‘1_1 — VL’}/yeL

charged weak currents

o4 —
]y — eL}/va

Ju. =—eye=-eye —eY.e.  EM current (neutral)



Neutral Weak Currents

We have expressions for the “positive” and “negative” weak charged current:

evve veve

— : T 5
Ju =YV : Ju=erVe :
W W
Weak-isospin lowering : Weak-isospin raising :
ve
Can write this compactly by defining the left-handed (weak-isospin) doublet: X, =
. _ . (0 1 (0 0 _
Using the 2x2 matrices 7" = and 7 = { o we can then write:
o +
Ju =XV X1
with Tt :l(T +iT ) Weak-isospin raisingand  + :l 0 1 T :l 0 —i
1= ""2/  lowering operators, with 1 2 1 0 2 ) i 0

N

These are two of the Pauli spin matrices, written here as t to avoid any confusion with ordinary spin (as we
did when discussing isospin in our discussions of strong interactions). More accurately, these are two of the
matrices that form a representation of the group SU(2) which describes systems in which two possible
states are related by some symmetry transformation.
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/v (e.g. the quantity in terms of which we are defining these doublets)

Refer to this as weak-isospin and anticipate full weak-isospin symmetry, which would
imply the existence of a third “current” corresponding to ;1'3 where 7° is the third
Pauli spin matrix [of SU(2)]:

I L =T T = 2 e
—20_1 u Liu o L2LuL 2LyL

Here we have “predicted” the existence of a weak neutral current process. However, this
still only couples LH particles to LH particles, while we know that the Z° has RH couplings
as well (or the vertex factor would be just V-A like the charged weak interaction).

Consider the so-called weak-hypercharge current (which is a mixture of the two neutral
currents j; and j," ): [ here the weak hypercharge Y is defined by O =/, +%Y]

: com Ay _ _ 1_ 1_
.]Z — 2]u _2]2 = 2(_eRyueR _eLY,ueL) _2(EVL}//JVL _EeLyueLj

=—2e; Yier —€YueL —V.V\Ve



.Y — — — . . . . . .
Jy =—2€yY,er—€. Ve, —V,Y,V, isinvariant under a weak-isospin transformation

€r %eR
Y — _ _
Ju =2exyv,er =V, Y,V —e Y e e, >V,
v, —e,

N.B. We have been discussing things in terms of electrons and electron-neutrinos, but
the same applies to any of the weak-isospin doublets:

v, 1% V. U c t
l = H where primes on the down-type quarks denote
L e u T d’ s s b’ s the Cabibbo-rotated states
L L L L
. . Y 1 — pna
In each case one can construct three weak isospin currents, SR XYTX and one

weak-hypercharge current: jg = 2jZm —ZJZ



Weak Hypercharge

Y=20-21, Look atvalues for members of weak isospin doublet:
v, v, Vv, U c t| I=+1/2
AL = e 7 T d’ s b') 1,=-1/2
L L L L L L 3
[ v ] 2Q—213=[ 2(0)—2(1/2) ]z[ » ]
e ) 2(-1)-2(-1/2) ~1
( y ] 2Q—2I3=[ 22/3)-2(1/2) ]:( 1/3]
d ) 2(-1/3)-2(-1/2) 1/3

e.g. value of Y is the same for the two members of a weak isospin doublet



GSW Model for Electroweak Mixing

The GWS model asserts that the three weak-isospin currents couple with strength g,, to
a weak iso-triplet of vector bosons W while the weak hypercharge current couples with
strength g’/2 to an iso-singlet vector boson B .

—il:gwju . V[_} e %]ZB“:| [where the vectors are vectors in weak-isospin space]
SRR R T YL ) LS. ey y I | " P s P
JyWi=g W+ Wo +5 W —ﬁ]uW +ﬁJuW + W
1 :
where W; = —(le F W:) We can now read off the couplings to the W~ :

V2

eg.for e >V +W" j/; = VLyueL = \7[)/# [Ej(l — ys)}e which yields a term of

(1=p) (1) (1=)
{ j.e. recalling that ju=V7#( = Je:v( = ]y#( - Je=vL7#eL}

—_— 5 —
[VVU (1 —Y )e]W " sothe vertexfactoris  —i

1
W =i

: g,
—jo —
gW\/Eju 2\/5

;\75 yu(l_ 7/5)



