
Phy489 Lecture 4 
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Special Relativity: Lorentz Transformations 

Consider two inertial reference frames S 
and S' having a relative velocity v (which 
we will align along the x axis). If an event 
occurs in S at space-time coordinates 
(t,x,y,z) then in S’ we have: 

z 

x' 

z' 

y' 
S' 

y 

x 

S 

′x = γ (x −υt)
′y = y
′z = z

′t = γ (t − υ
c2
x)

� 

x = γ( ′ x + υ ′ t )
y = ′ y 
z = ′ z 

t = γ( ′ t + υ
c 2

′ x )

OR 

In each case the Lorentz “boost” factor γ is given by  

� 

γ ≡ 1
1−υ 2 c 2

Usual to also define dimensionless velocity   

� 

β ≡υ c

� 

γ = 1
1−β 2

v 
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Problem 3.1 (derives the S’S expressions) 

� 

′ x = γ(x −υ t)
′ y = y
′ z = z

′ t = γ(t − υ
c 2

x)

Starting with the expression for the S S' transformation 

� 

} These two 
are trivial 

� 

′ x = γ x − γυ t    →   x =
′ x 
γ

+ υ t    =   ′ x 
γ

+υ ′ t 
γ

+ υ
c 2 x

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟   

� 

′ t = γ t − γ υ
c 2 x   →   t =

′ t 
γ

+ υ
c 2 x    =   ′ t 

γ
+ υ

c 2
′ x 
γ

+ υ t
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟   

� 

x 1− υ 2

c 2
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ =

′ x 
γ

+ υ ′ t 
γ

� 

x
γ 2 =

′ x 
γ

+ υ ′ t 
γ

    →      x = γ ′ x + υ ′ t ( )

collecting x terms on the LHS………..  

Similarly for t 
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Consequences of Special Relativity 

•  Relativity of simultaneity: events that are simultaneous in one reference 
frame are NOT necessarily simultaneous in another. 

•  Lorentz contraction (along direction of motion): an object of length 
L’   (in reference frame S’ frame) appears shorter by a factor of γ to an 
observer in S.  L = L’/γ, where γ > 1. 

•  Time dilation: time runs more slowly in a moving reference frame. That 
is, a clock in S’ appears (to an observer in S) to be running slowly, by a 
factor of γ. 

Only one of these effects is important for us:  time dialation.  

Note that particle lifetimes are defined in their rest frames (there is no 
other self consistent manner in which to define these - this is the one 
reference frame upon which all observers can agree). This is called the 
“proper lifetime” τ. The length of time a particle exists in a reference 
frame in which it is moving is then given by γτ. 

4 



Reference Frames for Scattering and Decays 

•  We will really deal with only a few situations: 
–  Particle decays in the particle rest frame; 
–  Particle decays in flight (in the “lab” frame, i.e. of the observer); 
–  Scattering in the centre-of-mass (CM) frame; 
–  Scattering in the lab frame (typically “fixed target” scattering where 

one of the particles in the initial state is at rest). 
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Simple Illustration: Griffiths Problem 3.4 
Cosmic ray muons are produced in the high atmosphere (say 8000m) and 
travel towards the earth at close to the speed of light (say 0.998c): 

a) Given the lifetime of the muon (τ ~ 2.2µs) would one expect these    
muons to reach the surface of the earth? 

Relativistically, the muon lifetime in the observer’s rest frame is increased 
by a factor of γ (=15.8 for v = 0.998c), so the distance traveled would be: 

 d = 15.8i 2.2 ×10−6 s( )i 0.998( )i(3×108m / s) = 10,400m

 And one would expect most of the muons to make it to the earths surface 
(remember, τ represents the mean lifetime, so there is a distribution). 

Classically, the muons would (on average) travel a distance 

 d = 2.2 ×10−6 s( )i 0.998( )i(3×108m / s) = 660m

So would NOT (in general) make it the 8000m to the earth’s surface.  
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An alternative Point of View 

Picture this from the point of view of the decaying muons (so imagine we 
are in its rest frame): 

In this reference frame the muon has a lifetime of 2.2 µs. 

However, in this reference frame the distance to the earth is Lorentz 
contracted by a factor of  γ (15.8). 

So the particle travels an average of 660m, but the distance to the earth 
is now only 8000m/15.8 = 506 m, so this is enough to reach the earth. 

The conclusion is the same in both reference frames, as it must be. 

As a point of interest, v = 0.998c corresponds to Eµ ~ 1.7 GeV which is 
not particularly energetic. So even relatively low-energy particles are 
typically traveling at close to the speed of light. 

[ Eµ = γmµc2 ~ 15.8 (105.6 MeV) ~ 1.7 GeV ] 
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Four Vectors 

Vectors in coordinate space are defined as three component objects with 
particular transformation properties under coordinate transformations. 

In special relativity, we are dealing with 4-dimensional space-time. We 
define four vectors to be four component objects having particular 
transformation properties under space-time coordinate transformations 
(Lorentz transformations). 

