Searches for Prompt Light Gravitino Production

Peter Krieger, Carleton University, Ottawa Canada, for the OPAL Collaboration

- SUSY models with light gravitinos
- Gauge-Mediated Supersymmetry Breaking
- Neutralino NLSP Scenario
- Slepton NLSP Scenario
- GMSB scan
- Gravitino Pair Production
- GMSB signatures with lifetime
- Summary

Final Results at $\sqrt{s} = 189$ GeV

Preliminary updates at $\sqrt{s} = 200-209$ GeV
SUSY models with a Light Gravitino

- Some SUSY models predict that the LSP is an almost massless gravitino (models with gauge-mediated supersymmetry breaking, no-scale supergravity)
- Richest phenomenology is from GMSB models

<table>
<thead>
<tr>
<th>Gravity</th>
<th>SUSY in hidden sector</th>
<th>Gauge</th>
</tr>
</thead>
<tbody>
<tr>
<td>$M \sim M_p \sim 10^{18}$ GeV</td>
<td>$\sqrt{F} \sim \sqrt{M}$</td>
<td>$10^3 < M < 10^{15}$ GeV</td>
</tr>
<tr>
<td>$\sqrt{F} \sim 10^{11}$ GeV</td>
<td>$G^1/2$</td>
<td>$10^3 < \sqrt{F} < 10^{10}$ GeV</td>
</tr>
<tr>
<td>FCNC</td>
<td>Visible Sector</td>
<td>No FCNC</td>
</tr>
<tr>
<td>$M_G \sim 2.5$ TeV</td>
<td>$e, \mu, \tau, \ldots, W^-, Z^0$</td>
<td>$\Lambda \sim k \frac{F}{M}$</td>
</tr>
<tr>
<td></td>
<td>$\tilde{e}, \tilde{\mu}, \tilde{\tau}, \ldots, \tilde{W}^-, \tilde{Z}^0$</td>
<td>$M_G < 1$ GeV</td>
</tr>
</tbody>
</table>

R-parity conservation assumed throughout this talk

Well defined particle spectrum
No FCNC
LSP = light gravitino
Phenomenology depends on NLSP

Problems with FCNC
Gravitino phenomenologically unimportant
Phenomenology depends on LSP
Experimental Signatures

Scale of SUSY breaking \sqrt{F} determines \tilde{G} mass and NLSP lifetime

$$M_{\tilde{G}} \approx 2.37 \times 10^{-2} \left(\frac{\sqrt{F}}{10 \text{ TeV}} \right)^2 \text{eV}$$
$$c \tau(\text{NLSP}) \approx \left(\frac{M_{\text{NLSP}}}{100 \text{ GeV}} \right)^{-5} \left(\frac{\sqrt{F}}{10 \text{ TeV}} \right)^4 \mu \text{m}$$

Phenomenology dictated by the NLSP (usually either $\tilde{\chi}_1^0$ or $\tilde{\tau}$) and on NLSP lifetime (decay length w.r.t detector volume)

<table>
<thead>
<tr>
<th>NLSP</th>
<th>short</th>
<th>intermediate</th>
<th>long</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\tilde{\chi}_1^0$</td>
<td>photons + E_T</td>
<td>Non-pointing photons + E_T</td>
<td>as in gravity-mediated SUSY</td>
</tr>
<tr>
<td>$\tilde{\tau}$</td>
<td>leptons + E_T</td>
<td>Kinked charged tracks + E_T</td>
<td>Long-lived heavy charged particles</td>
</tr>
</tbody>
</table>

Scenarios with particularly low SM backgrounds

This talk: Prompt Production

Unusual signatures in the case of intermediate τ_{NLSP}
Experimental Signatures

Can be co-NLSPs

Contribute to exclusion regions from GMSB scan

NLSP Pair Production

Other sparticle pair production, associated pair production

Peter Krieger, Carleton University

DPF 2000, Columbus Ohio
Neutralino NLSP Pair Production

Acoplanar photons

\[e^+ e^- \rightarrow \tilde{\chi}_1^0 \tilde{\chi}_1^0 \rightarrow (\tilde{G} \gamma)(\tilde{G} \gamma) \rightarrow \gamma \gamma + E_T \]