Electroweak mixing

In the GWS model, the W and B mix to produce one massless combination (}/E A“) and
one (orthogonal) massive combination, the 7°:

A, =B, cos0, +Wu3 sin@ Write out neutral component of
_ - 3
Z,=-B, sin@ +W, cosO o g, .
e —i ngu'Wu+EJuBﬂ
3 .
W, =Z,co0s0, + A sinb,
B,=-Z,sin6, + A, cos6, | In terms of the physical states A, and Z,

’

—l[gijW g %jﬁB”} = —i{gw sin 9Wj2 + gzcos GWjZ}A“ +[gw COS Owjz — %sin HWjZ}Z“}

We know that the EM coupling is —ig, j;" A". Recall that j, =2j;" —2j, == j; +;f,§

This implies that we need g, sin@, = g’cosO =g, .Thatis, the weak and electromagnetic
coupling constants are NOT independent!



We had that:

’

_{gwjj N +%j§B“}=—i{gWSin9WjZ +%cos€ij}A“ +{gwcosewj; —%sin@wjz}zu}

\o J/

’

Forthe2° g cos6,j; —%sin@wjz =g, cos0, j, —%sin@w@j;’" ~2j,)

=(g, cosO, + g'sin@w)jz — g’sin@wjzm

[.ge cosf, + f sin@w}j?’— & sin@wjzm

sin@ cosB, " cosB,
g cos’0 +gsin®6 | . g ., .
— e . w e w ] _ . e Sln 6 ]
sinf cos6 # {sin@ cosO M M
Using g = S this becomes —ig (j3—sin29 je’")Z“
z 2\Ju wd U

cos@ sinf,



Vertex factors for Neutral Weak Interactions

u

From the expression —z[gw cos@w]u —EsmeijZ“ :—lgz(] —sin QW];’")Z one can

Simply read off the couplings to the Z°. This is most straightforward for the neutrinos, e.g.
for the case in which v — v+ Z° where the coupling is entirely from jj ;

1_ 1_ 1_%(1-7)
J ZEVL}/#VL% so we have _lg (] —sin ewjy )Z'u _lg EV > \%

And the required vertex factor is — —7/# ———y5

l l

\% \%
Cy Cy




79 Coupling to Charged Leptons

Try another: 77 > 17 + Z°

Need to again evaluate —lgz(] —sin 9W]Zm)Z“ . Proceed as before:

em . 1_ _ _ .
—ig.(j, —sin*6, ji")Z" = —ngK—E TLJ/uTLj-I— (Te¥,Tr + T,7,T, )sin’ OWJZ“

I
L.
29

_(—;Tyu(l_;;)r]+[ryu(l_|_j)f+ Tyu(l_;/s)r]sinz GW}Z“
——Tj/uT+ TVMYST+(—TYMTW+ T}/ﬂ%}sm GJZ

1 1
" Ty, T+— 2 Ty, Y T+ Ty,Tsin’ 6 JZ

* | | ]
_m(—% sin’ 6, + if]f JZ“ =—i%m —%+ 2sin’ 6, + %f Jzu
. o

'

1 . T
cy :—5+2sm2 0, Ca =3



A few words about the Higgs boson ......



Vector Boson Scattering

T e X<

Cross-section grows with § = ECM Eventually violates unitarity (probability)
unless there are additional processes. Need to add

(d) e)

WWWW W'
| H
- J
W AMAMAAAAANAMAW ‘,j;?ﬁk] ‘ﬁ\;j;w

with M, <1TeV
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M,, [GeV]

Experimental Constraints on the Higgs Boson

PDG Listings 2010
80-45 I 1 1 1 1 I 1 1 1 1 I 1 1 1 1

direct (10)
indirect (10)
all data (90%)
80.4 —
80.35
80.3 1 1 1 1 L 1 1 1 1 1 L 1 1 1 1 1
160 165 170 175 180 185



BR(H)

Higgs Boson Decays

Once the mass of the Higgs is known (specified) we know all of it's other
properties, for instance (important experimentally) what it decays into:

1
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