Searches for Prompt Light Gravitino Production

Peter Krieger, Carleton University, Ottawa Canada, for the OPAL Collaboration

- SUSY models with light gravitinos
- Gauge-Mediated Supersymmetry Breaking

- GMSB signatures with lifetime
- Summary

SUSY models with a Light Gravitino

- Some SUSY models predict that the LSP is an almost massless gravitino (models with gauge-mediated supersymmetry breaking, no-scale supergravity)
- Richest phenomenology is from GMSB models

R-parity conservation assumed throughout this talk

Experimental Signatures

Scale of SUSY breaking $\sqrt{F}\,$ determines $\,\widetilde{G}\,$ mass and NLSP lifetime

$$\mathbf{M}_{\tilde{\mathbf{G}}} \cong 2.37 \times 10^{-2} \left(\frac{\sqrt{\mathbf{F}}}{10 \text{ TeV}} \right)^2 \, \mathbf{eV} \qquad \mathbf{c} \, \tau(\mathbf{NLSP}) \cong \left(\frac{\mathbf{M}_{\mathbf{NLSP}}}{100 \, \mathbf{GeV}} \right)^{-5} \left(\frac{\sqrt{\mathbf{F}}}{10 \, \mathbf{TeV}} \right)^4 \, \mu \mathbf{m}$$

Phenomenology dictated by the NLSP (usually either $\tilde{\chi}_1^0$ or $\tilde{\mathbf{I}}^{\pm}$) and on NLSP lifetime (decay length w.r.t detector volume)

Experimental Signatures

Contriubute to exclusion regions from GMSB scan

NLSP Pair Production
 Other sparticle pair production, associated pair production

Peter Krieger, Carleton University

Neutralino NLSP Pair Production

Acoplanar photons $\mathbf{e}^{+}\mathbf{e}^{-} \rightarrow \widetilde{\chi}_{1}^{0}\widetilde{\chi}_{1}^{0} \rightarrow (\widetilde{\mathbf{G}}\gamma)(\widetilde{\mathbf{G}}\gamma) \implies \gamma\gamma + \mathbf{E}_{\mathrm{T}}$ Irreducible SM background from $e^+e^- \rightarrow \nu \overline{\nu} \gamma \gamma$ Large fraction of signal contribution expected at M_{recoil} values well below the Z peak Selected events can be classified according to maximum mass for which they remain kinematically consistent with the above decay sequence $(\mathbf{M}_{\mathbf{x}}^{\max})$ OPAL published results from \sqrt{S} =189 GeV Selection Selection efficiency M_v(GeV) Νννγγ N_{data} with $\mathbf{M}_{\mathbf{x}}^{\max} > \mathbf{M}_{\mathbf{x}} - 5 \mathbf{GeV}$ Efficiency (%) 50 70.2 +/- 1.2 67.7 +/- 1.3 14 13.67 +/- 0.20 10.05 +/- 0.18 60 74.0 +/- 1.1 71.1 +/- 1.2 11 70 71.4 +/- 1.2 69.2 +/- 1.2 9 7.22 +/- 0.15 80 72.3 +/- 1.2 68.7 +/- 1.4 4.81 +/- 0.13 7 90 71.3 +/- 1.2 67.5 +/- 1.3 5 2.40 +/- 0.09 94 1.34 +/- 0.07 72.2 +/- 1.2 70.4 ± 1.2 3

Update of OPAL Acoplanar Photons Selection

No evidence for non-Standard Model contributions (especially in low recoil-mass region)

Other Channels: Neutralino NLSP

Other production channels:

Separate selections into high/low multiplicity parts (depending on W,Z final states)

Efficiencies depend on mass-difference of NLSP and produced particles

Limits in $[\mathbf{M}(\mathbf{X}), \mathbf{M}(\widetilde{\boldsymbol{\chi}}_1^0)]$ plane: $\mathbf{X} = \widetilde{\mathbf{l}}^+, \widetilde{\boldsymbol{\chi}}_1^+, \widetilde{\boldsymbol{\chi}}_2^0$

Other Channels: Neutralino NLSP

~ model independent cross-section limits at $\sqrt{s} = 189 \, GeV$

Peter Krieger, Carleton University

Other Channels: Neutralino NLSP (Update)

 $\sqrt{\mathbf{S}} = 205.5 \, \mathbf{GeV}$ ~ model independent cross-section limits at

0.5 + - 0.20.7 +/- 0.2 N_{SM}(MC) N(data) 2 $10 \, \text{GeV} - M(\bar{I})/2$ $3 - 10 \, GeV$ $M(\tilde{I}) - M(\chi)$ For slepton co-NLSP scenario with large $\mathbf{M}(\mathbf{\tilde{I}}) - \mathbf{M}(\mathbf{\tilde{\chi}}_1^0)$ see 4 events where 1.3 + - 0.3 are expected from SM

