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Large Hadron Collider: proton proton collisions at /s =14TeV

Muon Detectors Electromagnetic Calorimeters

Solenoid Forward Calorimeters
i End Cap Toroid
it

i Inner Detector ‘ = ieldi
Barrel Torexd Hadronic Calorimeters Shieiding

L ... =103 cm?s?t 2005-2008 “Low luminosity running”

L

20 minimum bias events per crossing at high luminosity

peak

peak = 103 cm?st - 2009- ? “High luminosity running”

Some physics quantities (e.g. b-tagging efficiency) degraded at
high luminosity
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The SM healthy at energies < 200 GeV
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Predict low mass Higgs

Higgs boson remains
experimentally unobserved
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Hierarchy problem (2 fundamental energy scales)
17
M EW / M planck ~10

Naturalness problem radiative corrections to Higgs mass
squared oc A° where A isthe energy scale to which the
theory remains valid - fine tuning problem with Higgs

mass: can be resolved by

New physics at the TeV scale A *1TeV
OR

A symmetry protecting the Higgs mass against large
radiative corrections (Supersymmetry)

If Higgs not discovered with mass < 800 GeV expect the
dynamics of WW, ZZ scattering to reveal new structure

energies ~ 1 TeV

Must see something new at energies <1TeV
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For each SM fermion (boson) there is a bosonic (fermionic)
supersymmetric partner with identical mass and couplings

spin ¥ spin 1

pIn 72 p1 SM
leptons |
guarks . SUSY

gauge bosons 7, W,Z
gluons g

Higgs bosons (5)

Charged (neutral) gauginos and Higgsinos mix to form
charginos (neutralinos)

—+ N
=12 Zj=1,2,34 ordered by mass

R-parity quantum number distinguishes SM and SUSY particles
Conventional to assume R-parity conservation

SUSY particles must be produced in pairs

Must be a lightest SUSY particle (LSP) which cannot decay

Usually the lightest neutralino ;?10 —> good CDM candidate

Experimental signature: large missing
transverse energy Et
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Supersymmetry must be a broken symmetry

thereisno € with M, =M,

— Mmany model parameters (105 extra for MSSM)

SUSY solves the naturalness problemif M
Allows for gauge coupling unification if M
SUSY with Mg sy <1 TeV is called Weak-Scale SUSY

ey < 1 TeV
<1TeV

susy

o' (1)

Inverse coupling constant
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Energy Scale, L{GeV]
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SUSY can provide dynamical EW symmetry breaking

SUSY may allow unification with gravity (all string theories
are inherently supersymmetric)
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Two Higgs doublets = 5 physical Higgs bosons
0 0 0 +
h",H A", H

Assume Mg oy ~ 1 TeV so Higgs = SUSY kinematically forbidden
All masses and couplings then given as f(tan 5,M ,)

Lightest MSSM Higgs
M, < M, at tree level

h 0
M 0 < 140 GeV after loop corrections

In limit of large M, and/or tan 2, h° behaves like HZ,,

H 0 AO Heavy neutral CP-even, CP-odd Higgs respectively
Decaysto 7' 7, u" u~ enhanced for high tan £

H* Heavy charged Higgs

NB: for moderate (M, ,tan ) or M, >500 GeV
only his observable
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5year running = 3-50 for M, < 130 GeV
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Large QCD backgrounds: look for final states with
high-p; leptons and photons

Important channels:

low mass { H=7r
H— bb

H—zzZO S 1111
H-o>WWY ity Iy
_ { Ho>ZZ-> 1 vy
high mass

H—->WW > lv jet jet
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Production cross-sections at the LHC

Pr ocess o Events /sec | Event /year
W —> ev 15nb 15 10°
Z — ee 1.5nb 1.5 10’
tt 800 pb 0.8 10’
bb 500 ub 10° 10%
ga(M; =1TeV) 1pb 10 3 10°
Hy, (M =0.8TeV) | 1pb 10 3 10°
QCDjets 100 nb 10° 10°
p, > 200 GeV
Direct Higgs production o
gg fusion or vector boson fusion: ag fusion

