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Introduction



Discretization

1. To solve the WE by numerical methods: discretization of
the problem (Earth model, wavefield, etc).

2. How to discretize: dimensionality (1D/2D/3D)? mesh
generation? various geometries & different coordinate
systems? Parallel computing?
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Classification of PDEs

1D Acoustic Wave Equation (smoothly varying material
properties)

ptt − c2pxx = 0 (1)

• Linear PDE: the PDE can be expressed as linear
combinations of p(x, t) and its spatial/temporal derivatives
with coefficients independent of p (but not necessarily x)
⇒ sometimes analytical solutions.

• Second-order PDE: highest-order derivatives
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Classification of PDEs

Classification based on equivalent ’conic sections’, or quadratic
equations

Apxx+Bpxt+Cptt+Dpx+Ept+F = 0→ Ax2+Bxt+Ctt+Dx+Et+F = 0
B2 − 4AC = 0 parabolic

B2 − 4AC < 0 elliptic

B2 − 4AC > 0 hyperbolic

(2)
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Wave equation

The wave equation is a classic hyperbolic PDE. The solutions to
hyperbolic PDEs are wavelike and disturbances travel with finite
propagation speeds.

In contrast, for elliptic and parabolic problems, perturbations of
initial conditions or boundaries have an immediate effect
everywhere.
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Semi-discrete scheme

The separation of space-time derivatives

∂2
t p(x, t) = L(p, t)→ L(p, t) = c2(x)∂2

xp(x, t) (3)

1. This implies a scheme that advances in discrete time
steps, and for every time step, displacement field can be
updated through property functions such as c(x) and the
(discretized) spatial derivatives of the field.

2. different numerical schemes differ in how the RHS is
discretized and how model is updated at each time step.
The ’advance’ in time is always solved by
FD/discrete-integration type of scheme (Newmark, R-K).
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Dicretization: grid-point vs series expansion

Two basic strategies for spatial discretization:
1. The grid-point method: approximates an arbitrary function
f(x) at a discrete set of points (FD)
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Discretization by basis functions

2. The series-expansion method: approximate a function by a
sum over a set of basis functions (local vs. global)

• Field interpolation: FS–pseudo-spectral

• finite-element method: space is divided into elements;
within an element, field is approximated by polynomial
function and continuous across element boundaries
(linear, quadatic, Lagrange poly.)

• finite-volume method: field can be discontinuous across
cell boundaries: define ‘flux’ between cells: finite-volume,
discontinuous Galerkin method.
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Dimensionality: 1D/2D/2.5D/3D

• Discretization/computation in the 3D world u(x, y, z) or
u(r, θ, φ): most expensive→ reduction to 1D/2D/2.5D

• started in 2D, u(x, z) and c(x, z), the solution is invariant in
the y direction: point scatter→ line scatter, point source→
line source, therefore cannot be compared directly with
obs.

• 2.5D: 1D radial Earth model, invariant along φ, source at
θ = 0 (Try instaseis)

• coordinate systems: cartesian, cylindrical, spherical
coordinates→meshing
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https://instaseis.net/


Dimensionality

Figure 1: 1D, 2D, 2.5D, 3D
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Computational Mesh

• Meshing is a field in itself and a subdomain of computational
geometry

• The choice of meshing is closely related to the underlying
numerical methods.

• Question: honour variations in surface topography and material
interfaces? Or is the blocky representation sufficient? Difficulty
in meshing/computation?
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Structured (regular) mesh

Regular mesh subdivides 1D/2D/3D space by regular
connectivity and can be represented by vectors in 1D and
matrices in 2D and 3D, e.g., c(x)→ ci, i = 1, · · · ,N.

Figure 2: a: Regular, equi-spaced 2D grid in cartesian geometry; b: multi-domain regular 2D grid in spherical
coordinates; c: regular, stretched grid that follows smooth surface; d: regular 3D cartesian grid with blocky
topography surface. e: regular 3D grid in spherical coordinates (section) with grid points based on Chebyshev
collocation points; f: regular surface grid of sphere meshed with the cubed-sphere approach. 12



Unstructured (irregular) mesh

They cannot be represented by vectors and matrix and require
explicit definition of ‘connectivity’: list of vertices, list of
elements (based on vertex #), list of neighbours (based on
element #)
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Unstructured grids in 2D and 3D

Figure 3: Unstructured grids in 2D and 3D. a: Unstructured grid based on Delauney triangulation with
cross-cutting interface; b: Voronoi cells for unstructured grid; c: tetrahedral mesh for the Matterhorn (mountain in
Switzerland); d: tetrahdral mesh for spherical Earth model.
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Hybrid mesh

A structured, regular grid in the lower domain with low degree of geometrical
complexity is combined with an unstructured triangular grid at the top of the
domain with a complicated free surface. A strong low-velocity domain (black
area) is also meshed with an unstructured triangular mesh. Discontinous
Galerkin method is used for wave simulation. 15