Peter Krieger, Carleton University

DPF 2000, Columbus Ohio

6

1.3 + - 0.3

4

 $M(\tilde{I})/2-M(\tilde{I})$

2/4 events have a single high-energy photon consistent with radiative return to the Z⁰

Other 2 each have 2 high energy photons (55 GeV, 22 GeV) (42 GeV, 40 GeV)

Background in this kinematic regime is essentially $\mathbf{e}^+\mathbf{e}^- \rightarrow \tau^+\tau^-\gamma\gamma$

Prob of two events with 2 photons > 20 GeV estimated from $\mathbf{e}^+\mathbf{e}^- \rightarrow \tau^+\tau^-\gamma\gamma$ Monte Carlo (assuming only SM background)

Prob ~
$$3 \ge 10^{-4}$$

on
cti
npo
Pro
iii
P
SP
Ĩ
n
oto
let
\mathbf{v}

Acoplanar leptons

$e^+e^- \rightarrow \widetilde{I}^+\widetilde{I}^- \rightarrow (l^+\widetilde{G})(l^-\widetilde{G}) \longrightarrow l^+l^- + E_T$

Large irreducible SM background from W pair production

100 100 U 4

		01-001 10 0			771-271					
	se	ectrons			smuons		_	staus		
Mass	Limit	Expected Limit	CL(%)	Limit	Expected Limit	CL(%)	Ν	Expected Limit	CL(%)	$\sqrt{\mathbf{S}} = 189\mathbf{GeV}$
45 GeV	81.4	81.9	38.2	83.5	50.6	3.4	115.4	118.2	40.6	$\int \mathbf{L} = 181.0 \ \mathbf{ph}^{-1}$
65 GeV	85.8	76.0	24.9	88.8	52.9	3.9	86.1	112.4	67.4	
85 GeV	64.0	71.1	51.2	43.5	56.7	71.3	81.3	113.7	73.3	
94 GeV	34.5	38.8	56.0	34.7	39.5	57.1	87.6	114.0	69.6	
										Good consistency with

Peter Krieger, Carleton University

DPF 2000, Columbus Ohio

Standard Model

DPF 2000, Columbus Ohio

Peter Krieger, Carleton University

12

GeV				$\sqrt{\mathbf{s}} = 200 - 209 \mathbf{GeV}$	$\sqrt{\mathbf{b}} = 83.1 \mathbf{p} \mathbf{b}^{-1}$		Good consistency with Standard Model		13
5.5		` ``		CL(%)	34.5	56.5	L.LL	71.7	_
n @ 20	background	- poisson probabilit	staus	N _{SM} (MC)	11.99 +/- 0.23	14.16 +/- 0.27	14.25 +/- 0.26	13.68 +/- 0.24	Ohio
tion	S ≤ neutralino mass (GeV) sea 2 8 8 3 5 8 8 3 5 8 8 5 9 5 10 5			Z	10	8	8	8	lumbus
oduc		au mass (Ge ¹		CL(%)	89.9	74.3	61.3	46.8	1 2000, Co
air Pro	(Vo2) assmonifertuan	(VəĐ) szam onilartuən 5 8 8 4 8 0 8 8 8 4 8 0	smuons	N _{SM} (MC)	3.68 +/- 0.09	4.37 +/- 0.13	3.11 +/- 0.09	1.17 +/- 0.05	DPF
РР		ity		N	2	1	2	0	ty
NLS	ground 80 00 mass (Ge [*]	son probabil data		CL(%)	47.6	41.8	65.8	82.9	Universi
Slepton 1	B mass (GeV)	[10 ⁻¹] → point (GeV) (GeV) (from OPAL 2000	selectrons	N _{SM} (MC)	16.51 +/-0.25	20.45+/- 0.25	11.22 +/- 0.17	2.63 +/- 0.08	ieger, Carleton
		80 n mass (results		Z	15	20	11	1	ter Kr
	neutralino mass (GeV)	Preliminary 0 8 8 8 8 8 8 8 8 8 8 9 9 8 8 8 9 9 9 9		Mass	50 GeV	70 GeV	90 GeV	101 GeV	Pet

