

Physics at the TeV Scale Discovery Prospects Using the ATLAS Detector at the LHC

Peter Krieger Carleton University

Physics Motivations

- Experimental
- Theoretical

New particles searches

- •Standard Model Higgs Boson
- •Higgs Particles of Supersymmetric Extensions to the SM
- •Supersymmetric Particles

Other Scenarios

•Large Extra Dimensions

Summary

ATLAS and the LHC

Large Hadron Collider: proton proton collisions at $\sqrt{s} = 14 TeV$

$$\label{eq:L_peak} \begin{split} L_{peak} &= 10^{33} \ cm^{-2} s^{-1} & 2005\text{-}2008 & \text{``Low luminosity running''} \\ L_{peak} &= 10^{34} \ cm^{-2} s^{-1} & 2009\text{-}? & \text{``High luminosity running''} \end{split}$$

20 minimum bias events per crossing at high luminosity

Some physics quantities (e.g. b-tagging efficiency) degraded at high luminosity

The Standard Model

P.Krieger

Beyond the Standard Model

Hierarchy problem (2 fundamental energy scales)

 $\mathbf{M}_{\mathbf{EW}} / \mathbf{M}_{\mathbf{planck}} \approx 10^{-17}$

Naturalness problem radiative corrections to Higgs mass squared $\propto \Lambda^2$ where Λ is the energy scale to which the theory remains valid \rightarrow fine tuning problem with Higgs mass: can be resolved by

New physics at the TeV scale $\Lambda \approx 1 \text{TeV}$

OR

A symmetry protecting the Higgs mass against large radiative corrections (Supersymmetry)

If Higgs not discovered with mass < 800 GeV expect the dynamics of WW, ZZ scattering to reveal new structure energies ≈ 1 TeV

Must see something new at energies ≤ 1 TeV

Supersymmetry (SUSY)

For each SM fermion (boson) there is a bosonic (fermionic) supersymmetric partner with identical mass and couplings

Charged (neutral) gauginos and Higgsinos mix to form charginos (neutralinos)

$$\tilde{\chi}_{\mathbf{i}=1,2}^{\pm}$$
 $\tilde{\chi}_{\mathbf{j}=1,2,3,4}^{0}$ ordered by mass

R-parity quantum number distinguishes SM and SUSY particles Conventional to assume R-parity conservation

SUSY particles must be produced in pairs

Must be a lightest SUSY particle (LSP) which cannot decay

Usually the lightest neutralino $\tilde{\chi}_1^0 \implies$ good CDM candidate

Experimental signature: large missing transverse energy E_T

Supersymmetry

Supersymmetry must be a broken symmetry

there is no \tilde{e} with $M_{\tilde{e}} = M_{e}$

many model parameters (105 extra for MSSM)

SUSY solves the naturalness problem if $M_{susy} < 1 \text{ TeV}$ Allows for gauge coupling unification if $M_{susy} < 1 \text{ TeV}$ SUSY with $M_{SUSY} < 1$ TeV is called Weak-Scale SUSY

SUSY can provide dynamical EW symmetry breaking

SUSY may allow unification with gravity (all string theories are inherently supersymmetric)

MSSM Higgs Sector

Two Higgs doublets \rightarrow 5 physical Higgs bosons

$$\mathbf{h}^{0}, \mathbf{H}^{0}, \mathbf{A}^{0}, \mathbf{H}^{\pm}$$

Assume $M_{SUSY} \sim 1$ TeV so Higgs \rightarrow SUSY kinematically forbidden All masses and couplings then given as $f(\tan \beta, M_A)$

NB: for moderate $(\mathbf{M}_{A}, \tan \beta)$ or $\mathbf{M}_{A} > 500 \text{ GeV}$ only \mathbf{h}^{0} is observable

P.Krieger

Higgs Discovery at Tevatron RUN II

$p\overline{p} \rightarrow WH \rightarrow l\nu b\overline{b}$ $p\overline{p} \rightarrow ZH \rightarrow l^{+}l^{-}b\overline{b}$ $p\overline{p} \rightarrow ZH \rightarrow \nu \overline{\nu} b\overline{b}$

Combined Results(WH+ZH) 60 Required Luminosity (fb 50 Standard cuts (5 σ) NN cuts (5 σ) 40 **CDF** 30 20 10 0 125 130 85 90 95 105 110 115 120 135 100 $M_{H} (GeV/c^{2})$