Consider the position-time four vector  

� 

xµ = (x 0,x1,x 2,x 3) ≡ (ct,x,y,z)

  

� 


Components must 
have the same units Re-write the Lorentz transformation in this notation: 

� 

(x 0 ′ ) = γ(x 0 −β x1)
(x1 ′ ) = γ(x1 −β x 0)
(x 2 ′ ) = x 2

(x 3 ′ ) = x 3

Note the symmetry when the 
equations are written in this form 

again, for velocity along x (here x1).  
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More on notation 

Can write this as  (xµ ′) = Λν
µ

ν=0

3

∑ xν µ = 0,1,2,3

2nd rank tensor 

 Can write Λ in 4x4 matrix form     
(here for a Lorentz transformation along the x axis) 

Λ =

γ −γβ 0 0
−γβ γ 0 0
0 0 1 0
0 0 0 1

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

Write this in more compact form using the Einstein summation convention 
in which summation over repeated indices is assumed: 

� 

(xµ ′ ) = Λν
µ xν (sum over ν assumed) 
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Lorentz Invariants 
One of the most critical concepts in relativistic kinematics is that of 
relativistic invariants (Lorentz invariants) which are quantities that are 
the same regardless of which reference frame they are evaluated in. 

Consider the quantity  

� 

I = (x 0)2 − (x1)2 − (x 2)2 − (x 3)2

Re-write this in terms of the coordinates of the S’ reference frame 

� 

I = (γx 0′ + γβx1′)2 − (γx1′ + γβx 0′)2 − (x 2′)2 − (x 3′)2

� 

= γ 2(x 0′)2 + γ 2β 2(x1′)2 + 2γ 2β(x 0′)(x1′)

� 

− γ 2(x1′)2 − γ 2β 2(x 0′)2 − 2γ 2β(x 0′)(x1′) − (x 2′)2 − (x 3′)2

� 

= γ 2(1−β 2)(x 0′)2 − γ 2(1−β 2)(x1′)2 − (x 2′)2 − (x 3′)2

� 

= (x 0′)2 − (x1′)2 − (x 2′)2 − (x 3′)2 = ′ I 

I = I ’  Same result in either reference frame. I is a Lorentz invariant 
� 

γ 2(1−β 2) = 1
(1−β 2)

(1−β 2) =1

reminder 

cancel 
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Notation 

Calculations in relativistic kinematics rely heavily on the use of Lorentz 
invariant quantities, as we shall see. 

To write this invariant in more compact form we define the metric        .  
This is a second-rank tensor that can be represented by a 4x4 matrix: 

� 

gµν

gµν =

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

� 

I = gµν x
µxν

ν = 0

3

∑
µ = 0

3

∑ = gµν x
µxν

� 

xµ
is referred to as the contravariant position-time four vector. 

Using the metric        define the covariant position-time four-vector:  

� 

xµ = gµν x
ν

� 

gµν

We can then write our invariant compactly as               . 

� 

I = xµx
µ

We will use this notation extensively 

Summation 
convention 
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Other Four Vectors 

� 

xµ
is the archetypal four-vector. 

Any four-component object       is  called a four-vector if it transforms 
like      under Lorentz transformations.  

� 

aµ

� 

xµ

� 

(aµ ′ ) = Λν
µ aν With Λ as defined earlier 

� 

aµ = gµν a
ν

� 

aµ = gµν aν Technically, these are the 
elements of     , but in this         
case              .  

� 

g−1

� 

g−1 = g

=

γ −γβ 0 0
−γβ γ 0 0
0 0 1 0
0 0 0 1

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

gµν =

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

13 



Scalar Products 
For any two four-vectors       and        the product           is INVARIANT.   

� 

aµ

� 

bµ

� 

aµb
µ

This is referred to as the scalar product of     and    . 

� 

a

� 

b

  

� 

a • b = a0b0 − a1b1 − a2b2 − a3b3 = aµbµ = a0b0 −  a •
 
b 

  

� 

a = (a0,  a )   

� 

b = (b0,
 
b )

  

� 

a2 = a • a = aµ aµ = (a0)2 −  a 2

� 

aµ
is timelike if 
is spacelike if 

is lightlike if 

� 

a2 > 0

� 

a2 < 0

� 

a2 = 0

� 

{

You should prove this to yourself 
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Energy-momentum four-vectors 
Read text (section 3.3) for description of “proper velocity”, which is used in 
the development of the energy-momentum four-vector: 

  

� 

 
η = γ

 v ≡ d x 
dτ

This forms part of a four vector                     
with             .   

