
Phy489 Lecture 5 



Last time discussed: 

•  Different (inertial) reference frames, Lorentz transformations 
•  Four-vector notation for relativistic kinematics, invariants 
•  Collisions and decays 

This time, combined these issues to do some calculations: 
I asked you to look at Ex. 3.3 in the text:  

� 

π at rest( ) → µνµ

Initial state is 
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Recall that (e.g.)              is an invariant =           (and =          ) 

� 

pπ ⋅ pπ

� 

mπ
2c 2

� 

pf ⋅ pf

Centre-of-mass (properly centre of momentum) reference frame has 
no net momentum (particle decay at rest, or collisions with equal and 
opposite momenta). 

Relativistic Kinematics Cont’d 
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Reaction Thresholds 

Early particle physics experiments were performed by colliding beams of 
particles with some target material (e.g. liquid hydrogen which can be 
thought of as a big collection of protons; the electrons are typically too light 
to contribute much to the interaction in the case of the scattering of a heavy 
particle, such as another proton). 

So typically have scattering of an energetic proton with a proton at rest 

Where X represents some (usually multi-particle) final state. Which of the 
fundamental forces will dominate this process? 

� 

p + p→ X

Another example, scattering of pions from 
protons:  

Bubble chamber event from advanced 
undergraduate lab HEP experiment: 

π + + p→ X
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Fixed target scattering:  

10.3 GeV π+ beam on liquid hydrogen 
target (bubble chamber). 

In this event there are 8 charged particles 
produced in the π+p collision (5 positive 
charge and 3 negative charge; charge 
conserved. Also need to conserve baryon 
number). 

Some of the kinetic energy from the 
beam particle is converted into mass. 

What is the maximum number of charged 
tracks that could emerge from one of 
these collisions? 

What type of interaction is this?   

Multi-particle production in fixed target collisions 
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Discovery of the antiproton (  ) 

� 

p 

As previously advertised, this was the production method used for the 
discovery of the anti-proton (which you first need to make, and then 
detect): 

The process                                    is the minimal one that conserves 
baryon number (e.g. in pp collisions) since p is the lightest baryon: 

� 

p + p → p + p + p + p 

Question: What is the energy threshold for this process? That is, what 
is the minimum energy of the incoming proton such that this process 
is kinematically allowed (assuming the target proton is at rest)? 

p p

p

p

p

p

This is how the first anti-
protons were made, but 
still need to detect them. 
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Discovery of the anti-proton 
 You don’t just have to produce the anti-proton, you also need to detect it 
(via annihilation with one of the protons in the target material): 

π −

π −

π −

π −

π +

π +

π +

π +

µ+
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This is a “lab-frame” experiment. However, it is most straightforward to define 
the threshold requirement in the CM frame (                      ). In that reference 
frame, the energy of the final state, at threshold, is just the mass energy of 
the particles in the final state, since they will be produced with no momentum. 
So the threshold energy in the CM frame is         .  

� 

4mc 2

  

� 

 p before =  p after = 0

We can write the total 4-momentum           in either reference frame, both 
before and after the collision, but                  is always invariant (and always 
=         , where M is the “invariant mass” of the system)    

� 

(pTOT )

� 

pTOT ⋅ pTOT

� 

M 2c 2

  

� 

pTOT = E + mc 2

c
, |  p |, 0, 0

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

′ p TOT = 4mc, 0, 0, 0( )

in the lab frame, before the collision 

in the CM frame, after the collision (at threshold) 

This is the energy we want to solve for 

� 

pTOT
2 = M 2c 2 is invariant, e.g. the same in any reference frame both before 

and after the interaction. 

Typically we will only discuss lab frame vs. CM frame. You will seldom, if 
ever, need to explicitly transform between the two. 
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� 

pTOT( )2 = E
c

+ mc
⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 
2

− |  p |2= ′ p TOT( )2 =16m2c 2

E 2

c 2
+ 2Em + m2c 2− |  p |2=16m2c 2 ⇒ E 2

c 2
− |  p |2 +2Em + m2c 2 =16m2c 2

E = 14m2c 2

2m
= 7mc 2

This is the total relativistic energy of the incoming beam particle, at 
threshold. So the kinetic energy required corresponds to 6mc2.                       
(i.e. 1mc2  is the rest mass). 

  

� 

           
m 2c 2
   

Clearly if we could create the same process using colliding beams (of 
equal and opposite momentum) then the threshold beam energy would 
trivially be 2mc2 (e.g. 1mc2 of kinetic energy per beam). Is there a reason 
why doing a fixed target experiment might be better? Clearly making a 
lower energy beam is easier. 

Minus sign from the metric gµν 
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Colliding Beam vs. Fixed Target Scattering 

� 

A + B→C1 + C2 + .........+ Cn

Colliding beam machines mostly (but not always) 
operate in the CM frame. Some exceptions are: 

•  HERA (30 GeV electrons on 820 GeV protons) 
•  B-factory (e+e- with unequal energies) 

The invariant                       is the square of the 
energy available for new particle production (this       
is again just the  invariant mass of the initial state). 

      is referred to as the CM energy of the collision � 

s = pA + pB( )2

� 

s

 
mA = mB ,

pA = − pB ⇒ s = EA + EB

c
⎛
⎝⎜

⎞
⎠⎟
2

= 4 E
2

c2Consider the example 
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m2c2


Fixed target case (again, assume                  ) 

� 

mA = mB = m

so for colliding beams we have 

and for fixed target collisions we have 

� 

ECM ∝ Ebeam

� 

ECM ∝ Ebeam

Another way of looking at this is treated in Griffiths problem 3.23, which I 
sometime assign on the first problem set (but not this year). This looks at 
things in terms of the relative kinetic energy. Starts in the CM frame and 
asks for the relative kinetic energy in the lab frame: e.g. how much energy 
you would need to give a particle in the lab frame to get an equivalent CM 
energy. 