Int. luminosity target for Run II 15-20 fb⁻¹/ expt. Prior to start of LHC

5 year running \rightarrow **3-5** σ for M_H \leq **130** GeV

SM Higgs Properties

Large QCD backgrounds: look for final states with high- p_T leptons and photons

Important channels:

$$\begin{array}{l} \text{low mass} & \left\{ \begin{array}{l} \mathbf{H} \to \gamma \gamma \\ \mathbf{H} \to \mathbf{b} \overline{\mathbf{b}} \end{array} \right. \\
\text{intermediate mass} & \left\{ \begin{array}{l} \mathbf{H} \to \mathbf{Z} \mathbf{Z}^{(*)} \to \mathbf{l}^+ \mathbf{l}^- \mathbf{l}^+ \mathbf{l}^- \\ \mathbf{H} \to \mathbf{W} \mathbf{W}^{(*)} \to \mathbf{l}^+ \nu \ \mathbf{l}^- \nu \end{array} \right. \\
\text{high mass} & \left\{ \begin{array}{l} \mathbf{H} \to \mathbf{Z} \mathbf{Z} \to \mathbf{l}^+ \mathbf{l}^- \nu \nu \\ \mathbf{H} \to \mathbf{Z} \mathbf{Z} \to \mathbf{l}^+ \mathbf{l}^- \nu \nu \\ \mathbf{H} \to \mathbf{W} \mathbf{W} \to \mathbf{l} \nu \end{array} \right. \\
\end{array}$$

P.Krieger

Higgs Production at LHC

Production cross-sections at the LHC

σ	Events / sec	Event / year
15 nb	15	10 8
1.5 nb	1.5	10 7
800 pb	0.8	10 7
500 μ b	10 5	10 ¹²
1 pb	10 -3	10 4
1 pb	10 ⁻³	10 4
100 nb	10 ²	10 ⁹
	σ 15 nb 1.5 nb 800 pb 500 μb 1pb 1pb 100 nb	σ Events / sec15 nb151.5 nb1.5800 pb0.8500 μ b10 51pb10 -31pb10 -3100 nb10 2

Direct Higgs production

gg fusion or vector boson fusion:

Need high p_T leptons or photons from Higgs decay

Huge QCD background for channels with jets

Associated Higgs production

High $p_{\rm T}$ leptons from top decays used for triggering

Top reconstruction used for QCD

background suppression

P.Krieger

Useful for $M_H < 140 \text{ GeV}$

low luminosity running: use direct production (utilize high p_T photons) \rightarrow large signal, low S/B

high luminosity running: add contributions from associated production, WH, ZH, $t\bar{t}H$ (utilize reconstruction of associated particle(s)) \rightarrow small signal, good S/B

Backgrounds

Sets severe requirements of the performance of the ATLAS electromagnetic calorimetry

P.Krieger

P.Krieger

$t\bar{t}H, H \rightarrow b\bar{b}$

Largest BR for low mass Higgs, but huge QCD background

Use associated production with full reconstruction of both top quarks (allows triggering and background suppression)

Backgrounds from ttZ, Wjjjjjj ttjj etc., (see below)

Sets stringent requirements on b-tagging performance at high luminosity

P.Krieger

SM Higgs Sensitivity 30 fb⁻¹

3 years of running at low luminosity

Full coverage of mass region with significance > 5 σ Needs combined channels for discovery at low M_H Multiple discovery channels for M_H > 300 GeV

P.Krieger

SM Higgs Sensitivity 100 fb⁻¹

1 year running at high luminosity

Multiple discovery channels for all M_H

Search for MSSM Higgs Bosons

 $h \rightarrow \gamma \gamma$ and $t\bar{t}h, h \rightarrow b\bar{b}$ very important in search for lightest MSSM Higgs (as they are for H_{SM})

MSSM Higgs Sensitivity 30fb⁻¹

Three years of running at low luminosity

Combined ATLAS/LEP2 exclusion for most of the $(M_A, \tan \beta)$ **plane Region with moderate** $(M_A, \tan \beta)$ **remains unexcluded**