� 

ηµ = η0,  η ( )

� 

η0 = γc

� 

ηµη
µ = γ 2(c 2 − vx

2 − vy
2 − vz

2) = γ 2c 2(1− v2 c 2) = c 2

Define the relativistic three momentum as               (in analogy to             )   

� 

 p = m  η   

� 

 p = m v 

Can also show this to be part of a four-vector:   p
µ = mηµ = (γmc,γmv)

The relativistic energy is                 where m is the rest mass of the particle. E = γmc2

� 

pµ = E
c
, px, py, pz

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ And so we may write: 

  

� 

pµ pµ = E 2

c 2
−
 p 2 = m2ηµη

µ = m2c 2

which is invariant 

proper time  

(which is invariant) 
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More on relativistic energy and momentum 

Note that the expression                 applies only to massive particles. E = γmc2

In the case of massless particles (photons for instance)   E = p c

Recall that for photons  

� 

E = hν = hc
λ

The (de Broglie) wavelength associated to a particle with momentum p     
is given by  

λ =
h
p

   ⇒    
 
E = hν =

hc
λ

=
hc
h / p

= pc = p c
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Collisions (in a generic form) 
Discuss different classes of collisions: look classically, then relativistically: 

Consider the process A+B  C+D   (or ABCD) 

Classically what quantities are conserved in this collision process ? 

a)  Mass:   MA + MB = MC + MD 

b)  Momentum:                                   (i.e. three-momentum) 

c)  Kinetic energy MAY be conserved (elastic collision) 
  

� 

 p A +
 p B =

 p C +
 p D

M M 

m m 

m m 

m 

m 

Consider three “types” of processes: 

“explosive” 

“sticky” “elastic” 
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Collisions, relativistically 

a)  Energy and momentum are always conserved 

b)  Kinetic energy MAY or MAY NOT be conserved 

c)  Mass MAY or MAY NOT be conserved 

� 

} In a given process, these 
are either both conserved 
or both violated 

In terms of the categories just introduced we have: 

1)  “Sticky”:        Mass , Kinetic energy  

2)  “Explosive”:  Mass , Kinetic energy  

3)  “Elastic”:       Mass, Kinetic energy are both conserved 

� 

} These are referred to as  
inelastic processes 

Look at some trivial examples (Ex. 3.1 and 3.2 from the text) 

Relativistically, the conserved quantities are somewhat different than in 
the classical case: 
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Griffiths Example 3.1 

M 2 1 (3/5)c (3/5)c “Sticky” 

Conservation of energy: 

� 

E1 + E2 = EM = 2Em

Conservation of momentum:   

� 

 p 1 = −
 p 2

m m

Final energy is  

� 

E = Mc 2

Initial energy is  

� 

2Em = 2γmc 2

� 

}
� 

M = 2γm

� 

M = 2m
1− (3/5)2

= 2m
16 /25

= 5
2
m which is > 2m (as it must be) 
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Griffiths Example 3.2 

M m m “Explosive” 

Conservation of energy:                        

� 

Mc 2 = 2γmc 2

� 

M 2

4m2 = 1
1− v2 /c 2 � 

M = 2γm = 2m
1− v2 /c 2

� 

1− v2 /c 2 = 4m
2

M 2

� 

v2 /c 2 =1− 4m
2

M 2

thus,  

� 

v = c 1− 4m
2

M 2 = c 1− 2m
M

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 
2

Note that this 
makes sense only 
for M > 2m 
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Note that in four-vector notation, for example 3.2 we would write the total 
four-momentum in the initial and final states and require the invariant p2 to 
be the same before and after: 

Initial state:   (Mc,0,0,0)        p2 = M2c2 

Final state:    (2γmc,0,0,0)    p2 = 4γ2m2c2 

� 

} Yields M=2γm as before 

Advantage of using the four-vector notation is not obvious in these rather 
simple exercises. Here we have the advantage of a centre-of-mass 
reference frame and a symmetric system. Look at Exercise 3.3 to see an 
example where the four-vector notation simplifies the problem. Looks at   
the decay                      (in which the final state particles have different 
masses). 

� 

π + → µ +ν µ

 γmc, p( ) + γmc,− p( )⎡⎣ ⎤⎦e.g. 
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A note on “Sticky” processes 
Relativistically an example of a “sticky” process is the production of some 
new particle in a collision. Often this is followed by the decay of the 
particle so this could represent the initial part of a scattering process. 

� 

e+e− → Z 0 Z0 e- e+ 

In the CM frame, if the electrons each carry energy 45.6 GeV electrons,  
the Z0 (M ~ 91.2 GeV/c2 ) is produced at rest. The 45.6 GeV of mostly 
kinetic energy from each beam goes into the mass of the Z0. 

The Z0 lifetime is very short. It almost immediately decays into any final 
state that it couples to which is kinematically accessible (so any fermion   
anti-fermion pair ff, with mf < M(Z0)/2). 

Consider the process  

Z0 f f 

f 

e 

e 

Z0 

f 

time 

We will calculate the amplitude for 
this process later in the course. 
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m m 

M 

M 

The cartoon version of this “inelastic” process (in analogy to the earlier 
sketches) is 

which is a combination of  

M M m m and 

However, note that we can also have an inelastic process that does not 
involve the formation of some intermediate state:  