Irreducible SM background from \[e^+ e^- \rightarrow \nu \bar{\nu} \gamma \gamma \]

Large fraction of signal contribution expected at M\(_{\text{recoil}}\) values well below the Z peak

Selected events can be classified according to maximum mass for which they remain kinematically consistent with the above decay sequence (M\(_{X}^{\text{max}}\))

OPAL published results from \(\sqrt{s} = 189 \text{ GeV}\)

<table>
<thead>
<tr>
<th>M(_X) (GeV)</th>
<th>Selection Efficiency (%)</th>
<th>Selection efficiency with M(_X^{\text{max}}) > M(_X) - 5 GeV</th>
<th>N(_{\text{data}})</th>
<th>N(_{\nu \gamma \gamma})</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>70.2 +/- 1.2</td>
<td>67.7 +/- 1.3</td>
<td>14</td>
<td>13.67 +/- 0.20</td>
</tr>
<tr>
<td>60</td>
<td>74.0 +/- 1.1</td>
<td>71.1 +/- 1.2</td>
<td>11</td>
<td>10.05 +/- 0.18</td>
</tr>
<tr>
<td>70</td>
<td>71.4 +/- 1.2</td>
<td>69.2 +/- 1.2</td>
<td>9</td>
<td>7.22 +/- 0.15</td>
</tr>
<tr>
<td>80</td>
<td>72.3 +/- 1.2</td>
<td>68.7 +/- 1.4</td>
<td>7</td>
<td>4.81 +/- 0.13</td>
</tr>
<tr>
<td>90</td>
<td>71.3 +/- 1.2</td>
<td>67.5 +/- 1.3</td>
<td>5</td>
<td>2.40 +/- 0.09</td>
</tr>
<tr>
<td>94</td>
<td>72.2 +/- 1.2</td>
<td>70.4 +/- 1.2</td>
<td>3</td>
<td>1.34 +/- 0.07</td>
</tr>
</tbody>
</table>

Gravitino-LSP model with M\(_\chi^\prime\) = 1.35 M\(_\chi^0\), M\(_\chi^1\) = 2.7 M\(_\chi^0\)

Expected limit @95% CL

NLSP = \(\tilde{B}\)

Gravitino-LSP model with M\(_\chi^\prime\) > 88.3 GeV

OPAL \(\sqrt{s} = 189 \text{ GeV}\)

\[N_{\text{exp}} = 26.9 \pm 0.3 \pm 1.2 \]

\[N_{\text{obs}} = 24 \]
Update of OPAL Acoplanar Photons Selection

No evidence for non-Standard Model contributions (especially in low recoil-mass region)
Other Channels: Neutralino NLSP

Other production channels:

\[e^+ e^- \rightarrow \tilde{\tau}^+ \tilde{\tau}^- \rightarrow (\tilde{\chi}_1^+ \tilde{\chi}_1^-) \rightarrow (\tilde{\chi}_1^0 \tilde{\chi}_1^-) \rightarrow (1^+ \gamma \tilde{G})(1^- \gamma \tilde{G}) \rightarrow 1^+ 1^- \gamma \gamma + E_T \]

\[e^+ e^- \rightarrow \chi_1^+ \chi_1^- \rightarrow (W^{(*)+} \tilde{\chi}_1^0)(W^{(*)-} \tilde{\chi}_1^-) \rightarrow (W^{(*)+} \gamma \tilde{G})(W^{(*)-} \gamma \tilde{G}) \rightarrow \text{Leptons and/or jets } + \gamma \gamma + E_T \]

\[e^+ e^- \rightarrow \chi_2^0 \chi_1^0 \rightarrow Z^{(*)} \tilde{\chi}_1^0 \tilde{\chi}_1^- \rightarrow (Z^{(*)} \gamma \tilde{G})(\gamma \tilde{G}) \rightarrow \text{Leptons or jets } + \gamma \gamma + E_T \]

Separate selections into high/low multiplicity parts (depending on W,Z final states)