N.B. LEP2 exclusion for 200 pb⁻¹/ expt at 200 GeV so should be conservative

P.Krieger

CAP Congress, York University, June 2000 17

MSSM Higgs Sensitivity 300 fb⁻¹

Three years running at high luminosity

Full coverage of the $(M_A, \tan \beta)$ plane Multiple channel coverage for most the plane Most important channels $\mathbf{h} \to \gamma \gamma$ and $t\bar{t}h, \mathbf{h} \to b\bar{b}$

Reduce number of SUSY free parameters

Assume SUSY broken in some hidden sector at high energy SUSY breaking "mediated" to visible sector via some interaction

Two popular scenarios with different phenomenologies:

Gravity-mediated

Phenomenology dictated LSP

Gravitino \tilde{G} very heavy, phenomenologically unimportant

MSUGRA: 5 parameter model, assumes parameter unifications at GUT scale

 \mathbf{m}_0 Common scalar mass at unification scale $\mathbf{m}_{1/2}$ Common gaugino mass at unification scale $\tan \beta$ Ratio of Higgs vevs \mathbf{A}_0 Image: Sign(μ)

SUGRA

5 points in MSUGRA parameter space chosen for study

Mass points shown in red

Coverage shown for various lepton and/or jet + missing energy signals

SUSY Searches (SUGRA)

LHC studies choose 5 representative points in parameter space Two shown here in red

Mass reach defined by ≥ 10 signal events with $S/\sqrt{B} > 5$

For jets + missing energy, mass reach for squarks and gluinos extends to > 2 TeV

In multilepton channels reach extends to > 1 TeV

Weak scale SUSY easily discovered. Dominant background to a given process is from other SUSY processes

SUSY Searches (GMSB)

Most significant difference phenomenlogically is ~ massless LSP

Phenomenology dictated by:

NLSP (usually either $\widetilde{\chi}_1^0 \to \widetilde{\mathbf{G}}\gamma$ or $\widetilde{\mathbf{I}}^{\pm} \to \widetilde{\mathbf{G}}\mathbf{l}^{\pm}$)

Scale of SUSY breaking (one of model parameters) dictates the gravitino mass and the NLSP lifetime

NLSP lifetime

NLSP	short	intermediate	long
$\widetilde{oldsymbol{\chi}}_1^0$	photons + \mathbf{E}_{T}	non-pointing photons + \mathbf{E}_{T}	As in SUGRA
ĩ	leptons + E _T	kinked charged tracks + \mathbb{E}_{T}	Long lived heavy charged particles

Unusual signatures in case of intermediate $\tau_{\rm NLSP}$

Scenarios have especially low standard model backgrounds

Discovery generally straightforward

Parameter determination trickier (as for SUGRA)

Estimate of M_{SUSY} in jets + missing energy channel

 $\boldsymbol{M}_{eff} = \boldsymbol{E}_{T}^{miss} + \boldsymbol{p}_{T}^{1} + \boldsymbol{p}_{T}^{2} + \boldsymbol{p}_{T}^{3} + \boldsymbol{p}_{T}^{4}$

P.Krieger

Heavy Higgs

H_{SM} coupling to gauge bosons increases with increasing mass

•Resonance wider

•interaction stronger \rightarrow eventual violation of unitarity limit

No fundamental scalar ?

•Need new physics to EW symmetry breaking, regularization of vector boson couplings and fermion mass generation

Study $V_L V_L \rightarrow V_L V_L$ scattering (longitudinal gauge bosons are goldstone bosons of symmetry breaking process)

Many Other Searches

- •Technicolour
- •Additional gauge bosons
- •Compositeness, leptoquarks, excited quarks
- •Monopoles

•R-parity violating SUSY (baryon, lepton number violating decays)

Large Compact Extra Dimensions

Recall hierarchy problem $M_{EW} / M_{planck} \sim 10^{-17}$

Postulate M_{planck} effective energy scale, not fundamental

Assume existence of n compact spatial dimensions of (compactified) radius R

$$\mathbf{V}(\mathbf{r}) = \frac{\mathbf{m}_{1}\mathbf{m}_{2}}{\mathbf{M}_{pl(4+n)}^{2+n}} \bullet \frac{1}{\mathbf{r}^{n+1}} \qquad (\mathbf{r} \ll \mathbf{R}) \qquad \mathbf{V}(\mathbf{r}) = \left\{ \frac{\mathbf{m}_{1}\mathbf{m}_{2}}{\mathbf{M}_{pl(4+n)}^{n+2}} \bullet \frac{1}{\mathbf{R}^{n}} \right\} \frac{1}{\mathbf{r}} \qquad (\mathbf{r} \gg \mathbf{R})$$