Other Channels: Slepton NLSP

Other production channels

Final states with 4 or 6 leptons + missing energy

Slepton co-NLSP

$\mathbf{e}^{^{+}}\mathbf{e}^{^{-}} \rightarrow \widetilde{\chi}_{1}^{^{0}}\widetilde{\chi}_{1}^{^{0}} \rightarrow (\widetilde{\mathbf{l}}^{^{\pm}}\mathbf{l}^{^{\mp}})(\mathbf{l}'^{^{\pm}}\mathbf{l}'^{^{\mp}}) \rightarrow \mathbf{l} \mathbf{l} \mathbf{l}' \mathbf{l}' \ \widetilde{\mathbf{G}}\widetilde{\mathbf{G}}$

 $\widetilde{\chi}_1^0$ is a Majorana fermion: can lead to same sign for two highest

energy leptons (i.e. those from the slepton decays)

fractions assumed Equal branching

Stau NLSP

 $\tau\tau\tau\tau+\mathbb{K}_{\pi}$ $\mathbf{e}^{\scriptscriptstyle +}\mathbf{e}^{\scriptscriptstyle -} \rightarrow \widetilde{\chi}^{\scriptscriptstyle 0}_{\scriptscriptstyle 1}\widetilde{\chi}^{\scriptscriptstyle 0}_{\scriptscriptstyle 1} \rightarrow (\widetilde{\tau}^{\scriptscriptstyle \pm}\tau^{\scriptscriptstyle \mp})(\widetilde{\tau}^{\scriptscriptstyle \pm}\tau^{\scriptscriptstyle \mp}) \rightarrow \tau\tau\tau\tau ~\widetilde{\mathbf{G}}\widetilde{\mathbf{G}}$

 $|\mathbf{l}^+|^- \tau \tau \tau \tau + \mathbf{E}_{\mathbf{T}}$ $\mathrm{e}^{^+\mathrm{e}^-}
ightarrow \widetilde{\mathrm{I}}^{^+}\widetilde{\mathrm{I}}^{^-}
ightarrow (\mathrm{I}^{^+}\widetilde{ au}\, au) (\mathrm{I}^{^-}\widetilde{ au}\, au)
ightarrow \mathrm{I}^{^+\mathrm{I}}^{^-} au au au)$

DPF 2000, Columbus Ohio

14

 $I \equiv e, \mu$

Other Channels: Slepton NLSP

~ model independent cross-section limits at $\sqrt{s} = 189 \text{GeV}$

DPF 2000, Columbus Ohio

Peter Krieger, Carleton University

15

GMSB Scan: Exclusion regions in $(\tan \beta, \Lambda)$ plane

Description	SUSY breaking scale	sets mass scale for sparticles	mass scale of messengers	number of sets of messenger par	as usual	as usual	
Range for scan	fixed	s $5 - 200 \text{TeV}$	$1.01\Lambda - 10^{6} TeV$	rticles 1-4	2 - 50	+1/-1	
	we are assuming prompt decays						

DPF 2000, Columbus Ohio

17

Peter Krieger, Carleton University

GMSB Scan: Exclsusion Regions in $(M_1, M_{\tilde{z}_1})$ plane

 $\widetilde{\chi}_{1}^{0}\widetilde{\chi}_{1}^{0} \rightarrow \mathbf{I}^{+}\mathbf{I}^{-}\widetilde{\mathbf{G}}\mathbf{I}^{'+}\mathbf{I}^{'-}\widetilde{\mathbf{G}}$

 $\widetilde{\mu}^+\widetilde{\mu}^- o \mu^+\widetilde{\mathbf{G}}\mu^-\widetilde{\mathbf{G}}$

 $\widetilde{\tau}^+\widetilde{\tau}^- o au^+\widetilde{G} au^-\widetilde{G}$

 $\mathbf{A} \quad \widetilde{\chi}_1^0 \widetilde{\chi}_1^0 \to \mathcal{N} \widetilde{\mathbf{G}} \mathcal{N} \widetilde{\mathbf{G}}$

Peter Krieger, Carleton University

Slepton NLSP with lifetime

Decay length ~ detector size: kinked charged tracks (analysis in progress) Decay length >> detector size: long lived stable charged particles

Includes results from lower energies

 $M(\tilde{l}_{R}^{+}) > 96.0 \text{ GeV } @ 95\% \text{ CL}$ $M(\tilde{l}_{L}^{+}) > 96.5 \text{ GeV } @ 95\% \text{ CL}$

Results valid for lifetimes > 1 us

Neutralino NLSP with Lifetime

- Decay length ~ detector size: non-pointing photons (in progress)
- Decay length >> detector size: conventional SUSY signatures

DPF 2000, Columbus Ohio

20

Conclusions

- The end of LEP draws near: still no signs of SUSY
- Lots of work to still be done:
- Update to highest energies and maximum luminosity
- Results on intermediate / long lifetimes in progress
- Still some hope for discovery at LEP ?
- Wait a few months
- Or wait a few years