Efficiencies depend on mass-difference of NLSP and produced particles

Limits in \([M(X), M(\tilde{\chi}_1^0)]\) plane: \(X = \tilde{\tau}^+, \tilde{\chi}_1^+, \tilde{\chi}_2^0\)
Other Channels: Neutralino NLSP

~ model independent cross-section limits at $\sqrt{s} = 189 \text{GeV}$

$\sigma(e^+e^- \rightarrow \tilde{\mu}^+\tilde{\mu}^-)$
$\tilde{\mu}^\pm \rightarrow \mu^\pm \tilde{\chi}_1^0 \rightarrow \mu^\pm \gamma \tilde{G}$

Efficiency ~ 30-50%

$\mu^+\mu^-\gamma\gamma + E_T$

(a) OPAL

$34 - 45 \text{ fb}$

$\sigma(e^+e^- \rightarrow \tilde{\chi}^+_1\tilde{\chi}^-_1)$
$\tilde{\chi}_1^\pm \rightarrow W^{(*)}\tilde{\chi}_1^0 \rightarrow W^{(*)}\gamma \tilde{G}$

Efficiency ~ 20-50%

$W^{(*)}W^{(*)}\gamma\gamma + E_T$

(b) OPAL

$40 - 360 \text{ fb}$

$\sigma(e^+e^- \rightarrow \tilde{\tau}^+\tilde{\tau}^-)$
$\tilde{\tau}^\pm \rightarrow \tau^\pm \tilde{\chi}_1^0 \rightarrow \tau^\pm \gamma \tilde{G}$

Efficiency ~ 20-40%

$\tau^+\tau^-\gamma\gamma + E_T$

(c) OPAL

$40 - 180 \text{ fb}$

$\sigma(e^+e^- \rightarrow \tilde{\chi}^0_2\tilde{\chi}^0_1)$
$\tilde{\chi}_2^0 \rightarrow Z^{(*)}\tilde{\chi}_1^0 \rightarrow Z^{(*)}\gamma \tilde{G}$

Efficiency ~ 20-50%

$Z^{(*)}\gamma\gamma + E_T$

(d) OPAL

$40 - 130 \text{ fb}$

Peter Krieger, Carleton University

DPF 2000, Columbus Ohio
Other Channels: Neutralino NLSP (Update)

\[\sim \text{model independent cross-section limits at } \sqrt{s} = 205.5 \text{ GeV} \]

For slepton co-NLSP scenario with large \(M(\tilde{\tau}) - M(\tilde{\chi}^0_1) \)
see 4 events where 1.3 +/- 0.3 are expected from SM

<table>
<thead>
<tr>
<th>(M(\tilde{\tau}) - M(\tilde{\chi}))</th>
<th>N(data)</th>
<th>(N_{\text{SM}}(\text{MC}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(3 - 10 \text{ GeV})</td>
<td>1</td>
<td>0.5 +/- 0.2</td>
</tr>
<tr>
<td>(10 \text{ GeV} - M(\tilde{\tau}) / 2)</td>
<td>2</td>
<td>0.7 +/- 0.2</td>
</tr>
<tr>
<td>(M(\tilde{\tau}) / 2 - M(\tilde{\tau}))</td>
<td>4</td>
<td>1.3 +/- 0.3</td>
</tr>
</tbody>
</table>
$1^+1^-\gamma\gamma$ Events

2/4 events have a single high-energy photon consistent with radiative return to the Z^0

Other 2 each have 2 high energy photons

(55 GeV, 22 GeV) (42 GeV, 40 GeV)

Background in this kinematic regime is essentially $e^+e^- \rightarrow \tau^+\tau^-\gamma\gamma$

Prob of two events with 2 photons > 20 GeV estimated from $e^+e^- \rightarrow \tau^+\tau^-\gamma\gamma$ Monte Carlo (assuming only SM background)

Prob $\sim 3 \times 10^{-4}$
Slepton NLSP Pair Production

Acoplanar leptons

\[e^+ e^- \rightarrow \tilde{\nu}^+ \tilde{\nu}^- \rightarrow (\tilde{\nu}^+ \tilde{\nu})(\tilde{\nu}^- \tilde{\nu}) \rightarrow \ell^+ \ell^- + E_T \]