Effective 4-dim planck M_{planck} is then given by $M_{planck}^2 = M_{pl(4+n)}^{n+2} R^n$ Requiring $M_{pl(4+n)} \sim M_{EW} \rightarrow R \sim 10^{(30/n)-17}$ cm

Various constraints on models with compactification

 $n = 1 \rightarrow R = 10^{13} \text{ cm}$ (cosmologically excluded)

 $n = 2 \rightarrow R \sim 0.1 - 1.0 \text{ mm}$ (unexcluded by tests of $1/r^2$ nature of gravitation, but excluded by SN1987)

Collider limits from missing energy searches (next slide)

P.Krieger

Large Compact Extra Dimensions

Model of Arkani-Hamed, Dimopoulos and Dvali: only gravitons propogate freely in the "bulk"

Massless gravitons in 4+n dim \rightarrow massive KK gravitons G_M in 4D \longrightarrow Missing energy signature

Non-kinematic high p_T cutoff

Other particles localized within $1/M_{EW}$ in the extra n dimensions

In sufficiently hard collisions $E_{esc} > M_{EW}$ particles can acquire momentum in the extra dimensions and disappear from the 4D world \rightarrow upper limit for p_T distributions at

 $\mathbf{p}_{\mathrm{T}} = \mathbf{E}_{\mathrm{esc}}$

Such particles may or may not periodically return to and deposit energy in the 4D world

Constraint Evasion !

Dr. Lisa Randall and Dr. Raman Sundrum, superstring theorists who portray the universe as one of many bubbles floating inside a four-dimensional megaverse.

Physicists Finally Find a Way To Test Superstring Theory

The idea, if correct, explains the universe.

By GEORGE JOHNSON

For a quarter of a century, superstring theory has promised that the universe could be understood more deeply than ever before, with all the forces unified into one, if it were seen in a startling new light — as a kind of mathematical music played by an orchestra of tiny vibrating strings. Each note in this cosmic symphony would represent one of the many different kinds of particles that make up matter and energy.

But despite heroic efforts to keep this strange vision alive, with one mathematical embellishment after another, a seemingly fatal credibility problem has remained: no one has been able to figure out how to test the idea with experiments.

To give the strings enough wiggle room to carry out their virtuoso performance, theorists have had to supplement the familiar three dimensions of space with six more — curled up so tiny that they would be explorable only with absurdly high-powered particle accelerators the size of an entire galaxy. It's a fact of life on the subatomic realm that smaller and smaller distances take higher and higher energies to probe.

In the last few months, however, new ideas emerging from the theoretical workshops offer some hope of connecting the airy speculations to reality. Physicists are proposing a revised view in which at least one of the extra dimensions is vastly larger — large enough perhaps to be indirectly detected with existing accelerators.

tors. "This is a field day for the experimenters," said Dr. Joseph Lykken, a theoretical physicist at Fermi National Accelerator Laboratory in Batavia, III. "Now there are all these things they can look for." In fact, he ventured, it is conceivable that experimenters have already found subtle hints of other dimensions. They just have had no way of appreciating what they were seeing.

Though human brains are not wired to picture a world beyond the familiar three dimensions of space, one can begin to overcome this myopia by pretending to be antlike creatures in a two-dimensional fantasy world like the one in Edwin A. Abbott's story "Flatland." Confined to the surface of a plane, the Flatlanders can move left and right or forward or backward, but the idea of up and down is inconceivable to them.

Now suppose this two-dimensional world were rolled into a long tube. The Flatlanders could still move in only two directions — along or around the outside surface of their seda Continued on Page 10

Randall and Sundrum: can derive the same relationship between a higher dimensional planck mass and the one of our 4-dim world WITHOUT compactification. Evades some astrophysical constraints on compactified models.

Summary

Exciting times ahead !

LEP provided

Promise of precision tests of the SM Hope for new physics discoveries

LHC will provide

Promise of discovery Initial parameter determination

→ precision tests will be done at NLC

Provided they exist, we will observe

SM Higgs or MSSM Higgs (h⁰)

Weak Scale Supersymmetry

Sensitivity also to other anticipated new physics not discussed here

Possibly (or even probably ?) we may discover something entirely unexpected