Need high p leptons or photons
from Higgs decay

Huge QCD background for
channels with jets

Associated Higgs production
High p+ leptons from top decays used
for triggering
Top reconstruction used for QCD

background suppression
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Useful

for M, < 140 GeV

low luminosity running: use direct production (utilize high p+
photons ) - large signal, low S/B

high luminosity running: add contributions from associated
production, WH, ZH, ttH (utilize reconstruction of associated
particle(s)) = small signal, good S/B

Backgrounds

44 (irreducible)

o, ~3pb > need Owm,~1%

71+]) (reducible) o ~1060'W > need R; > 10

Events/ 2 Gev

12500

1000 L1

| |
105 120 135
m_ (GeV)

g
|

M,, = 120 GeV
100 fb-?

g

8

signal
oxBR ~ 50fb

Signal-background, events/ 2 GeV

105 120 135
m_ (GeV)

Sets severe requirements of the performance of the ATLAS
electromagnetic calorimetry
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77 ATLAS
H—yy (m,=100 GeV, L=10%*)
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Largest BR for low mass Higgs, but huge QCD background

Use associated production with full reconstruction of both top
guarks (allows triggering and background suppression)

\ Dominant — can be

Both top quarks reconstructed measured in tt production

g

ATLAS 100 fb!

it
i

Events/ 16 GeV

g

ATLAS 30 fb i 'IL Jr _I_

! Y
Hig gs mass (GeV) 80 100 120 50 |- /I + + _|_
— ]
Signal S 81 61 40 i _4’_ ++
/
ttz 7 8 2 -/ + ++‘|?+ -+
/ ~
4 +
Wijjiii 17 12 5 0 Cooo b b
~ 0 100 200 300
ttjj 121 130 120 m, (GeV)
Total backgr ound B 145 150 127
s/ 056 041 032 S/B ~ 0.25
s/./B 6.7 5.0 36
y S/ B x4
SH - bi”S total 0.67 0.64 0.59

Sets stringent requirements on b-tagging performance at
high luminosity
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3 years of running at low luminosity

3]
c ® H - vy
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5 = H o> wwO Sy
D 102 - H - ZZ — llvw
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Full coverage of mass region with significance > 5o

Needs combined channels for discovery at low M,,

Multiple discovery channels for M, > 300 GeV
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1 year running at high luminosity

® H—-vyy + WH,ttH(H — vv)
m ttH (H — bb)
s H - 220 - a4
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10
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NB H—yy now -1

includes associated

1 | |

10 10°
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Multiple discovery channels for all M,,
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nh— yy

h— »y and tth,h — bb very important in search
for lightest MSSM Higgs (as they are for Hg,,)

Mgysy ~ 1 TeV

Tl N\ A Higgs properties are function
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of (M ,,tan ) only
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Three years of running at low luminosity

Q >0 N\ =
840 % t—=>bH", H —> 11 _
+ NEJVTN ATLAS H/A important
30 ¢ NE I K SLdt =30 fb™  for high tan
N\ — ]
20 o \\\\\ —
AR
o L [\ - Unexcluded
: j LEP2 region with
Vs = 200 GeV
7 . JSLdt = 200 pb~! moderate
: (M, tan 3)
. tth, h—>bb LEP2
/ vs = 189 GeV
4
=175p
3 A JLdt = 175 pb
A—>Zh —>lIbb \
_ \ Wh —> lbb
’ N {5 Z
WP \ / A / H — tt
Rt — hh = bby 7 |
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Combined ATLAS/LEP2 exclusion for most of the (M, ,tan 3) plane

Region with moderate (M,,tan 8) remains unexcluded
N.B. LEP2 exclusion for 200 pb-t/ expt at 200 GeV so should be
conservative
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Three years running at high luminosity
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Multiple channel coverage for most the plane
Most important channels h — 7y and tth,h — bb
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Reduce number of SUSY free parameters

Assume SUSY broken in some hidden sector at high energy
SUSY breaking “mediated” to visible sector via some interaction

Two popular scenarios with different phenomenologies:

Gravity-mediated Phenomenology dictated LSP

Gravitino ¢ very heavy, phenomenologically unimportant

MSUGRA: 5 parameter model, assumes parameter
unifications at GUT scale

m, Common scalar mass at unification scale
m,,, Common gaugino mass at unification scale

tanf  Ratio of Higgs vevs
AO

sign(u)

Gauge-mediated Phenomenology dictated NLSP
/

Gravitino isthe LSP! My <<1MeV Next to lightest SUSY particle
NLSP can have short or long decay length
Minimal model studied by ATLAS has 6 parameters

P.Krieger CAP Congress, York University, 19
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10°

o(pb) |
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pp collisionsat E, =14 TeV %
g

sum(qq +qg + gg)

a = g
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gluino massMa [GeV]

I*1I- jet jet + missing
E; final state

P.Krieger

Signature channels

X

0l | Jets+ missing E;

11 | 1lepton + jets +
- missing E;
21 | 2leptons + jets +

v missing energy SS, OS

31 | 3leptons + jets +
missing energy

2 (3) | 2 or 3 leptons with jet
1,0j | veto+ missing E;

Search channels for direct
gaugino or slepton production
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LHC studies choose 5 representative points in parameter space
Two shown here in red
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Mass reach defined by > 10 signal events with S/+/B >5

For jets + missing energy, mass reach for squarks and
gluinos extends to > 2 TeV

In multilepton channels reach extends to > 1 TeV

Weak scale SUSY easily discovered. Dominant background to
a given process is from other SUSY processes

P.Krieger
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Most significant difference phenomenlogically is ~ massless LSP

Phenomenology dictated by:
NLSP (usually either 7° Gy or 1° >GI* )

Scale of SUSY breaking (one of model parameters)
dictates the gravitino mass and the NLSP lifetime

NLSP lifetime .
NLSP short intermediate long
7?10 photons + E; non-pointing photons + E. As in SUGRA

leptons + E. kinked charged tracks + .| Long lived heavy
| charged particles

—

Unusual signatures in case of intermediate 7 sp

Scenarios have especially low standard model backgrounds

Discovery generally straightforward

Parameter determination trickier (as for SUGRA)

P.Krieger CAP Congress, York University, 23
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7 LHC Point 5
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H.,, coupling to gauge bosons increases with increasing mass
*Resonance wider

sinteraction stronger -> eventual violation of unitarity limit

No fundamental scalar ?

*Need new physics to EW symmetry breaking,
regularization of vector boson couplings and fermion
mass generation

Study V,V, = V_ V, scattering (longitudinal gauge bosons are
goldstone bosons of symmetry breaking process)

Forward-jet tagging important

% 20 L WZ, cle -
O 15 % 2+ jets Sensitivity to WZ resonance
10 —
S Y 4 T shown for My, = 1.2, 1.5 TeV
O T e I - for 300 b1
o 1000 1200 1400 1600 1800
m;(GeV)
% 10
O 75 Fama + Non-resonant V V
S 5 EBTEE + ;
S s E ++ searches more challenging
L% ° 100 1200 1400 1600 1800
m;(GeV)
P.Krieger CAP Congress, York University, 25

June 2000



*Technicolour

*Additional gauge bosons

«Compositeness, leptoquarks, excited quarks
*Monopoles

*R-parity violating SUSY (baryon, lepton number
violating decays)

P.Krieger CAP Congress, York University, 26
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Recall hierarchy problem w™m_, /M . ~107"

planck

Postulate M, effective energy scale, not fundamental

planc

Assume existence of n compact spatial dimensions of
(compactified) radius R

M2+n r Mn+2 Rn

pI(4+n) pl(4+n)

1
V(r)= mm, . 7 (r<<R) V(r):{ mm, 1 }E (r >>R)
r

Effective 4-dim planck M, is then given by M2, . =M75  R"

planck pl(4+n)
Requiring My 4.y ~ Mgy, 2 R~ 10G9-17 ¢m

Various constraints on models with compactification

n=1-> R=108cm (cosmologically excluded)

n=2 > R ~ 01-10mm (unexcluded by tests of 1/r?
nature of gravitation, but excluded by SN1987)