Large irreducible SM background from W pair production

Published results at 183-189 GeV CERN EP/99-122

<table>
<thead>
<tr>
<th>Mass (GeV)</th>
<th>selectrons</th>
<th>smuons</th>
<th>staus</th>
</tr>
</thead>
<tbody>
<tr>
<td>45</td>
<td>81.4</td>
<td>81.9</td>
<td>38.2</td>
</tr>
<tr>
<td>65</td>
<td>85.8</td>
<td>76.0</td>
<td>24.9</td>
</tr>
<tr>
<td>85</td>
<td>64.0</td>
<td>71.1</td>
<td>51.2</td>
</tr>
<tr>
<td>94</td>
<td>34.5</td>
<td>38.8</td>
<td>56.0</td>
</tr>
</tbody>
</table>

\[\sqrt{s} = 189 \text{ GeV} \]

\[\int L = 181.0 \text{ pb}^{-1} \]

Good consistency with Standard Model
Limits from Acoplanar Leptons

Limits along $M_{\text{LSP}} = 0$ axis applicable to light gravitino scenario

$$\sqrt{s} = 183 - 189 \text{ GeV}$$

$$\int L = 237.4 \text{ pb}^{-1}$$

95% CL lower mass limits (for BR=1.0)

$$M(\tilde{\mu}_R) > 85.4 \text{ GeV}$$

$$M(\tilde{\tau}_R) > 81.1 \text{ GeV}$$

$$M(\tilde{\tau}_1) > 80.0 \text{ GeV}$$

for any degree of stau mixing
Slepton NLSP Pair Production @ 205.5 GeV

Preliminary results from OPAL 2000 data

<table>
<thead>
<tr>
<th>Mass</th>
<th>selectrons</th>
<th>smuons</th>
<th>staus</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>$N_{SM}(MC)$</td>
<td>CL(%)</td>
</tr>
<tr>
<td>50 GeV</td>
<td>15</td>
<td>16.51 +/- 0.25</td>
<td>47.6</td>
</tr>
<tr>
<td>70 GeV</td>
<td>20</td>
<td>20.45 +/- 0.25</td>
<td>41.8</td>
</tr>
<tr>
<td>90 GeV</td>
<td>11</td>
<td>11.22 +/- 0.17</td>
<td>65.8</td>
</tr>
<tr>
<td>101 GeV</td>
<td>1</td>
<td>2.63 +/- 0.08</td>
<td>82.9</td>
</tr>
</tbody>
</table>

$\sqrt{s} = 200 - 209$ GeV

$\int L = 83.1$ pb$^{-1}$

Good consistency with Standard Model
Other Channels: Slepton NLSP

Other production channels

Final states with 4 or 6 leptons + missing energy

Slepton co-NLSP

\[\text{e}^+ \text{e}^- \rightarrow \tilde{\chi}_1^0 \tilde{\chi}_1^0 \rightarrow (\tilde{l}^\pm l^\mp)(l'^\pm l'^\mp) \rightarrow l l l' l' \tilde{G}\tilde{G} \]

\[l, l' \equiv e, \mu, \tau \]

\[\text{Equal branching fractions assumed} \]

\[\tilde{\chi}_1^0 \text{ is a Majorana fermion: can lead to same sign for two highest energy leptons (i.e. those from the slepton decays)} \]

Stau NLSP

\[\text{e}^+ \text{e}^- \rightarrow \tilde{\chi}_1^0 \tilde{\chi}_1^0 \rightarrow (\tilde{\tau}^\pm \tau^\mp)(\tilde{\tau}^\pm \tau^\mp) \rightarrow \tau\tau\tau\tau \tilde{G}\tilde{G} \]

\[\tau\tau\tau\tau + E_T \]

\[\text{e}^+ \text{e}^- \rightarrow \tilde{l}^+ \tilde{l}^- \rightarrow (l^+\tilde{\tau}\tau)(l^-\tilde{\tau}\tau) \rightarrow l^+ l^- \tau\tau\tau\tau \tilde{G}\tilde{G} \]

\[l^+ l^- \tau\tau\tau\tau + E_T \]

\[l \equiv e, \mu \]