Adaptive-mesh refinement (AMR) and Octree

Adaptive-mesh refinement (AMR): When physical problems in large
computational domains are strongly focused in space (e.g. shock waves,
rupture fronts), then it might make sense to densify the grid during run time in
the area where things are happening. For dynamic rupture problems, adaptive
mesh refinement may be employed.
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Meshing—an underestimated task

The task of meshing is often difficulty (complex geometry),
time-consuming and we are not generally trained for it. Prepare a
model for meshing:

• suface topography: digital elevation model (DEM), smoothed

• interface of basement map (sediment/crystalline rock interface)

• for finite-fault simulations: internal fault surfaces
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Steps for meshing

• geometry creation: defining surfaces bounding the mesh volume.
• mesh generation: takes the created geometry as input and subdivdes

entire volume into grid cells: hexahedra (not fully automatic yet and
requires manual manipulations: CUBIT/Trelis) or tetrahedra (high
quality, fully automatic, but computationally more expensive)

• set geophysical parameters on the mesh through interpolation
• set boundary conditions

Left: hexahedral mesh for Gronoble Valley; Right: tetrahedral mesh for the
Merapi volcano, Indonesia with refinement under the volcano summit. 18



Parallel Computing

Community codes for wave simulations such as SPECFEM3D,
SPECFEM3D_GLOBE and SeisSol are often implemented in parallel.
Two computing models: serial vs parallel.

• serial: SISD (single instruction on single data) can speed up by
increasing clock rate → limitation

• parallel: SIMD (single instruction on multiple data) such as matrix
operations, embarrassingly parallel, GPU clusters; MIMD: multiple tasks
carried out in parallel, CPU clusters.
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https://github.com/geodynamics/specfem3d
https://github.com/geodynamics/specfem3d_globe
https://github.com/SeisSol/SeisSol


Wave equation: Local communications

The degree of locality is important for a parallel numerical algorithm.

∂2
t p = c2∂2

xp

p(x, t + ∆t) =
c2(x)∆t2

∆x2
[p(x + ∆x, t)− 2p(x, t) + p(x−∆x, t)

+2p(x, t)− p(x, t−∆t)]

The spatio-temporal interaction of elastic wave (and many other)
phenomena is of a local nature→ communication is only necessary
between neighbouring processors→ efficient parallel algorithms.
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Domain decomposition

Space-dependent fields (e.g. displacements, stresses, elastic parameters)
are mapped on parallel hardware by domain decomposition using the
distributed memory concept. This means each processor only see local
memory and communication occurs between processors when information
needs to be exchanged. Very hard problem for unstructured mesh due to load
balancing issue (SCOTCH).
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https://www.labri.fr/perso/pelegrin/scotch/


Hardware: memory and CPUs
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Hardware: Evolution of parallel computers

• Integrated system s(before mid 90s): homogeneous assembly
of processors connected by specially designed networks

• PC cluster: (many) linux PCs + LANs

• super computers: individual computer nodes with fast network
connection (e.g., the Niagara system at Scinet, Compute
Canada, 2,016 nodes, each with 40 cores and 202 GB RAM, EDR
infiniband network)

• GRID or cloud computing:
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Hardware and software for parallel algorithms

A flexible implementation: Message-Passing Interface (MPI) which
has interfaces/libraries for all major languages (Fortran, C, C++, etc)

Run with mpirun -np 4 main.F90
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MPI output

Processor id, output in random sequence
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Parallel computing: scaling and speed-up

Scalability refers to the speeding up of a program with
increasing resources (e.g., cores).

speed-up =
1

P/n + S
(4)

where P and S are the parallel and serial fraction of the code.

• Strong scaling: A fixed problem size, increased number of
cores;

• weak scaling: increased problem size, increased number of
cores

• I/O

Code optimization: When requesting resources on national or
international supercomputer infrastructure you have to
demonstrate that your program scales.
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Parallel I/O

I/O operations, such as transfer, post-processing, etc of wavefield
snapshots, can be a major bottleneck in parallel computation.

Parallel I/O with parallel storage facilities (efficient data exchange
and sharing). Example: ASDF (Adaptible Seismic Data Format) based
on HDF5 that contains data (waveforms), metadata, and provenance
(description of its generation) and works with Obspy.
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http://www.obspy.org


Final words

In seismological research, most leading-edge problems require
larger-scale simulations working on huge data sets, requiring
substantial post-processing resources (e.g. visualization,
filtering, etc.) that can rarely be developed and maintained by
(small) research groups.

Ongoing developments to openly distribute simulation software
for Earth sciences (e.g. CIG) with sufficient documentation and
training material, as well as the development of community
platforms such as VERCE or EPOS.

28

http://www.geodynamics.org
http://www.verce.eu
http://www.epos-ip.org
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