Collider limits from missing energy searches (next slide)

P.Krieger CAP Congress, York University, 27
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Model of Arkani-Hamed, Dimopoulos and Dvali:
only gravitons propogate freely in the “bulk”

Massless gravitons in 4+n dim - massive KK
gravitons G,, in 4D  ===p  Missing energy signature

Possible signatures at LHC °
op > G, +jet  moncjet —— \ !

p—->G,, +y °
p->G6G,,+2Z

Non-kinematic high p; cutoff

Other particles localized within 1/Mg,, in the extra n dimensions

In sufficiently hard collisions E_. > Mg, particles can
acquire momentum in the extra dimensions and disappear
from the 4D world - upper limit for p; distributions at

pT = EESC

Such particles may or may not periodically return to and
deposit energy in the 4D world

P.Krieger CAP Congress, York University, 28
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Ketth MeversThe New York Tim
Dr, Lisa Randall and Dr. Raman Sundrum, superstring theorists who portray the
universe as one of many bubbles floating inside a four-dimensional megaverse,

Physicists Finally Find a Way
To Test Superstring Theory

The idea, if correct,
explains the universe.

By GEORGE JOHNSON

For a quarter of a century, superstring the-
ory has promised that the universe could be
understood more deeply than ever before, with
all the forces unified into one, if it were seen in
4 startling new light — as a kind of mathemati-
cal music played by an orchestra of tiny vibrat-
ing strings. Each note in this cosmic symphony
would represent one of the many different
kinds of particles that make up matter and
ENergy.

But despite hernic efforts 0 keep this
strange vision alive, with one mathematical
embellishment after another, a seemingly fatal
credibility problem has remained: no one has
been able to figure out how to test the idea with
experiments,

To give the strings enough wiggle room to
carry out their virtuoso performance, theorists
have had to supplement the familiar three
dimensions of space with six more — curled up
=0 tiny that they would be explorable only with
absurdly high-powered particle accelerators
the size of an entire galaxy. 1t's a fact of life on
the subatomic realm that smaller and smaller

distances take higher and higher energies to
probe.

In the last few months, however, new ideas
emerging from the theoretical workshops offer
some hope of connecting the alry speculations
to reality. Physicists are proposing a revised
view in which at least one of the extra dimen-
sions is vastly larger — large enough perhaps
tobe indirectly detected with existing accelera-
tors,

“This is a field day for the experimenters,”
said Dr. Joseph Lykken, a theoretical physicist
at Fermi National Accelerator Laboratory in
Batavia, Il “Now there are all these things
they can look for.” In fact, he ventured, it is
conceivable that experimenters have already
found subtle hints of other dimensions. They
Just have had no way of appreciating what they
were seeing.

Though human brains are not wired to pic-
ture a world beyond the familiar three dimen-
sions of space, one can begin to overcome this
myuopia by pretending 1o be antlike creatures in
a two-dimensional fantasy world like the one in
Edwin A. Abbott's story “'Flatland." Confined
to the surface of a plane, the Flatlanders can
move left and right or forward or backward,
but the idea of up and down is inconceivable to
them,

Mow suppose this two-dimensional world
were rolled into a long tube. The Flatlanders
could still move in only two directions — along
or arcund the outside surface of their seda

Continued on Page 10

Randall and Sundrum: can derive the same relationship
between a higher dimensional planck mass and the one of
our 4-dim world WITHOUT compactification. Evades some
astrophysical constraints on compactified models.

P.Krieger
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Exciting times ahead !

LEP provided

Promise of precision tests of the SM
Hope for new physics discoveries

LHC will provide

Promise of discovery
Initial parameter determination

=) precision tests will be done at NLC
Provided they exist, we will observe
SM Higgs or MSSM Higgs (h)

Weak Scale Supersymmetry

Sensitivity also to other anticipated new physics
not discussed here

Possibly (or even probably ?) we may
discover something entirely unexpected

P.Krieger CAP Congress, York University, 30
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