 

pA + pB( )2 =
E
c
+ mc, p +


0

⎛

⎝⎜
⎞

⎠⎟

2

=
E
c
+ mc⎛

⎝⎜
⎞
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2

− | p |2 = E2

c2 + m2c2 + 2Em− | p |2

=
E2

c2 − | p |2 +m2c2 + 2Em⇒ s = 2(m2c2 + Em) ≈ 2Em  for  E >> m
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Griffiths Problem 3.16 (3.14 in first edition) 
Consider the collision where particle A (total energy E) hits particle B at 
rest to produce an n-particle final state: 

Calculate the threshold energy (minimum E) for this reaction to 
proceed, in terms of the masses of the final-state particles. 

At threshold, the minimum energy is just the masses of the RHS plus 
the momentum required to conserve momentum (so 0 in the CM frame) 

� 

A + B→C1 + C2 + .........+ Cn

 

pA
2 + pB

2 + 2pA ⋅ pB = (pRHS )
2 = mA

2c2 + mB
2c2 + 2 E

c
mBc = (pRHS )

2

(pRHS )
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c
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c
, pTOT
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=
E2

c2
− | p |2= MTOT

2 c2

mA
2c2 + mB

2c2 + 2EmB = c
2 m1 + m2 + .....+ mn( )2 ≡ M 2c2 ⇒ E =

M 2 − mA
2 − mB

2

2mB

c2

This is frame independent 

 this is the energy we want to solve for       

in the CM frame, at threshold  
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Griffiths Problem 3.19 (3.16 in first edition) 

Particle A (at rest) decays into particles B and C  

� 

(A→ B + C)

Find the energy of the outgoing particles in terms of the three particle masses 

 

pA = pB + pC           pA
2 = pB

2 + pC
2 + 2pB ⋅ pC

mA
2c2 = mB

2c2 + mC
2c2 + 2 EB

c
, pB

⎛

⎝⎜
⎞

⎠⎟
⋅

EC

c
, pC

⎛

⎝⎜
⎞

⎠⎟

mA
2c2 = mB

2c2 + mC
2c2 + 2 EBEC

c2 − pB ⋅
pC

⎧
⎨
⎩

⎫
⎬
⎭

= mB
2c2 + mC

2c2 + 2 EB (EA − EB )
c2 +

EB
2 − mB

2c4
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⎧
⎨
⎩

⎫
⎬
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mA
2c2 − mB

2c2 − mC
2c2 = 2 EBEA

c2 −
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2

c2 +
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2

c2 −
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2c4
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⎧
⎨
⎩

⎫
⎬
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2c2

EB =
mA

2 + mB
2 − mC

2

2mA

c2 EC =
mA

2 + mC
2 − mB

2

2mA

c2
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Second part of question asks for the magnitude of the final state momenta. 
From the first part (previous slide) we have: 

    

� 

EB = mA
2 + mB

2 − mC
2

2mA

c 2                 EB
2

c 2
=  p B

2 + mB
2c 2 ⇒  p B

2 = EB
2

c 2
− mB

2c 2.    Use 

    

� 

 p B
2 = EB

2

c 2
− mB

2c 2 ⇒  p B
2 = mA

2 + mB
2 − mC

2

2mA

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 
2

− mB
2c 2

= mA
4 + mB

4 + mC
4 + 2mA

2mB
2 − 2mA

2mC
2 − 2mB

2mC
2

4mA
2 c 2 − mB

2c 2

= mA
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4 + mC
4 − 2mA

2mC
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2
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2 c 2
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2mB

2
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⎧ 
⎨ 
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⎫ 
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⎭ 
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2
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⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
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− 1
2
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2
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2 − 2mA
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2

4mA
2 c 2

 p B = c
2mA

λ(mA
2 ,mB

2 ,mC
2 ) =  p C      λ(x,y,z) = x 2 + y 2 + z2 − 2xy − 2xz − 2yz.
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where M  is the invariant mass of the system made up of particles 1 and 
2 (from the decay of a particle produced in the pp collision). This gives 
the mass of the decaying particle (the flight distance may or may not be 
observable) 

Recall charged pion decay:  

New Particle Searches in Collision Experiments 
Consider again the process  

� 

p + p→ X

� 

p1

� 

p2

� 

p1 + p2( )2 = M 2c 2

µ                     π                     ν 

� 

pµ + pν( )2 = mπ
2c 2

In samples of many events one can search for some hypothetical (or known) particle into 
some particular final state (say B+C+D) by selecting all combinations of tracks consistent 
with being B,C and D and calculating the invariant mass. One can hope to see a signal 
peak atop a background from incorrect (uncorrelated) B+C+D combinations . 

To avoid confusion, let me point out that 
p1 and p2 are four-momenta, not protons 
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� 

J /ψ → µ +µ−

Invariant mass distribution of µ+µ- combinations (CDF)  Invariant mass distribution of pK-π+ combinations (ARGUS)  

� 

Λc
+ → pK−π +

Invariant Mass Distributions: Examples 
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ATLAS Higgs to γγ 

15 



ATLAS   
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H → ZZ * → µ+µ−µ+µ−