Peter Krieger, Carleton University
dpf 2000, Columbus Ohio
Other Channels: Slepton NLSP

~ model independent cross-section limits at $\sqrt{s} = 189\text{GeV}$

Assumes equal BRs to e, μ, τ

$\ell^+ \ell^- \ell^+ \ell^- + E_T$

$\sigma(e^+e^- \rightarrow \tilde{\chi}_1^0 \tilde{\chi}_1^0)$

$\tilde{\chi}_1^0 \rightarrow \tilde{\ell}_L \tilde{\ell}_L \rightarrow \ell \tilde{G}$

$\ell \ell \tau \tau \tau \tau + E_T$

$\sigma(e^+e^- \rightarrow \tilde{\chi}_1^0 \tilde{\chi}_1^0)$

$\tilde{\chi}_1^0 \rightarrow \tilde{\tau}^+ \tilde{\tau}^-, \tilde{\tau} \rightarrow \tau \tilde{G}$

$e e \tau \tau \tau \tau + E_T$

$\sigma(e^+e^- \rightarrow \tilde{e}^+ \tilde{e}^-)$

$\tilde{e} \rightarrow \tilde{\tau} \tau e, \tilde{\tau} \rightarrow \tau \tilde{G}$

$\mu \mu \tau \tau \tau \tau + E_T$

$\sigma(e^+e^- \rightarrow \tilde{\mu}^+ \tilde{\mu}^-)$

$\tilde{\mu} \rightarrow \tilde{\tau} \tau \mu, \tilde{\tau} \rightarrow \tau \tilde{G}$
Slepton NLSP Results at 200-209 GeV

Cross-section limits at $\sqrt{s} = 205.5\text{GeV}$

$\sigma(e^+e^- \rightarrow \tilde{\chi}^0_1 \tilde{\chi}^0_1)$
$\tilde{\chi}^0_1 \rightarrow \tilde{\tau}^+ \tilde{\tau}^-, \tilde{\tau} \rightarrow \tau \tilde{G}$
$\tau^+ \tau^- \tau^+ \tau^- + E_T$

$\sigma(e^+e^- \rightarrow \tilde{\chi}^0_1 \tilde{\chi}^0_1)$
$\tilde{\chi}^0_1 \rightarrow \tilde{\tau}^+ \tilde{\tau}^-, \tilde{\tau} \rightarrow \tau \tilde{G}$
$\tau^+ \tau^- \tau^+ \tau^- + E_T$

$\sigma(e^+e^- \rightarrow \tilde{\tau}^+ \tilde{\mu}^-)$
$\tilde{\mu} \rightarrow \tau \tau \mu, \tilde{\tau} \rightarrow \tau \tilde{G}$
$\mu \mu \tau \tau \tau + E_T$

<table>
<thead>
<tr>
<th>channel</th>
<th>data</th>
<th>SM background</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\tilde{\chi}^0_1 \tilde{\chi}^0_1 \rightarrow (l\bar{l}\tilde{G})(l\bar{l}^\prime \tilde{G})$</td>
<td>0</td>
<td>0.6 +/- 0.1</td>
</tr>
<tr>
<td>$\tilde{l}^+ \tilde{l}^- \rightarrow (l^+ \tau \tilde{G})(l^- \tau \tilde{G})$</td>
<td>6</td>
<td>2.1 +/- 0.2</td>
</tr>
</tbody>
</table>

Peter Krieger, Carleton University
DPF 2000, Columbus Ohio

Prob $\sim 2\%$
GMSB Scan: Exclusion regions in \((\tan \beta, \Lambda)\) plane

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range for scan</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\sqrt{F})</td>
<td>SUSY breaking scale</td>
<td>fixed (5 - 200 \text{ TeV})</td>
</tr>
<tr>
<td>(\Lambda)</td>
<td>sets mass scale for sparticles</td>
<td></td>
</tr>
<tr>
<td>(M)</td>
<td>mass scale of messengers</td>
<td>(1.01\Lambda - 10^6 \text{ TeV})</td>
</tr>
<tr>
<td>(N)</td>
<td>number of sets of messenger particles</td>
<td>1 - 4</td>
</tr>
<tr>
<td>(\tan \beta)</td>
<td>as usual</td>
<td>2 - 50</td>
</tr>
<tr>
<td>(\text{sgn}(\mu))</td>
<td>as usual</td>
<td>+1/−1</td>
</tr>
</tbody>
</table>

Exclusions for \(\mu > 0\) are somewhat stronger

\[\Lambda > 48 \text{ TeV}\]
\[\Lambda > 31 \text{ TeV}\]
\[\Lambda > 22 \text{ TeV}\]
\[\Lambda > 19 \text{ TeV}\]

\(M = 10^6 \text{ TeV}\)
\(M = 250 \text{ TeV}\)
\(M = 1.01\Lambda\)

Peter Krieger, Carleton University
DPF 2000, Columbus Ohio
\[
\begin{align*}
M_{\tilde{\chi}_1^0} < 76 \text{ GeV} \\
M_{\tilde{\chi}_1^0} &< 88 \text{ GeV} \\
M_{\tilde{\chi}_1^0} &< 99 \text{ GeV}
\end{align*}
\]
\[\tan \beta = 20\]

Theoretically inaccessible

\[m(\tau_{\tilde{\chi}_1}) < 85 \text{ GeV}\]

\[m_{\text{NLSP}} < 70 \text{ GeV}\]

\[\tan \beta = 2\]

\[m(\chi_\mu) \approx 0\]

\[m(\chi_\tau) \approx 1\]

\[m(\gamma) \approx 2\]

\[m(\chi_\mu) \approx 0\]

\[m(\chi_\tau) \approx 1\]

\[m(\gamma) \approx 2\]

\[m(\chi_\mu) \approx 0\]

\[m(\chi_\tau) \approx 1\]

\[m(\gamma) \approx 2\]

OPAL Scan: Exclusion Regions in \((m_{\chi_0^1}, M_{\text{NLSP}})\) plane
Slepton NLSP with lifetime

- Decay length \sim detector size: kinked charged tracks (analysis in progress)
- Decay length $>>$ detector size: long lived stable charged particles

\[\sqrt{s} = 205.5 \text{ GeV} \]
\[\int L = 87.9 \text{ pb}^{-1} \]

\[M(\tilde{l}_R^+) > 96.0 \text{ GeV @ 95\% CL} \]
\[M(\tilde{l}_L^+) > 96.5 \text{ GeV @ 95\% CL} \]

Results valid for lifetimes > 1 us
Neutralino NLSP with Lifetime

- Decay length \sim detector size: non-pointing photons (in progress)
- Decay length \gg detector size: conventional SUSY signatures

Can quantify sensitivity of $\gamma\gamma + E_T$ analysis to finite lifetime

Evaluate selection efficiency as function of lifetime for $\tau = 10^{-15} - 10^{-7} \text{ s} \quad (c\tau \sim 30 \text{ m})$
Gravitino Pair Production $e^+e^- \rightarrow \tilde{G}\tilde{G}\gamma$

Brignole, Feruglio and Zwirner: models with superlight gravitino

Single photon + E_γ signature

$$\frac{d^2\sigma}{dx_\gamma d\cos \theta} = \left(\frac{\alpha G_N^2}{45} \right) \frac{s^3}{m_G^4} f_{GG\gamma}(x_\gamma, \cos \theta)$$

$$f_{GG\gamma}(x,y) = 2(1-x)^2 \left[\frac{(1-x)(2-2x+x^2)}{x(1-y^2)} + \frac{x(-6+6x+x^2)}{16} - \frac{x^3(1-y^2)}{32} \right]$$

Soft photon spectrum:
Event counting in region $E_\gamma < 30$ GeV
195 events observed
179.6 ± 5.4 expected $\nu\nu\gamma(\gamma)$ from KORALZ

$\sigma_{95} \rightarrow m_G > 8.7 \mu$eV @ 95%CL
Conclusions

• The end of LEP draws near: still no signs of SUSY
• Lots of work to still be done:
 – Update to highest energies and maximum luminosity
 – Results on intermediate / long lifetimes in progress

• Still some hope for discovery at LEP ?
 – Wait a few months ……..
 – Or wait a few years